1
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Snyder BD, McIlwraith CW, Grinstaff MW, Seabaugh KA, Barrett MF, Goodrich LR, Kawcak CE. Longitudinal in vivo cationic contrast-enhanced computed tomography classifies equine articular cartilage injury and repair. J Orthop Res 2024; 42:2264-2276. [PMID: 38715519 DOI: 10.1002/jor.25869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 10/19/2024]
Abstract
Cationic contrast-enhanced computed tomography (CECT) capitalizes on increased contrast agent affinity to the charged proteoglycans in articular cartilage matrix to provide quantitative assessment of proteoglycan content with enhanced images. While high resolution microCT has demonstrated success, we investigate cationic CECT use in longitudinal in vivo imaging at clinical resolution. We hypothesize that repeated administration of CA4+ will have no adverse side effects or complications, and that sequential in vivo imaging assessments will distinguish articular cartilage repair tissue from early degenerative and healthy cartilage in critically sized chondral defects. In an established equine translational preclinical model, lameness and synovial effusion scores are similar to controls after repeated injections of CA4+ (eight injections over 16 weeks) compared to controls. Synovial fluid total protein, leukocyte concentration, and sGAG and PGE2 concentrations and articular cartilage and synovial membrane scores are also equivalent to controls. Longitudinal in vivo cationic CECT attenuation in repair tissue is significantly lower than peripheral to (adjacent) and distantly from defects (remote sites) by 4 weeks (p < 0.001), and this difference persists until 16 weeks. At the 6- and 8-week time points, the adjacent locations exhibit significantly lower cationic CECT attenuation compared with the remote sites, reflecting peri-defect degeneration (p < 0.01). Cationic CECT attenuation at clinical resolution significantly correlates with cationic CECT (microCT) (r = 0.69, p < 0.0001), sGAG (r = 0.48, p < 0.0001), and ICRS II histology score (r = 0.63, p < 0.0001). In vivo cationic CECT imaging at clinical resolution distinguishes fibrous repair tissue from degenerative and healthy hyaline cartilage and correlates with molecular tissue properties of articular cartilage.
Collapse
Affiliation(s)
- Brad B Nelson
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Janne T A Mäkelä
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Taylor B Lawson
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Amit N Patwa
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Brian D Snyder
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Kathryn A Seabaugh
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Myra F Barrett
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher E Kawcak
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Krakowski P, Rejniak A, Sobczyk J, Karpiński R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare (Basel) 2024; 12:1648. [PMID: 39201206 PMCID: PMC11353818 DOI: 10.3390/healthcare12161648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.
Collapse
Affiliation(s)
- Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University, 20-059 Lublin, Poland
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Adrian Rejniak
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Jakub Sobczyk
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, University of Technology, 20-618 Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University, 20-059 Lublin, Poland
| |
Collapse
|
3
|
Donato S, Arana Peña LM, Arfelli F, Brombal L, Colmo L, Longo R, Martellani F, Tromba G, Zanconati F, Bonazza D. Integrating X-ray phase-contrast imaging and histology for comparative evaluation of breast tissue malignancies in virtual histology analysis. Sci Rep 2024; 14:5831. [PMID: 38461221 PMCID: PMC10924917 DOI: 10.1038/s41598-024-56341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
Detecting breast tissue alterations is essential for cancer diagnosis. However, inherent bidimensionality limits histological procedures' effectiveness in identifying these changes. Our study applies a 3D virtual histology method based on X-ray phase-contrast microtomography (PhC μ CT), performed at a synchrotron facility, to investigate breast tissue samples including different types of lesions, namely intraductal papilloma, micropapillary intracystic carcinoma, and invasive lobular carcinoma. One-to-one comparisons of X-ray and histological images explore the clinical potential of 3D X-ray virtual histology. Results show that PhC μ CT technique provides high spatial resolution and soft tissue sensitivity, while being non-destructive, not requiring a dedicated sample processing and being compatible with conventional histology. PhC μ CT can enhance the visualization of morphological characteristics such as stromal tissue, fibrovascular core, terminal duct lobular unit, stromal/epithelium interface, basement membrane, and adipocytes. Despite not reaching the (sub) cellular level, the three-dimensionality of PhC μ CT images allows to depict in-depth alterations of the breast tissues, potentially revealing pathologically relevant details missed by a single histological section. Compared to serial sectioning, PhC μ CT allows the virtual investigation of the sample volume along any orientation, possibly guiding the pathologist in the choice of the most suitable cutting plane. Overall, PhC μ CT virtual histology holds great promise as a tool adding to conventional histology for improving efficiency, accessibility, and diagnostic accuracy of pathological evaluation.
Collapse
Affiliation(s)
- Sandro Donato
- Department of Physics, University of Calabria, 87036, Rende, CS, Italy.
- Division of Frascati, INFN, 00044, Frascati, RM, Italy.
| | - Lucia Mariel Arana Peña
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, INFN, 34127, Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, INFN, 34127, Trieste, Italy
| | - Luca Brombal
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, INFN, 34127, Trieste, Italy
| | - Luisella Colmo
- Unit of Surgical Pathology of the Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34149, Trieste, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, INFN, 34127, Trieste, Italy
| | - Fulvia Martellani
- Unit of Surgical Pathology of the Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34149, Trieste, Italy
| | | | - Fabrizio Zanconati
- Unit of Surgical Pathology of the Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34149, Trieste, Italy
| | - Deborah Bonazza
- Unit of Surgical Pathology of the Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34149, Trieste, Italy
| |
Collapse
|
4
|
Belluzzi E, Todros S, Pozzuoli A, Ruggieri P, Carniel EL, Berardo A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11041014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Articular cartilage is a complex connective tissue with the fundamental functions of load bearing, shock absorption and lubrication in joints. However, traumatic events, aging and degenerative pathologies may affect its structural integrity and function, causing pain and long-term disability. Osteoarthritis represents a health issue, which concerns an increasing number of people worldwide. Moreover, it has been observed that this pathology also affects the mechanical behavior of the articular cartilage. To better understand this correlation, the here proposed review analyzes the physiological aspects that influence cartilage microstructure and biomechanics, with a special focus on the pathological changes caused by osteoarthritis. Particularly, the experimental data on human articular cartilage are presented with reference to different techniques adopted for mechanical testing and the related theoretical mechanical models usually applied to articular cartilage are briefly discussed.
Collapse
|
5
|
A Cationic Contrast Agent in X-ray Imaging of Articular Cartilage: Pre-Clinical Evaluation of Diffusion and Attenuation Properties. Diagnostics (Basel) 2022; 12:diagnostics12092111. [PMID: 36140512 PMCID: PMC9497730 DOI: 10.3390/diagnostics12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the preliminary assessment of a new cationic contrast agent, the CA4+, via the analysis of spatial distribution in cartilage of ex vivo bovine samples, at micrometer and millimeter scale. Osteochondral plugs (n = 18) extracted from bovine stifle joints (n = 2) were immersed in CA4+ solution up to 26 h. Planar images were acquired at different time points, using a microCT apparatus. The CA4+ distribution in cartilage and saturation time were evaluated. Tibial plates from bovine stifle joints (n = 3) were imaged with CT, before and after 24 h-CA4+ bath immersion, at different concentrations. Afterward, potential CA4+ washout from cartilage was investigated. From microCT acquisitions, the CA4+ distribution differentiated into three distinct layers inside the cartilage, reflecting the spatial distribution of proteoglycans. After 24 h of diffusion, the iodine concentration reached in cartilage was approximately seven times that of the CA4+ bath. The resulting saturation time was 1.9 ± 0.9 h and 2.6 ± 2.9 h for femoral and tibial samples, respectively. Analysis of clinical CT acquisitions confirmed overall contrast enhancement of cartilage after 24 h immersion, observed for each CA4+ concentration. Distinct contrast enhancement was reached in different cartilage regions, depending on tissue’s local features. Incomplete but remarkable washout of cartilage was observed. CA4+ significantly improved cartilage visualization and its qualitative analysis.
Collapse
|
6
|
Saukko AEA, Nykänen O, Sarin JK, Nissi MJ, Te Moller NCR, Weinans H, Mancini IAD, Visser J, Brommer H, van Weeren PR, Malda J, Grinstaff MW, Töyräs J. Dual-contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro. J Orthop Res 2022; 40:703-711. [PMID: 33982283 DOI: 10.1002/jor.25066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
To prevent the progression of posttraumatic osteoarthritis, assessment of cartilage composition is critical for effective treatment planning. Posttraumatic changes include proteoglycan (PG) loss and elevated water content. Quantitative dual-energy computed tomography (QDECT) provides a means to diagnose these changes. Here, we determine the potential of QDECT to evaluate tissue quality surrounding cartilage lesions in an equine model, hypothesizing that QDECT allows detection of posttraumatic degeneration by providing quantitative information on PG and water contents based on the partitions of cationic and nonionic agents in a contrast mixture. Posttraumatic osteoarthritic samples were obtained from a cartilage repair study in which full-thickness chondral defects were created surgically in both stifles of seven Shetland ponies. Control samples were collected from three nonoperated ponies. The experimental (n = 14) and control samples (n = 6) were immersed in the contrast agent mixture and the distributions of the agents were determined at various diffusion time points. As a reference, equilibrium moduli, dynamic moduli, and PG content were measured. Significant differences (p < 0.05) in partitions between the experimental and control samples were demonstrated with cationic contrast agent at 30 min, 60 min, and 20 h, and with non-ionic agent at 60 and 120 min. Significant Spearman's rank correlations were obtained at 20 and 24 h (ρ = 0.482-0.693) between the partition of cationic contrast agent, cartilage biomechanical properties, and PG content. QDECT enables evaluation of posttraumatic changes surrounding a lesion and quantification of PG content, thus advancing the diagnostics of the extent and severity of cartilage injuries.
Collapse
Affiliation(s)
- Annina E A Saukko
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging Physics and Technology, University of Oulu, Oulu, Finland
| | - Jaakko K Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging Physics and Technology, University of Oulu, Oulu, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Irina A D Mancini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jetze Visser
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P Réné van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
7
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Snyder BD, McIlwraith CW, Grinstaff MW, Goodrich LR, Kawcak CE. Cationic contrast-enhanced computed tomography distinguishes between reparative, degenerative, and healthy equine articular cartilage. J Orthop Res 2021; 39:1647-1657. [PMID: 33104251 DOI: 10.1002/jor.24894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Cationic contrast-enhanced computed tomography (CECT) is a quantitative imaging technique that characterizes articular cartilage, though its efficacy in differentiating repair tissue from other disease states is undetermined. We hypothesized that cationic CECT attenuation will distinguish between reparative, degenerative, and healthy equine articular cartilage and will reflect biochemical, mechanical, and histologic properties. Chondral defects were created in vivo on equine femoropatellar joint surfaces. Within defects, calcified cartilage was retained (Repair 1) or removed (Repair 2). At sacrifice, plugs were collected from within defects, and at locations bordering (adjacent site) and remote to defects along with site-matched controls. Articular cartilage was analyzed via CECT using CA4+ to assess glycosaminoglycan (GAG) content, compressive modulus (E eq ), and International Cartilage Repair Society (ICRS) II histologic score. Comparisons of variables were made between sites using mixed model analysis and between variables with correlations. Cationic CECT attenuation was significantly lower in Repair 1 (1478 ± 333 Hounsfield units [HUs]), Repair 2 (1229 ± 191 HUs), and adjacent (2139 ± 336 HUs) sites when compared with site-matched controls (2587 ± 298, 2505 ± 184, and 2563 ± 538 HUs, respectively; all p < .0001). Cationic CECT attenuation was significantly higher at remote sites (2928 ± 420 HUs) compared with Repair 1, Repair 2, and adjacent sites (all p < .0001). Cationic CECT attenuation correlated with ICRS II score (r = .79), GAG (r = .76), and E eq (r = .71; all p < .0001). Cationic CECT distinguishes between reparative, degenerative, and healthy articular cartilage and highly correlates with biochemical, mechanical, and histological tissue properties.
Collapse
Affiliation(s)
- Brad B Nelson
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Janne T A Mäkelä
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Taylor B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Amit N Patwa
- Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Mark W Grinstaff
- Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Chris E Kawcak
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Jellyfish Collagen: A Biocompatible Collagen Source for 3D Scaffold Fabrication and Enhanced Chondrogenicity. Mar Drugs 2021; 19:md19080405. [PMID: 34436244 PMCID: PMC8400217 DOI: 10.3390/md19080405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.
Collapse
|
9
|
Risch M, Easley JT, McCready EG, Troyer KL, Johnson JW, Gadomski BC, McGilvray KC, Kisiday JD, Nelson BB. Mechanical, biochemical, and morphological topography of ovine knee cartilage. J Orthop Res 2021; 39:780-787. [PMID: 32833239 DOI: 10.1002/jor.24835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The knee is the most common site for translational cartilage research in sheep, though topographic features of articular cartilage across surfaces are unspecified. We aimed to characterize the mechanical, morphological, and biochemical properties of articular cartilage across ovine knee surfaces and document variations between and within surface locations. Regions of interest (ROIs) were delineated across surfaces of 10 healthy ovine knees. Articular cartilage at each ROI was measured for creep indentation, thickness, and glycosaminoglycan (GAG) and collagen content. Variables were compared between surface locations (trochlea, and lateral [LFC] and medial [MFC] femoral condyles) and between ROIs within each surface location. Correlations between variables were also assessed. Articular surface location had a significant effect on creep (P < .0001), thickness (P < .0001), and collagen (P = .0007), but not GAG (P = .28). Significant differences in percent creep between ROIs were found within the LFC (P < .0001), MFC (P < .0001), and trochlea (P = .0002). Cartilage thickness was different between ROIs within the LFC, MFC, and trochlea (all P < .0001). The LFC (P = .002) and trochlea (P = .01) each had significant differences in GAG between ROIs. Collagen content between ROIs was different within the LFC (P = .0003), MFC (P = .0005), and trochlea (P < .0001). Collagen content was correlated with thickness (r = -.55), percent creep (r = .47), and GAG (r = -.21). Percent creep was correlated with thickness (r = -.64) and GAG (r = -.19). Topographic variations in mechanical, morphological, and biochemical properties exist across knee cartilage surfaces in sheep. Recognition of this variability is important to optimize study protocols and improve accuracy of results.
Collapse
Affiliation(s)
- Makayla Risch
- Preclinical Surgical Research Laboratory, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Erin G McCready
- Preclinical Surgical Research Laboratory, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kevin L Troyer
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado.,Woodward, Inc., Fort Collins, Colorado
| | - James W Johnson
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | - Benjamin C Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | - Kirk C McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | - John D Kisiday
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brad B Nelson
- Preclinical Surgical Research Laboratory, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado.,Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
10
|
Baer K, Kieser S, Schon B, Rajendran K, Ten Harkel T, Ramyar M, Löbker C, Bateman C, Butler A, Raja A, Hooper G, Anderson N, Woodfield T. Spectral CT imaging of human osteoarthritic cartilage via quantitative assessment of glycosaminoglycan content using multiple contrast agents. APL Bioeng 2021; 5:026101. [PMID: 33834156 PMCID: PMC8018795 DOI: 10.1063/5.0035312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Detection of early osteoarthritis to stabilize or reverse the damage to articular cartilage would improve patient function, reduce disability, and limit the need for joint replacement. In this study, we investigated nondestructive photon-processing spectral computed tomography (CT) for the quantitative measurement of the glycosaminoglycan (GAG) content compared to destructive histological and biochemical assay techniques in normal and osteoarthritic tissues. Cartilage-bone cores from healthy bovine stifles were incubated in 50% ioxaglate (Hexabrix®) or 100% gadobenate dimeglumine (MultiHance®). A photon-processing spectral CT (MARS) scanner with a CdTe-Medipix3RX detector imaged samples. Calibration phantoms of ioxaglate and gadobenate dimeglumine were used to determine iodine and gadolinium concentrations from photon-processing spectral CT images to correlate with the GAG content measured using a dimethylmethylene blue assay. The zonal distribution of GAG was compared between photon-processing spectral CT images and histological sections. Furthermore, discrimination and quantification of GAG in osteoarthritic human tibial plateau tissue using the same contrast agents were demonstrated. Contrast agent concentrations were inversely related to the GAG content. The GAG concentration increased from 25 μg/ml (85 mg/ml iodine or 43 mg/ml gadolinium) in the superficial layer to 75 μg/ml (65 mg/ml iodine or 37 mg/ml gadolinium) in the deep layer of healthy bovine cartilage. Deep zone articular cartilage could be distinguished from subchondral bone by utilizing the material decomposition technique. Photon-processing spectral CT images correlated with histological sections in healthy and osteoarthritic tissues. Post-imaging material decomposition was able to quantify the GAG content and distribution throughout healthy and osteoarthritic cartilage using Hexabrix® and MultiHance® while differentiating the underlying subchondral bone.
Collapse
Affiliation(s)
| | - Sandra Kieser
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE), Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | | | | | - Mohsen Ramyar
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | - Christopher Bateman
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | | | | | - Nigel Anderson
- Department of Radiology, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | |
Collapse
|
11
|
Nelson BB, Stewart RC, Kawcak CE, Freedman JD, Patwa AN, Snyder BD, Goodrich LR, Grinstaff MW. Quantitative Evaluation of Equine Articular Cartilage Using Cationic Contrast-Enhanced Computed Tomography. Cartilage 2021; 12:211-221. [PMID: 33722083 PMCID: PMC7970376 DOI: 10.1177/1947603518812562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To investigate the diffusion trajectory of a cationic contrast medium (CA4+) into equine articular cartilage, and to assess normal and degenerative equine articular cartilage using cationic contrast-enhanced computed tomography (CECT). DESIGN In the first experiment (Exp1), equine osteochondral specimens were serially imaged with cationic CECT to establish the diffusion time constant and time to reach equilibrium in healthy articular cartilage. In a separate experiment (Exp2), articular cartilage defects were created on the femoral trochlea (defect joint) in a juvenile horse, while the opposite joint was a sham-operated control. After 7 weeks, osteochondral biopsies were collected throughout the articular surfaces of both joints. Biopsies were analyzed for cationic CECT attenuation, glycosaminoglycan (GAG) content, mechanical stiffness (Eeq), and histology. Imaging, biochemical and mechanical data were compared between defect and control joints. RESULTS Exp1: The mean diffusion time constant was longer for medial condyle cartilage (3.05 ± 0.1 hours) than lateral condyle cartilage (1.54 ± 0.3 hours, P = 0.04). Exp2: Cationic CECT attenuation was lower in the defect joint than the control joint (P = 0.005) and also varied by anatomic location (P = 0.045). Mean cationic CECT attenuation from the lateral trochlear ridge was lower in the defect joint than in the control joint (2223 ± 329 HU and 2667 ± 540 HU, respectively; P = 0.02). Cationic CECT attenuation was strongly correlated with both GAG (ρ = 0.79, P < 0.0001) and Eeq (ρ = 0.61, P < 0.0001). CONCLUSIONS The equilibration time of CA4+ into equine articular cartilage is affected by tissue volume. Quantitative cationic CECT imaging reflects the biochemical, biomechanical and histological state of normal and degenerative equine articular cartilage.
Collapse
Affiliation(s)
| | | | | | - Jonathan D. Freedman
- Plastic and Reconstructive Surgery, School of Surgery, University of Colorado, Aurora, CO, USA
| | | | - Brian D. Snyder
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
12
|
Xiao S, Lin Y, Tang Y, Lv Z, Chen L. Real-Time Quantification of Cartilage Degeneration by GAG-Targeted Cationic Nanoparticles for Efficient Therapeutic Monitoring in Living Mice. Mol Pharm 2021; 18:1444-1454. [PMID: 33538605 DOI: 10.1021/acs.molpharmaceut.0c01254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One of the characterizations of degenerative cartilage disease is the progressive loss of glycosaminoglycans (GAGs). The real-time imaging method to quantify GAGs is of great significance for the biochemical analysis of cartilage and diagnosis and therapeutic monitoring of cartilage degeneration in vivo. To this end, a cationic photoacoustic (PA) contrast agent, poly-l-lysine melanin nanoparticles (PLL-MNPs), specifically targeting anionic GAGs was developed in this study to investigate whether it can image cartilage degeneration. PLL-MNP assessed GAG depletion by Chondroitinase ABC in vitro rat cartilage and intact ex vivo mouse knee joint. A papain-induced cartilage degenerative mice model was used for in vivo photoacoustic imaging (PAI). Oral cartilage supplement glucosamine sulfate was intragastrically administered for mice cartilage repair and the therapeutic efficacy was monitored by PLL-MNP-enhanced PAI. Histologic findings were used to further confirm PAI results. In vitro results revealed that the PLL-MNPs not only had a high binding ability with GAGs but also sensitively monitored GAG content changes by PAI. The PA signal was gradually weakened along with the depletion of GAGs in cartilage. Particularly, PLL-MNPs depicted the cartilage structure and the distribution of GAGs was demonstrated in PA images in ex vivo joints. Compared with the normal joint, a lower signal intensity was detected from degenerative joint at 3 weeks after papain injection, suggesting an early diagnosis of cartilage lesion by PLL-MNPs. Importantly, this PA-enhanced nanoprobe was suitable for monitoring in vivo efficacy of glucosamine sulfate, which effectively blocked cartilage degradation in a high dose manner. In vivo imaging findings correlated well with histological examinations. PLL-MNPs provided sensitive visualization of cartilage degeneration and promising monitoring of therapeutic response in living subjects.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China.,Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's, Wenzhou 325027, P. R. China
| | - Yimu Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Zhuang Lv
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China
| |
Collapse
|
13
|
de Bournonville S, Vangrunderbeeck S, Ly HGT, Geeroms C, De Borggraeve WM, Parac-Vogt TN, Kerckhofs G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater 2020; 105:253-262. [PMID: 31996331 DOI: 10.1016/j.actbio.2020.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Despite being destructive towards the sample, conventional histology still is the gold standard for structural analysis of biological tissues. It is, however, limited by 2D sections of a 3D object, prohibiting full 3D structural analysis. MicroCT has proven to provide full 3D structural information of mineralized tissues and dense biomaterials. However, the intrinsic low X-ray absorption of soft tissues requires contrast-enhancing staining agents (CESAs). In a previous study, we showed that hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) allows simultaneous contrast-enhanced microCT (CE-CT) visualization of bone and its marrow vascularization and adiposity. In this study, other POM species have been examined for their potential as soft tissue CESAs. Four Wells-Dawson POMs, differing in structure and overall charge, were used to stain murine long bones and kidneys. Their staining potential and diffusion rate were compared to those of Hf-WD POM and phosphotungstic acid (PTA), a frequently used but destructive CESA. Monolacunary Wells-Dawson POM (Mono-WD POM) showed similar soft tissue enhancement as Hf-WD POM and PTA. Moreover, Mono-WD POM is less destructive, shows a better diffusion than PTA, and its synthesis requires less time and cost than Hf-WD POM. Finally, the solubility of Mono-WD POM was improved by addition of lithium chloride (LiCl) to the staining solution, enhancing further the soft tissue contrast. STATEMENT OF SIGNIFICANCE: To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Current standard structural analysis techniques (e.g. 2D histomorphometry), however, do not allow full 3D assessment. Contrast-enhanced X-ray computed tomography has emerged as a powerful 3D structural characterization tool of soft biological tissues. In this study, from a library of Wells Dawson polyoxometalates (WD POMs), we identified monolacunary WD POM together with lithium chloride, dissolved in phosphate buffered saline, as the most suitable contrast-enhancing staining agent solution for different biological tissues without tissue shrinkage.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sarah Vangrunderbeeck
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Hong Giang T Ly
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; IREC, Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Acta Biomater 2019; 100:202-212. [PMID: 31580960 DOI: 10.1016/j.actbio.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged regenerative strategy, however tools are needed for longitudinal and quantitative monitoring of cartilage matrix components. In this study, we introduce a contrast-enhanced computed tomography (CECT)-based method using a cationic iodinated contrast agent (CA4+) for longitudinal quantification of glycosaminoglycans (GAG) in cartilage-engineered constructs. CA4+ concentration and scanning protocols were first optimized to ensure no cytotoxicity and a facile procedure with minimal radiation dose. Chondrocyte and mesenchymal stem cell pellets, containing different GAG content were generated and exposed to CA4+. The CA4+ content in the pellets, as determined by micro computed tomography, was plotted against GAG content, as measured by 1,9-dimethylmethylene blue analysis, and showed a high linear correlation. The established equation was used for longitudinal measurements of GAG content over 28 days of pellet culture. Importantly, this method did not adversely affect cell viability or chondrogenesis. Additionally, the CA4+ distribution accurately matched safranin-O staining on histological sections. Hence, we show proof-of-concept for the application of CECT, utilizing a positively charged contrast agent, for longitudinal and quantitative imaging of GAG distribution in cartilage tissue-engineered constructs. STATEMENT OF SIGNIFICANCE: Tissue engineering and regenerative medicine are promising therapeutic strategies for different joint pathologies such as cartilage defects or osteoarthritis. Currently, in vitro assessment on the quality and composition of the engineered cartilage mainly relies on destructive methods. Therefore, there is a need for the development of techniques that allow for longitudinal and quantitative imaging and monitoring of cartilage-engineered constructs. This work harnesses the electrostatic interactions between the negatively-charged glycosaminoglycans (GAGs) and a positively-charged contrast agent for longitudinal and non-destructive quantification of GAGs, providing valuable insight on GAG development and distribution in cartilage engineered constructs. Such technique can advance the development of regenerative strategies, not only by allowing continuous monitoring but also by serving as a pre-implantation screening tool.
Collapse
|
15
|
Stewart RC, Nelson BB, Kawcak CE, Freedman JD, Snyder BD, Goodrich LR, Grinstaff MW. Contrast-Enhanced Computed Tomography Scoring System for Distinguishing Early Osteoarthritis Disease States: A Feasibility Study. J Orthop Res 2019; 37:2138-2148. [PMID: 31136003 PMCID: PMC6739126 DOI: 10.1002/jor.24382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Early detection of osteoarthritis (OA) remains a diagnostic challenge owing to insensitive diagnostic techniques currently available. Herein a new semiquantitative scoring system, based upon contrast-enhanced computed tomographic (CECT) imaging, is described for further refinement of early OA disease staging. Trochlear ridge cartilage defects were surgically created in the femoropatellar joint of an adult horse (ACUC approved protocols). Seven weeks post-surgery, CECT imaging was performed on a clinical scanner after intra-articular injection of a cationic iodinated contrast agent, CA4+, into both injured and control femoropatellar joint compartments. The femoral cartilage surface was densely biopsied, and specimens were assessed for visual (Outerbridge score), functional (equilibrium compressive modulus), and biochemical (glycosaminoglycan content) measures of cartilage quality. Cartilage CECT attenuation was compared with cartilage quality measures using receiver operating characteristic curve analysis to establish attenuation thresholds for distinguishing among cartilage quality levels. CECT imaging identifies macroscopically damaged cartilage regions and in morphologically identical tissue provides moderately sensitive and specific semiquantitative segregation of cartilage quality based upon CECT attenuation, reflecting both glycosaminoglycan content and compressive stiffness of cartilage area under the curve (AUC = 0.83 [95% confidence interval [CI]: 0.72-0.93] for distinguishing poor quality and AUC = 0.76 [95% CI: 0.65-0.90] for distinguishing healthy quality cartilage). A semiquantitative 6-point scoring system-the Osteoarthritis Attenuation and Morphological Assessment (OAMA) score-is proposed as a tool for assessing cartilage quality from CECT images. The OAMA scoring system expands the current disease staging capability of early OA by inclusion of morphological, biochemical, and biomechanical assessments. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2138-2148, 2019.
Collapse
Affiliation(s)
- Rachel C. Stewart
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215
| | - Brad B. Nelson
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215,Gail Holmes Equine Orthopedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523
| | - Chris E. Kawcak
- Gail Holmes Equine Orthopedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523
| | - Jonathan D. Freedman
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave, Boston MA 02215, Phone: 617-358-3429, ; Brian D. Snyder, M.D., Ph.D., Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215,
| | - Laurie R. Goodrich
- Gail Holmes Equine Orthopedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215,Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215,Department of Medicine, Boston University School of Medicine, 715 Albany St. E-113, Boston, MA 02118,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave, Boston MA 02215, Phone: 617-358-3429, ; Brian D. Snyder, M.D., Ph.D., Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215,
| |
Collapse
|
16
|
Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Ann Biomed Eng 2019; 48:556-567. [PMID: 31576504 PMCID: PMC6949199 DOI: 10.1007/s10439-019-02362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact.
Collapse
|
17
|
Zhang H, Belev G, Stewart RC, Grinstaff MW, Snyder BD, Wilson DR. Protocol development for synchrotron contrast-enhanced CT of human hip cartilage. Med Eng Phys 2019; 73:1-8. [PMID: 31526590 DOI: 10.1016/j.medengphy.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022]
Abstract
Understanding hip osteoarthritis requires new investigational tools for quantitative studies of biophysical and biomechanical properties as well as for determination of structure. Three new protocols to study pathological changes in cartilage and to measure cartilage thickness in intact human hips are described using synchrotron contrast enhanced computed tomography (sCECT) with the iodinated contrast agent CA4+. Ten human cadaver hips were prepared and injected with CA4+ using three different methods, all of which included rotation and distraction of the joint. CA4+ diffusion into cartilage was monitored using sCECT. The thickness of acetabular and femoral cartilage was also measured. Diffusion times ranged from 2 h to 75 h, depending on the injection protocol and the cartilage region. Direct single injection of the contrast through the labrum resulted in the fastest diffusion times. The iodine attenuation coefficient, which reflects the contrast agent distribution in the cartilage, ranged from 0.0142/cm to 0.1457/cm. Three injections at the head/neck conjunction area yielded the highest iodine attenuation coefficients in cartilage. The femoral cartilage in the Superior-Medial compartment was significantly thicker than in the other 3 femoral compartments, and femoral cartilage in the Superior-Anterior compartment was significantly thinner than the other 3 femoral compartments. The acetabular cartilage in the Superior compartment was significantly thicker than that in the Superior-Posterior compartment. sCECT with CA4+ allows assessment of hip cartilage thickness with 0.1 mm isotropic voxel size, sufficient for evaluating cartilage pathology and biomechanics.
Collapse
Affiliation(s)
- Honglin Zhang
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, 2635 Laurel St, Vancouver BC V5Z 1M9, Canada
| | - George Belev
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada
| | - Rachel C Stewart
- Departments of Biomedical Engineering and Chemistry, Boston University, 403-44 Cummington Mall, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, 403-44 Cummington Mall, Boston, MA 02215, USA
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., RN 115, Boston, MA 02215, USA
| | - David R Wilson
- Department of Orthopaedics, University of British Columbia, Centre for Hip Health and Mobility, 2635 Laurel St, Vancouver BC V5Z 1M9, Canada.
| |
Collapse
|
18
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Barrett MF, McIlwraith CW, Hurtig MB, Snyder BD, Moorman VJ, Grinstaff MW, Goodrich LR, Kawcak CE. Evaluation of equine articular cartilage degeneration after mechanical impact injury using cationic contrast-enhanced computed tomography. Osteoarthritis Cartilage 2019; 27:1219-1228. [PMID: 31075424 DOI: 10.1016/j.joca.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cationic agent contrast-enhanced computed tomography (cationic CECT) characterizes articular cartilage ex vivo, however, its capacity to detect post-traumatic injury is unknown. The study objectives were to correlate cationic CECT attenuation with biochemical, mechanical and histological properties of cartilage and morphologic computed tomography (CT) measures of bone, and to determine the ability of cationic CECT to distinguish subtly damaged from normal cartilage in an in vivo equine model. DESIGN Mechanical impact injury was initiated in equine femoropatellar joints in vivo to establish subtle cartilage degeneration with site-matched controls. Cationic CECT was performed in vivo (clinical) and postmortem (microCT). Articular cartilage was characterized by glycosaminoglycan (GAG) content, biochemical moduli and histological scores. Bone was characterized by volume density (BV/TV) and trabecular number (Tb.N.), thickness (Tb.Th.) and spacing (Tb.Sp.). RESULTS Cationic CECT attenuation (microCT) of cartilage correlated with GAG (r = 0.74, P < 0.0001), compressive modulus (Eeq) (r = 0.79, P < 0.0001) and safranin-O histological score (r = -0.66, P < 0.0001) of cartilage, and correlated with BV/TV (r = 0.37, P = 0.0005), Tb.N. (r = 0.39, P = 0.0003), Tb.Th. (r = 0.28, P = 0.0095) and Tb.Sp. (r = -0.44, P < 0.0001) of bone. Mean [95% CI] cationic CECT attenuation at the impact site (2215 [1987, 2443] Hounsfield Units [HUs]) was lower than site-matched controls (2836 [2490, 3182] HUs, P = 0.036). Clinical cationic CECT attenuation correlated with GAG (r = 0.23, P = 0.049), Eeq (r = 0.26, P = 0.025) and safranin-O histology score (r = -0.32, P = 0.0046). CONCLUSIONS Cationic CECT (microCT) reflects articular cartilage properties enabling segregation of subtly degenerated from healthy tissue and also reflects bone morphometric properties on CT. Cationic CECT is capable of characterizing articular cartilage in clinical scanners.
Collapse
Affiliation(s)
- B B Nelson
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - J T A Mäkelä
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA
| | - T B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A N Patwa
- Department of Chemistry, Boston University, Boston, MA, USA; SLSE (Chemistry), Navrachana University, Vadodara, Gujarat, India
| | - M F Barrett
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - C W McIlwraith
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - M B Hurtig
- Department of Clinical Studies, University of Guelph, Ontario, Canada
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - V J Moorman
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - M W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA; Departments of Biomedical Engineering, and Medicine, Boston University, Boston, MA, USA
| | - L R Goodrich
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - C E Kawcak
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Lakin BA, Cooper BG, Zakaria L, Grasso DJ, Wathier M, Bendele AM, Freedman JD, Snyder BD, Grinstaff MW. A Synthetic Bottle-brush Polyelectrolyte Reduces Friction and Wear of Intact and Previously Worn Cartilage. ACS Biomater Sci Eng 2019; 5:3060-3067. [PMID: 31608307 DOI: 10.1021/acsbiomaterials.9b00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A poly(7-oxanorbornene-2-carboxylate) polymer containing pendent triethyleneglycol (TEG) chains of 2.8 MDa ("2.8M TEG") was synthesized and evaluated for long-term lubrication and wear reduction of ex vivo bovine cartilage as well as for synovitis in rats and dogs after intra-articular administration. Bovine cartilage surfaces were tested under torsional friction for 10,080 rotations while immersed in either saline, bovine synovial fluid (BSF), or 2.8M TEG. For each solution, coefficient of friction (μ), changes in surface roughness, and lost cartilage glycosaminoglycan were compared. To directly compare 2.8M TEG and BSF, additional samples were tested sequentially in BSF, BSF, 2.8M TEG, and then BSF. Finally, another set of samples were tested twice in saline to induce surface roughness and then tested in BSF, Synvisc, or 2.8M TEG to determine each treatment's effect on worn cartilage. Next, male Lewis rats were injected in one knee with 2.8M TEG or saline and evaluated for effects on gait, and female beagles were injected with either 2.8M TEG or saline in one knee, and their synovial tissues analyzed for inflammation by H&E staining. Treatment with 2.8M TEG lowers μ, lessens surface roughness, and minimizes glycosaminoglycan loss compared to saline. The 2.8M TEG also reduces μ compared to BSF in pairwise testing and on worn cartilage surfaces. Injection of 2.8M TEG in rat or beagle knees gives comparable effects to treatment with saline, and does not cause significant synovitis.
Collapse
Affiliation(s)
- Benjamin A Lakin
- Department of Biomedical Engineering, Boston University, 44 Cummington Ave, Boston, MA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA
| | - Benjamin G Cooper
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA.,Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA
| | - Luai Zakaria
- Department of Biomedical Engineering, Boston University, 44 Cummington Ave, Boston, MA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA
| | - Daniel J Grasso
- Department of Biomedical Engineering, Boston University, 44 Cummington Ave, Boston, MA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA
| | - Michel Wathier
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA.,Flex Biomedical, Madison, WI
| | | | - Jonathan D Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA.,Department of Pharmacology and Experimental Therapeutics, Boston University, 72 East Concord St., Boston, MA
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA.,Children's Hospital, 333 Longwood Avenue, Boston, MA
| | - Mark W Grinstaff
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, Boston, MA.,Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, MA
| |
Collapse
|
20
|
Simultaneous Quantitation of Cationic and Non-ionic Contrast Agents in Articular Cartilage Using Synchrotron MicroCT Imaging. Sci Rep 2019; 9:7118. [PMID: 31068614 PMCID: PMC6506503 DOI: 10.1038/s41598-019-43276-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Early diagnosis of acute cartilage injuries enables monitoring of disease progression and improved treatment option planning to prevent post-traumatic osteoarthritis. In contrast-enhanced computed tomography (CECT), the changes in cationic agent diffusion within the tissue reflect cartilage degeneration. The diffusion in degenerated cartilage depends on proteoglycan (PG) content and water content, but each having an opposite effect on diffusion, thus compromising the diagnostic sensitivity. To overcome this limitation, we propose the simultaneous imaging of cationic (sensitive to PG and water contents) and non-ionic (sensitive to water content) agents. In this study, quantitative dual-energy CT (QDECT) imaging of two agents is reported for the first time at clinically feasible imaging time points. Furthermore, this is the first time synchrotron microCT with monochromatic X-rays is employed in cartilage CECT. Imaging was conducted at 1 and 2 h post contrast agent immersion. Intact, PG-depleted, and mechanically injured + PG-depleted cartilage samples (n = 33) were imaged in a mixture of cationic (iodine-based CA4+) and non-ionic (gadolinium-based gadoteridol) agents. Concurrent evaluation of CA4+ and gadoteridol partitions in cartilage is accomplished using QDECT. Subsequent normalization of the CA4+ partition with that of the gadoteridol affords CA4+ attenuations that significantly correlate with PG content – a key marker of OA.
Collapse
|
21
|
Honkanen MKM, Matikka H, Honkanen JTJ, Bhattarai A, Grinstaff MW, Joukainen A, Kröger H, Jurvelin JS, Töyräs J. Imaging of proteoglycan and water contents in human articular cartilage with full-body CT using dual contrast technique. J Orthop Res 2019; 37:1059-1070. [PMID: 30816584 PMCID: PMC6594070 DOI: 10.1002/jor.24256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
Assessment of cartilage composition via tomographic imaging is critical after cartilage injury to prevent post-traumatic osteoarthritis. Diffusion of cationic contrast agents in cartilage is affected by proteoglycan loss and elevated water content. These changes have opposite effects on diffusion and, thereby, reduce the diagnostic accuracy of cationic agents. Here, we apply, for the first time, a clinical full-body CT for dual contrast imaging of articular cartilage. We hypothesize that full-body CT can simultaneously determine the diffusion and partitioning of cationic and non-ionic contrast agents and that normalization of the cationic agent partition with that of the non-ionic agent minimizes the effect of water content and tissue permeability, especially at early diffusion time points. Cylindrical (d = 8 mm) human osteochondral samples (n = 45; four cadavers) of a variable degenerative state were immersed in a mixture of cationic iodinated CA4+ and non-charged gadoteridol contrast agents and imaged with a full-body CT scanner at various time points. Determination of contrast agents' distributions within cartilage was possible at all phases of diffusion. At early time points, gadoteridol, and CA4+ distributed throughout cartilage with lower concentrations in the deep cartilage. At ≥24 h, the gadoteridol concentration remained nearly constant, while the CA4+ concentration increased toward deep cartilage. Normalization of the CA4+ partition with that of gadoteridol significantly (p < 0.05) enhanced correlation with proteoglycan content and Mankin score at the early time points. To conclude, the dual contrast technique was found advantageous over single contrast imaging enabling more sensitive diagnosis of cartilage degeneration. © 2019 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-12, 2019.
Collapse
Affiliation(s)
- Miitu K. M. Honkanen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Hanna Matikka
- Department of Clinical RadiologyDiagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | | | - Abhisek Bhattarai
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and MedicineBoston UniversityBostonMassachusetts
| | - Antti Joukainen
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Jukka S. Jurvelin
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
22
|
Contrast-Enhanced MicroCT for Virtual 3D Anatomical Pathology of Biological Tissues: A Literature Review. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:8617406. [PMID: 30944550 PMCID: PMC6421764 DOI: 10.1155/2019/8617406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
Abstract
To date, the combination of histological sectioning, staining, and microscopic assessment of the 2D sections is still the golden standard for structural and compositional analysis of biological tissues. X-ray microfocus computed tomography (microCT) is an emerging 3D imaging technique with high potential for 3D structural analysis of biological tissues with a complex and heterogeneous 3D structure, such as the trabecular bone. However, its use has been mostly limited to mineralized tissues because of the inherently low X-ray absorption of soft tissues. To achieve sufficient X-ray attenuation, chemical compounds containing high atomic number elements that bind to soft tissues have been recently adopted as contrast agents (CAs) for contrast-enhanced microCT (CE-CT); this novel technique is very promising for quantitative "virtual" 3D anatomical pathology of both mineralized and soft biological tissues. In this paper, we provided a review of the advances in CE-CT since the very first reports on the technology to date. Perfusion CAs for in vivo imaging have not been discussed, as the focus of this review was on CAs that bind to the tissue of interest and that are, thus, used for ex vivo imaging of biological tissues. As CE-CT has mostly been applied for the characterization of musculoskeletal tissues, we have put specific emphasis on these tissues. Advantages and limitations of multiple CAs for different musculoskeletal tissues have been highlighted, and their reproducibility has been discussed. Additionally, the advantages of the "full" 3D CE-CT information have been pinpointed, and its importance for more detailed structural, spatial, and functional characterization of the tissues of interest has been shown. Finally, the remaining challenges that are still hampering a broader adoption of CE-CT have been highlighted, and suggestions have been made to move the field of CE-CT imaging one step further towards a standard accepted tool for quantitative virtual 3D anatomical pathology.
Collapse
|
23
|
Dourthe B, Nickmanesh R, Wilson DR, D'Agostino P, Patwa AN, Grinstaff MW, Snyder BD, Vereecke E. Assessment of healthy trapeziometacarpal cartilage properties using indentation testing and contrast-enhanced computed tomography. Clin Biomech (Bristol, Avon) 2019; 61:181-189. [PMID: 30594765 DOI: 10.1016/j.clinbiomech.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The trapeziometacarpal joint is a common site for osteoarthritis development in the hand. When osteoarthritis is present, it results in significant functional disabilities due to the broad range of activities performed by this joint. However, our understanding of osteoarthritis initiation and progression at this joint is limited because of the current lack of knowledge regarding the properties and structure of the corresponding cartilage layers. The objective of this study is to assess the morphological and mechanical properties of trapeziometacarpal cartilage via the combination of indentation testing and contrast-enhanced computed tomography. Such research may lead to the development of medical imaging-based approaches to measure cartilage properties in vivo. METHODS Intact first metacarpals and trapezia were extracted from 16 fresh-frozen human cadaver hands. For each specimen, load-displacement behavior was measured at 9 testing sites using a standardized indentation testing device to calculate the normal force and Young's modulus of the cartilage sub-regions. The specimens were then immersed in CA4+ contrast agent solution for 48 h and subsequently scanned with a resolution of 41 μm in a HR-pQCT scanner to measure cartilage thickness and attenuation. Finally, correlations between compressive Young's modulus and contrast-enhanced computed tomography attenuation of the cartilage were assessed. FINDINGS No significant difference was found in cartilage thickness between the trapezium and first metacarpal, but the comparison between articular regions showed thinner cartilage around the volar aspect of both the first metacarpal and the trapezium. The first metacarpal cartilage was stiffer than the trapezial cartilage. A significant positive correlation was observed between Young's modulus and mean contrast-enhanced CT attenuations in superficial and full-depth cartilage in both the first metacarpal and the trapezium cartilage. INTERPRETATION The quantitative measurements of trapeziometacarpal thickness and stiffness as well as a correlation between Young's modulus and contrast-enhanced computed tomography attenuation provides a method for the non-destructive in vivo assessment of cartilage properties, a greater understanding of thumb cartilage behavior, and a dataset for the development of more accurate computer models.
Collapse
Affiliation(s)
- Benjamin Dourthe
- Muscles & Movement, Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven Kulak, Kortrijk, Belgium.
| | - Reza Nickmanesh
- Centre for Hip Health and Mobility (CHHM), Vancouver, BC, Canada
| | - David R Wilson
- Centre for Hip Health and Mobility (CHHM), Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada.
| | - Priscilla D'Agostino
- Muscles & Movement, Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven Kulak, Kortrijk, Belgium; Louise Hand Clinic, Brussels, Belgium; Europe Clinic, St.-Elisabeth Clinic, Brussels, Belgium
| | - Amit N Patwa
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Evie Vereecke
- Muscles & Movement, Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven Kulak, Kortrijk, Belgium.
| |
Collapse
|
24
|
Wathier M, Lakin BA, Cooper BG, Bansal PN, Bendele AM, Entezari V, Suzuki H, Snyder BD, Grinstaff MW. A synthetic polymeric biolubricant imparts chondroprotection in a rat meniscal tear model. Biomaterials 2018; 182:13-20. [PMID: 30099277 PMCID: PMC6287749 DOI: 10.1016/j.biomaterials.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Intra-articular injection of hyaluronic acid (HA) is used to treat osteoarthritis (OA) as a viscosupplement, yet it only provides short-term benefit because HA is cleaved by hyaluronidase and cleared out of the joint after several days. Therefore, we developed a new polymer biolubricant based on poly-oxanorbornane carboxylate to enhance joint lubrication for a prolonged time. Rheological and biotribological studies of the biolubricant reveal viscoelastic properties and coefficient of friction equivalent and superior to that of healthy synovial fluid, respectively. Furthermore, in an ex vivo bovine cartilage plug model, the biolubricant exhibits superior long-term reduction of friction and wear prevention compared to saline and healthy synovial fluid. ISO 10993 biocompatibility tests demonstrate that the biolubricant polymer is non-toxic. In an in vivo rat medial meniscal tear OA model, where the performance of the leading HA viscosupplement (Synvisc-one®) is comparable to the saline control, treatment with the biolubricant affords significant chondroprotection compared to the saline control.
Collapse
Affiliation(s)
- Michel Wathier
- Department of Chemistry, Boston University, Boston, MA, USA; Flex Biomedical, Madison, WI, USA
| | - Benjamin A Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Benjamin G Cooper
- Department of Chemistry, Boston University, Boston, MA, USA; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant N Bansal
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Vahid Entezari
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Children's Hospital, Boston, MA, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Nickmanesh R, Stewart RC, Snyder BD, Grinstaff MW, Masri BA, Wilson DR. Contrast-enhanced computed tomography (CECT) attenuation is associated with stiffness of intact knee cartilage. J Orthop Res 2018; 36:2641-2647. [PMID: 29667235 DOI: 10.1002/jor.24022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
Contrast-enhanced computed tomography (CECT) using charged contrast-agents enables quantification of cartilage glycosaminoglycan content. Since glycosaminoglycan content is a key determinant of cartilage compressive stiffness, CECT measurements have the potential to non-invasively assess cartilage stiffness. The objective of this study was to determine whether CECT attenuation, using a cationic contrast-agent (CA4+), correlates with the stiffness of intact cartilage. Six fresh femoral and six fresh tibial compartments with intact cartilage were obtained from patients undergoing total knee replacement surgery. The instantaneous stiffness was determined for 25-50 points on the surface of each compartment using an established indentation technique. The samples were then immersed in CA4+ solution for 48 h, scanned in a micro-CT scanner, and the average CECT attenuation at each indentation site was found for the superficial cartilage. A significant (p < 0.01) and positive correlation was observed between stiffness and CECT attenuation for sites from each individual cartilage surface, with correlation coefficients ranging from r = 0.37-0.57 and r = 0.48-0.69 (p < 0.01) for the tibia and femur, respectively. When data for each type of cartilage surface were pooled together, the correlation coefficients were r = 0.73 for femoral condyle data points and r = 0.49 for tibial plateau data points. CECT provided a map of cartilage stiffness across each surface, which allows regions of low stiffness to be identified. These findings support continued evaluation and development of quantitative imaging techniques to assess the functional properties of cartilage. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2641-2647, 2018.
Collapse
Affiliation(s)
- Reza Nickmanesh
- University of British Columbia, Department of Orthopaedics, Vancouver, BC, Canada.,Center for Hip Health and Mobility, Vancouver, BC, Canada
| | - Rachel C Stewart
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brian D Snyder
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark W Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bassam A Masri
- University of British Columbia, Department of Orthopaedics, Vancouver, BC, Canada.,Center for Hip Health and Mobility, Vancouver, BC, Canada
| | - David R Wilson
- University of British Columbia, Department of Orthopaedics, Vancouver, BC, Canada.,Center for Hip Health and Mobility, Vancouver, BC, Canada
| |
Collapse
|
26
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
27
|
Newton MD, Hartner SE, Gawronski K, Davenport EJ, Timmons SC, Baker KC, Maerz T. Nondestructive, indirect assessment of the biomechanical properties of the rat intervertebral disc using contrast-enhanced μCT. J Orthop Res 2018; 36:2030-2038. [PMID: 29314237 DOI: 10.1002/jor.23850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/24/2017] [Indexed: 02/04/2023]
Abstract
Mechanical characterization of the intervertebral disc involves labor-intensive and destructive experimental methodology. Contrast-enhanced micro-computed tomography is a nondestructive imaging modality for high-resolution visualization and glycosaminoglycan quantification of cartilaginous tissues. The purpose of this study was to determine whether anionic and cationic contrast-enhanced micro-computed tomography of the intervertebral disc can be used to indirectly assess disc mechanical properties in an ex vivo model of disc degeneration. L3/L4 motion segments were dissected from female Lewis rats. To deplete glycosaminoglycan, samples were treated with 0 U/ml (Control) or 5 U/ml papain. Contrast-enhanced micro-computed tomography was performed following incubation in 40% Hexabrix (anionic) or 30 mg I/ml CA4+ (cationic) for 24 h (n = 10/contrast agent/digestion group). Motion segments underwent cyclic mechanical testing to determine compressive and tensile modulus, stiffness, and hysteresis. Glycosaminoglycan content was determined using the dimethylmethylene blue assay. Correlations between glycosaminoglycan content, contrast-enhanced micro-computed tomography attenuation, and mechanical properties were assessed via the Pearson correlation. The predictive accuracy of attenuation on compressive properties was assessed via repeated random sub-sampling cross validation. Papain digestion produced significant decreases in glycosaminoglycan content and corresponding differences in attenuation and mechanical properties. Attenuation correlated significantly to glycosaminoglycan content and to all compressive mechanical properties using both Hexabrix and CA4+ . Predictive linear regression models demonstrated a predictive accuracy of attenuation on compressive modulus and stiffness of 79.8-86.0%. Contrast-enhanced micro-computed tomography was highly predictive of compressive mechanical properties in an ex vivo simulation of disc degeneration and may represent an effective modality for indirectly assessing disc compressive properties. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2030-2038, 2018.
Collapse
Affiliation(s)
- Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan
| | | | - Karissa Gawronski
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan
| | - Erik J Davenport
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan
| | - Shannon C Timmons
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan.,Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, Michigan
| | - Tristan Maerz
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan.,Department of Orthopaedic Surgery, Oakland University - William Beaumont School of Medicine, Rochester, Michigan.,Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, 48109, Ann Arbor, Michigan
| |
Collapse
|
28
|
Kerckhofs G, Stegen S, van Gastel N, Sap A, Falgayrac G, Penel G, Durand M, Luyten FP, Geris L, Vandamme K, Parac-Vogt T, Carmeliet G. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 2018; 159:1-12. [DOI: 10.1016/j.biomaterials.2017.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
|
29
|
Nelson BB, Kawcak CE, Barrett MF, McIlwraith CW, Grinstaff MW, Goodrich LR. Recent advances in articular cartilage evaluation using computed tomography and magnetic resonance imaging. Equine Vet J 2018; 50:564-579. [DOI: 10.1111/evj.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins Colorado USA
| | - C. W. McIlwraith
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine Boston University Boston Massachusetts USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| |
Collapse
|
30
|
Nieminen H, Gahunia H, Pritzker K, Ylitalo T, Rieppo L, Karhula S, Lehenkari P, Hæggström E, Saarakkala S. 3D histopathological grading of osteochondral tissue using contrast-enhanced micro-computed tomography. Osteoarthritis Cartilage 2017; 25:1680-1689. [PMID: 28606558 PMCID: PMC5773475 DOI: 10.1016/j.joca.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Histopathological grading of osteochondral (OC) tissue is widely used in osteoarthritis (OA) research, and it is relatively common in post-surgery in vitro diagnostics. However, relying on thin tissue section, this approach includes a number of limitations, such as: (1) destructiveness, (2) sample processing artefacts, (3) 2D section does not represent spatial 3D structure and composition of the tissue, and (4) the final outcome is subjective. To overcome these limitations, we recently developed a contrast-enhanced μCT (CEμCT) imaging technique to visualize the collagenous extracellular matrix (ECM) of articular cartilage (AC). In the present study, we demonstrate that histopathological scoring of OC tissue from CEμCT is feasible. Moreover, we establish a new, semi-quantitative OA μCT grading system for OC tissue. RESULTS Pathological features were clearly visualized in AC and subchondral bone (SB) with μCT and verified with histology, as demonstrated with image atlases. Comparison of histopathological grades (OARSI or severity (0-3)) across the characterization approaches, CEμCT and histology, excellent (0.92, 95% CI = [0.84, 0.96], n = 30) or fair (0.50, 95% CI = [0.16, 0.74], n = 27) intra-class correlations (ICC), respectively. A new μCT grading system was successfully established which achieved an excellent cross-method (μCT vs histology) reader-to-reader intra-class correlation (0.78, 95% CI = [0.58, 0.89], n = 27). CONCLUSIONS We demonstrated that histopathological information relevant to OA can reliably be obtained from CEμCT images. This new grading system could be used as a reference for 3D imaging and analysis techniques intended for volumetric evaluation of OA pathology in research and clinical applications.
Collapse
Affiliation(s)
- H.J. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada,Department of Physics, University of Helsinki, Helsinki, Finland,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland,Address correspondence and reprint requests to: H.J. Nieminen, Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, POB 12200, FI-00076 Aalto, Finland.Department of Neuroscience and Biomedical EngineeringAalto UniversitySchool of SciencePOB 12200AaltoFI-00076Finland
| | - H.K. Gahunia
- Orthopedic Science Consulting Services, Oakville, Ontario, Canada
| | - K.P.H. Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, Toronto, Canada
| | - T. Ylitalo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Physics, University of Helsinki, Helsinki, Finland
| | - L. Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - S.S. Karhula
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Infotech Doctoral Program, University of Oulu, Oulu, Finland
| | - P. Lehenkari
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland,Department of Surgery and Intensive Care, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - E. Hæggström
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - S. Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
31
|
Stewart RC, Honkanen JT, Kokkonen HT, Tiitu V, Saarakkala S, Joukainen A, Snyder BD, Jurvelin JS, Grinstaff MW, Töyräs J. Contrast-Enhanced Computed Tomography Enables Quantitative Evaluation of Tissue Properties at Intrajoint Regions in Cadaveric Knee Cartilage. Cartilage 2017; 8:391-399. [PMID: 28934883 PMCID: PMC5613888 DOI: 10.1177/1947603516665443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective The aim of this study was to investigate whether the concentration of the anionic contrast agent ioxaglate, as quantitated by contrast-enhanced computed tomography (CECT) using a clinical cone-beam CT (CBCT) instrument, reflects biochemical, histological, and biomechanical characteristics of articular cartilage imaged in an ex vivo, intact human knee joint. Design An osteoarthritic human cadaveric knee joint (91 years old) was injected with ioxaglate (36 mg I/mL) and imaged using CBCT over 61 hours of ioxaglate diffusion into cartilage. Following imaging, the joint surfaces were excised, rinsed to remove contrast agent, and compressive stiffness (equilibrium and instantaneous compressive moduli) was measured via indentation testing ( n = 17 sites). Each site was sectioned for histology and assessed for glycosaminoglycan content using digital densitometry of Safranin-O stained sections, Fourier transform infrared spectroscopy for collagen content, and morphology using both the Mankin and OARSI semiquantitative scoring systems. Water content was determined using mass change after lyophilization. Results CECT attenuation at all imaging time points, including those <1 hour of ioxaglate exposure, correlated significantly ( P < 0.05) with cartilage water and glycosaminoglycan contents, Mankin score, and both equilibrium and instantaneous compressive moduli. Early time points (<30 minutes) also correlated ( P < 0.05) with collagen content and OARSI score. Differences in cartilage quality between intrajoint regions were distinguishable at diffusion equilibrium and after brief ioxaglate exposure. Conclusions CECT with ioxaglate affords biochemical and biomechanical measurements of cartilage health and performance even after short, clinically relevant exposure times, and may be useful in the clinic as a means for detecting early signs of cartilage pathology.
Collapse
Affiliation(s)
- Rachel C. Stewart
- Department of Biomedical Engineering, Boston University, Boston, MA, USA,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Juuso T.J. Honkanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Juuso T. J. Honkanen, Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | - Harri T. Kokkonen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Antti Joukainen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jukka S. Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA,Department of Chemistry, Boston University, Boston, MA, USA
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
32
|
Stewart RC, Patwa AN, Lusic H, Freedman JD, Wathier M, Snyder BD, Guermazi A, Grinstaff MW. Synthesis and Preclinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of Ex Vivo Human Hip Cartilage. J Med Chem 2017; 60:5543-5555. [PMID: 28616978 PMCID: PMC6408935 DOI: 10.1021/acs.jmedchem.7b00234] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.
Collapse
Affiliation(s)
- Rachel C. Stewart
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
| | - Amit N. Patwa
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Hrvoje Lusic
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Jonathan D. Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Michel Wathier
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| |
Collapse
|
33
|
Cooper BG, Lawson TB, Snyder BD, Grinstaff MW. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support. Osteoarthritis Cartilage 2017; 25:1143-1149. [PMID: 28285000 PMCID: PMC5726233 DOI: 10.1016/j.joca.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/12/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is associated with increased articular cartilage hydraulic permeability and decreased maintenance of high interstitial fluid load support (IFLS) during articulation, resulting in increased friction on the cartilage solid matrix. This study assesses frictional response following in situ synthesis of an interpenetrating polymer network (IPN) designed to mimic glycosaminoglycans (GAGs) depleted during OA. METHODS Cylindrical osteochondral explants containing various interpenetrating polymer concentrations were subjected to a torsional friction test under unconfined creep compression. Time-varying coefficient of friction, compressive engineering strain, and normalized strain values (ε/εeq) were calculated and analyzed. RESULTS The polymer network reduced friction coefficient over the duration of the friction test, with statistically significantly reduced friction coefficients (95% confidence interval 14-34% reduced) at equilibrium compressive strain upon completion of the test (P = 0.015). A positive trend was observed relating polymer network concentration with magnitude of friction reduction compared to non-treated tissue. CONCLUSION The cartilage-interpenetrating polymer treatment improves lubrication by augmenting the biphasic tissue's interstitial fluid phase, and additionally improves the friction dissipation of the tissue's solid matrix. This technique demonstrates potential as a therapy to augment tribological function of articular cartilage.
Collapse
Affiliation(s)
- B G Cooper
- Department of Chemistry, Boston University, Boston, MA, USA; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - T B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA; Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.
| | - M W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
34
|
Lakin BA, Snyder BD, Grinstaff MW. Assessing Cartilage Biomechanical Properties: Techniques for Evaluating the Functional Performance of Cartilage in Health and Disease. Annu Rev Biomed Eng 2017; 19:27-55. [DOI: 10.1146/annurev-bioeng-071516-044525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin A. Lakin
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Brian D. Snyder
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Orthopedic Center, Children's Hospital, Boston, Massachusetts 02115
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
35
|
Nelson BB, Goodrich LR, Barrett MF, Grinstaff MW, Kawcak CE. Use of contrast media in computed tomography and magnetic resonance imaging in horses: Techniques, adverse events and opportunities. Equine Vet J 2017; 49:410-424. [DOI: 10.1111/evj.12689] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, Materials Science & Engineering and Medicine; Boston University; Boston Massachusetts USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| |
Collapse
|
36
|
Newton MD, Hartner SE, Timmons S, Delaney ND, Pirrone MG, Baker KC, Maerz T. Contrast-enhanced μCT of the intervertebral disc: A comparison of anionic and cationic contrast agents for biochemical and morphological characterization. J Orthop Res 2017; 35:1067-1075. [PMID: 27415967 DOI: 10.1002/jor.23364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
The objective of this study was to quantify and compare the contrast-enhancing properties of the anionic contrast agent ioxaglate/Hexabrix, and cationic contrast agent CA4+ for biochemical and morphological characterization of the intervertebral disc (IVD) via μCT. Optimal contrast agent concentrations were determined by incubating rat lumbar IVDs in dilutions of Hexabrix-320 (20%, 30%, 40%, and 50%) and CA4+ (10, 20, 30, and 40 mg I/ml). μCT imaging was performed at 70 kVp, 114 μA, and 250 ms integration time, 12 μm voxel size. The kinetics of contrast enhancement were quantified with cumulative incubations for 0.5, 1, 2, 12, 16, 20, and 24 h using both agents. Agreement in morphological quantification was assessed via serial scans of the same IVDs. Correlation of attenuation to glycosaminoglycan (GAG) content was determined by enzymatic digestion of IVDs, subsequent μCT imaging, and GAG quantification via dimethylmethylene blue assay. Forty percent Hexabrix and 30 mg I/ml CA4+ were chosen as optimal concentrations. Hexabrix enabled greater delineation of the IVD from surrounding tissues, and CA4+ had the lowest uptake in surrounding soft tissue. Twenty-four hour incubation was sufficient for >99% equilibration of both agents. A high level of agreement was observed in the quantification of IVD volume (ICC = 0.951, r = 0.997) and height (ICC = 0.947, r = 0.991). Both agents exhibited strong linear correlations between μCT attenuation and GAG content (Hexabrix: r = -0.940; CA4+ : r = 0.887). Both agents enable biochemical and morphological quantification of the IVD via contrast-enhanced μCT and are effective tools for preclinical characterization. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1067-1075, 2017.
Collapse
Affiliation(s)
- Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, 3811W Thirteen Mile Road, Royal Oak, Michigan, 48073
| | - Samantha E Hartner
- Orthopaedic Research Laboratory, Beaumont Health, 3811W Thirteen Mile Road, Royal Oak, Michigan, 48073
| | - Shannon Timmons
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan
| | - Nathan D Delaney
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan
| | - Michael G Pirrone
- Department of Natural Sciences, Lawrence Technological University, Southfield, Michigan
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, 3811W Thirteen Mile Road, Royal Oak, Michigan, 48073.,Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester, Michigan
| | - Tristan Maerz
- Orthopaedic Research Laboratory, Beaumont Health, 3811W Thirteen Mile Road, Royal Oak, Michigan, 48073.,Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
37
|
Oh DJ, Lakin BA, Stewart RC, Wiewiorski M, Freedman JD, Grinstaff MW, Snyder BD. Contrast-enhanced CT imaging as a non-destructive tool for ex vivo examination of the biochemical content and structure of the human meniscus. J Orthop Res 2017; 35:1018-1028. [PMID: 27302693 DOI: 10.1002/jor.23337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 06/05/2016] [Indexed: 02/04/2023]
Abstract
The biochemical and histopathological techniques used to investigate meniscal content and structure are destructive and time-consuming. Therefore, this study evaluated whether contrast-enhanced computed tomography (CECT) attenuation and contrast agent flux using the iodinated contrast agents CA4+ and ioxaglate correlate with the glycosaminoglycan (GAG) content/distribution and water content in human menisci. The optimal ioxaglate and CA4+ contrast agent concentrations for mapping meniscal GAG distribution were qualitatively determined by comparison of CECT color maps with Safranin-O stained histological sections. The associations between CECT attenuation and GAG content, CECT attenuation and water content, and flux and water content at various time points were determined using both contrast agents. Depth-wise analyses were also performed through each of the native surfaces to examine differences in contrast agent diffusion kinetics and equilibrium partitioning. The optimal concentrations for GAG depiction for ioxaglate and CA4+ were ≥80 and 12 mgI/ml, respectively. Using these concentrations, weak to moderate associations were found between ioxaglate attenuation and GAG content at all diffusion time points (1-48 h), while strong and significant associations were observed between CA4+ attenuation and GAG content as early as 7 h (R2 ≥ 0.67), being strongest at the equilibrium time point (48 h, R2 = 0.81). CECT attenuation for both agents did not significantly correlate with water content, but CA4+ flux correlated with water content (R2 = 0.56-0.64). CECT is a promising, non-destructive imaging technique for ex vivo assessment of meniscal GAG concentration and water content compared to traditional biochemical and histopathological methods. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1018-1028, 2017.
Collapse
Affiliation(s)
- Daniel J Oh
- Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Cambridge, Massachusetts.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215
| | - Benjamin A Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215.,Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, Massachusetts, 02215
| | - Rachel C Stewart
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215.,Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, Massachusetts, 02215
| | - Martin Wiewiorski
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215.,Department of Orthopaedic and Trauma, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Jonathan D Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215.,Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, Massachusetts
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, Massachusetts, 02215.,Department of Chemistry, Boston University, Boston, Massachusetts
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts, 02215.,Children's Hospital, Boston, Massachusetts
| |
Collapse
|
38
|
Honkanen JTJ, Turunen MJ, Freedman JD, Saarakkala S, Grinstaff MW, Ylärinne JH, Jurvelin JS, Töyräs J. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus. Ann Biomed Eng 2016; 44:2913-2921. [PMID: 27129372 PMCID: PMC5042996 DOI: 10.1007/s10439-016-1629-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022]
Abstract
Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.
Collapse
Affiliation(s)
- Juuso T. J. Honkanen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mikael J. Turunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
| | - Jonathan D. Freedman
- Department of Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA USA
- Department of Chemistry, Boston University, Boston, MA USA
| | - Janne H. Ylärinne
- Department of Integrative Medical Biology, University of Umea, Umeå, Sweden
| | - Jukka S. Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
39
|
Lakin BA, Patel H, Holland C, Freedman JD, Shelofsky JS, Snyder BD, Stok KS, Grinstaff MW. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J Orthop Res 2016; 34:1130-8. [PMID: 26697956 PMCID: PMC5556386 DOI: 10.1002/jor.23141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
Abstract
Mouse models of osteoarthritis (OA) are commonly used to study the disease's pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of 10 mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side's indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R(2) = 0.69, p < 0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R(2) ≥ 0.63, p < 0.05) and E (R(2) ≥ 0.63, p < 0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1130-1138, 2016.
Collapse
Affiliation(s)
- Benjamin A. Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Harsh Patel
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Conor Holland
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Jonathan D. Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA
| | - Joshua S. Shelofsky
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| | - Kathryn S. Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland,Scanco Medical AG, Brüttisellen, Switzerland,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA,Department of Chemistry, Boston University, Boston, MA,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| |
Collapse
|
40
|
Freedman JD, Lusic H, Wiewiorski M, Farley M, Snyder BD, Grinstaff MW. A cationic gadolinium contrast agent for magnetic resonance imaging of cartilage. Chem Commun (Camb) 2016; 51:11166-11169. [PMID: 26051807 DOI: 10.1039/c5cc03354c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new cationic gadolinium contrast agent is reported for delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC). The agent partitions into the glycosaminoglycan rich matrix of articular cartilage, based on Donnan equilibrium theory, and its use enables imaging of the human cadaveric metacarpal phalangeal joint.
Collapse
Affiliation(s)
- Jonathan D Freedman
- Department of Pharmacology at Boston University and Boston University School of Medicine, Boston, MA.,Center for Advanced Orthopaedic Studies Harvard Medical School, Boston, MA
| | - Hrvoje Lusic
- Department of Chemistry Boston University School of Medicine, Boston, MA
| | - Martin Wiewiorski
- Center for Advanced Orthopaedic Studies Harvard Medical School, Boston, MA
| | - Michelle Farley
- MRI Core Facility, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA.,MIT Institute for Medical Engineering & Science, Cambridge, MA
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies Harvard Medical School, Boston, MA
| | - Mark W Grinstaff
- Department of Chemistry Boston University School of Medicine, Boston, MA.,Department of Biomedical Engineering Boston University School of Medicine, Boston, MA.,Department of Pharmacology at Boston University and Boston University School of Medicine, Boston, MA
| |
Collapse
|
41
|
Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthritis Cartilage 2015; 23:2158-2166. [PMID: 26067518 PMCID: PMC4841831 DOI: 10.1016/j.joca.2015.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work is to establish the human metacarpal as a new whole joint surface early-stage osteoarthritis (OA) model that enables comparisons of articular cartilage and subchondral bone through high resolution contrast-enhanced CT (CECT) imaging, mechanical testing, and biochemical analysis. DESIGN The fourth metacarpal was obtained from 12 human cadaveric donors and baseline μCT imaging was followed by indentation testing. The samples were then immersed in anionic (Ioxaglate) and cationic (CA4+) iodinated contrast agent solutions followed by CECT. Cartilage GAG content and distribution was measured using the 1,9 dimethylmethylene blue (DMMB) assay and Safranin-O histology staining. Linear regression was performed to compare cartilage and subchondral bone properties. RESULTS Strong and significant positive correlations were observed between CA4+ CECT attenuation and both GAG content (R(2) = 0.86) and equilibrium modulus (R(2) = 0.84), while correlations using Ioxaglate were insignificant (R(2) ≤ 0.24, P > 0.05). Subchondral bone plate (SBP) thickness negatively and significantly correlated with SBP mineral density (R(2) = 0.49). Cartilage GAG content significantly correlated with several trabecular bone properties, including positive correlations with bone volume fraction (%BV/TV, R(2) = 0.67), trabecular number (Tb.N, R(2) = 0.60), and trabecular thickness (R(2) = 0.42), and negative relationships with structural model index (SMI, R(2) = 0.78) and trabecular spacing (Tb.Sp, R(2) = 0.56). Similarly, equilibrium modulus correlated positively with %BV/TV (R(2) = 0.50), Tb.N (R(2) = 0.59) and negatively with Tb.Sp (R(2) = 0.55) and SMI (R(2) = 0.60). CONCLUSION This study establishes the human metacarpal as a new early-stage OA model suitable for rapid, high resolution CECT imaging, mechanical testing, and biochemical analysis of the cartilage and subchondral bone, and for examining their inter-relationships.
Collapse
Affiliation(s)
- B A Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - D J Ellis
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J S Shelofsky
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - J D Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, USA
| | - M W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
42
|
Sonnaert M, Kerckhofs G, Papantoniou I, Van Vlierberghe S, Boterberg V, Dubruel P, Luyten FP, Schrooten J, Geris L. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs. PLoS One 2015; 10:e0130227. [PMID: 26076131 PMCID: PMC4467978 DOI: 10.1371/journal.pone.0130227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/17/2015] [Indexed: 11/26/2022] Open
Abstract
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial ‘design of experiments’ approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.
Collapse
Affiliation(s)
- Maarten Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liege, Liège, Belgium
- * E-mail:
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, University of Ghent, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, University of Ghent, Ghent, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liege, Liège, Belgium
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Heverlee, Belgium
| |
Collapse
|
43
|
Abstract
Characterization of articular cartilage morphology and composition using microcomputed tomography (microCT) techniques requires the use of contrast agents to enhance X-ray attenuation of the tissue. This chapter describes the use of an anionic iodinated contrast agent at equilibrium with articular cartilage. In this technique, negatively charged contrast agent molecules distribute themselves inversely with respect to the negatively charged proteoglycans (PGs) within the cartilage tissue (Palmer et al. Proc Natl Acad Sci U S A 103:19255-19260, 2006). This relationship allows for assessment of cartilage degradation, as areas of high X-ray attenuation have been shown to correspond to areas of depleted PGs (Palmer et al. Proc Natl Acad Sci U S A 103:19255-19260, 2006; Xie et al. Osteoarthritis Cartilage 18:65-72, 2010).
Collapse
Affiliation(s)
- Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | | | | |
Collapse
|
44
|
Entezari V, Bansal PN, Stewart RC, Lakin BA, Grinstaff MW, Snyder BD. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J Orthop Res 2014; 32:1333-40. [PMID: 24961833 DOI: 10.1002/jor.22662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
To determine if mechanical convection accelerates partitioning of an anionic contrast agent into cartilage while maintaining its ability to reflect the glycosaminoglycan (GAG) content in contrast-enhanced computed tomography (CECT) of cartilage. Bovine patellae (N = 4) were immersed in iothalamate and serially imaged over 24 h of passive diffusion at 34°C. Following saline washing for 14 h, each patella was serially imaged over 2.5 h of mechanical convection by cyclic compressive loading (120N, 1 Hz) while immersed in iothalamate at 34°C. After similar saline washing, each patella was sectioned into 15 blocks (n = 60) and contrast concentration per time point as well as GAG content were determined for each cartilage block. Mechanical convection produced 70.6%, 34.4%, and 16.4% higher contrast concentration at 30, 60, and 90 min, respectively, compared to passive diffusion (p < 0.001) and boosted initial contrast flux 330%. The correlation between contrast concentration and GAG content was significant at all time points and correlation coefficients improved with time, reaching R(2) = 0.60 after 180 min of passive diffusion and 22.5 min of mechanical convection. Mechanical convection significantly accelerated partitioning of a contrast agent into healthy cartilage while maintaining strong correlations with GAG content, providing an evidence-based rationale for adopting walking regimens in CECT imaging protocols.
Collapse
Affiliation(s)
- Vahid Entezari
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215
| | | | | | | | | | | |
Collapse
|
45
|
Freedman JD, Lusic H, Snyder BD, Grinstaff MW. Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage. Angew Chem Int Ed Engl 2014; 53:8406-10. [PMID: 24981730 PMCID: PMC4303344 DOI: 10.1002/anie.201404519] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/20/2022]
Abstract
The synthesis and characterization of tantalum oxide (Ta2O5) nanoparticles (NPs) as new X-ray contrast media for microcomputed tomography (μCT) imaging of articular cartilage are reported. NPs, approximately 5-10 nm in size, and possessing distinct surface charges, were synthesized using phosphonate (neutral), ammonium (cationic), and carboxylate (anionic) ligands as end functional groups. Assessment of a cartilage defect in a human cadaver distal metacarpophalangeal (MCP) joint with the ammonium nanoparticles showed good visualization of damage and preferential uptake in areas surrounding the defect. Finally, an optimized nontoxic cationic NP contrast agent was evaluated in an in vivo murine model and the cartilage was imaged. These nanoparticles represent a new type of contrast agent for imaging articular cartilage, and the results demonstrate the importance of surface charge in the design of nanoparticulate agents for targeting the surface or interior zones of articular cartilage.
Collapse
Affiliation(s)
- Jonathan D. Freedman
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| | - Hrvoje Lusic
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 (USA)
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| |
Collapse
|
46
|
Freedman JD, Lusic H, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Imaging of Articular Cartilage Using X-Ray Computed Tomography: Visualization of Ex Vivo/In Vivo Murine Tibia and Ex Vivo Human Index Finger Cartilage. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Lakin BA, Grasso DJ, Stewart RC, Freedman JD, Snyder BD, Grinstaff MW. Contrast enhanced CT attenuation correlates with the GAG content of bovine meniscus. J Orthop Res 2013; 31:1765-71. [PMID: 23832854 PMCID: PMC3931129 DOI: 10.1002/jor.22421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/07/2013] [Indexed: 02/04/2023]
Abstract
We determined whether contrast-enhanced computed tomography (CECT) attenuation obtained using a µCT scanner correlated with the glycosaminoglycan (GAG) content and distribution in ex vivo bovine menisci. Bovine samples were immersed in different concentrations of the contrast agents CA4+ and Ioxaglate, and the µCT images were compared to Safranin-O staining. CA4+ and Ioxaglate diffusion-in kinetics and the correlation between their CECT attenuations and GAG content were investigated. CA4+ and Ioxaglate both reached steady state in the meniscal regions within 95 h, with tau values of 20.6 ± 3.98 and 25.9 ± 3.71 h (mean ± SD), respectively. Both agents diffused preferentially through the proximal and secondarily through the distal surface. The CA4+ CECT attenuation was strongly and positively correlated with the GAG content of the meniscus regions (R(2) = 0.89, p < 0.001) at low concentrations (12 mgI/ml), while the Ioxaglate CECT attenuation was moderately and negatively correlated with the GAG content (R(2) = 0.51, p = 0.03) at 60 mgI/ml. CECT can image ex vivo menisci, and the CA4+, compared to Ioxaglate, enhanced attenuation strongly correlates with the GAG content and distribution in bovine meniscus.
Collapse
Affiliation(s)
- Bejamin A. Lakin
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel J. Grasso
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts
| | - Rachel C. Stewart
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jonathan D. Freedman
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,Children’s Hospital, Boston, Massachusetts
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts
| |
Collapse
|
48
|
Irie T, Oda K, Shiino A, Kubo M, Morikawa S, Urushiyama N, Aonuma S, Kimura T, Inubushi T, Oohashi T, Komatsu N. Design, synthesis, and preliminary ex vivo and in vivo evaluation of cationic magnetic resonance contrast agent for rabbit articular cartilage imaging. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00229b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|