1
|
Lin TH, Wang HC, Tseng YL, Yeh ML. A bioactive composite scaffold enhances osteochondral repair by using thermosensitive chitosan hydrogel and endothelial lineage cell-derived chondrogenic cell. Mater Today Bio 2024; 28:101174. [PMID: 39211289 PMCID: PMC11357856 DOI: 10.1016/j.mtbio.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-β1 (TGF-β1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-β1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-β1-induced differentiation of EPCs is mediated by both the TGF-β/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Innovation Headquarters, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| |
Collapse
|
2
|
Effects of adipose-derived stromal cells and endothelial progenitor cells on adipose transplant survival and angiogenesis. PLoS One 2022; 17:e0261498. [PMID: 35025920 PMCID: PMC8758088 DOI: 10.1371/journal.pone.0261498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A paracrine mechanism is thought to mediate the proangiogenic capacity of adipose-derived stromal/stem cells (ASCs). However, the precise mechanism by which ASCs promote the formation of blood vessels by endothelial progenitor cells (EPCs) is unclear. METHODS The EPCs-ASCs cocultures prepared in different ratios were subjected to tube formations assay to verify whether ASCs could directly participate in the tube genesis. The supernatant from cultured ASCs was used to stimulate EPCs to evaluate the effects on the angiogenic property of EPCs, as well as capacity for migration and invasion. A coculture model with transwell chamber were used to explore the regulation of angiogenesis markers expression in EPCs by ASCs. We then mixed ASCs with EPCs and transplanted them with adipose tissue into nude mice to evaluate the effects on angiogenesis in adipose tissue grafts. RESULTS In the EPCs-ASCs cocultures, the tube formation was significantly decreased as the relative abundance of ASCs increased, while the ASCs was found to migrate and integrated into the agglomerates formed by EPCs. The supernatant from ASCs cultures promoted the migration and invasion of EPCs and the ability to form capillary-like structures. The expression of multiple angiogenesis markers in EPCs were significantly increased when cocultured with ASCs. In vivo, ASCs combined with EPC promoted vascularization in the fat transplant. Immunofluorescence straining of Edu and CD31 indicated that the Edu labeled EPC did not directly participate in the vascularization inside the fat tissue. CONCLUSIONS ADSC can participate in the tube formation of EPC although it cannot form canonical capillary structures. Meanwhile, Soluble factors secreted by ASCs promotes the angiogenic potential of EPCs. ASCs paracrine signaling appears to promote angiogenesis by increasing the migration and invasion of EPCs and simultaneously upregulating the expression of angiogenesis markers in EPCs. The results of in vivo experiments showed that ASCs combined with EPCs significantly promote the formation of blood vessels in the fat implant. Remarkably, EPCs may promote angiogenesis by paracrine regulation of endogenous endothelial cells (ECs) rather than direct participation in the formation of blood vessels.
Collapse
|
3
|
Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds. Cells 2021; 10:cells10123536. [PMID: 34944042 PMCID: PMC8700224 DOI: 10.3390/cells10123536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cartilage stem/progenitor cells (CSPCs) are cartilage-specific, multipotent progenitor cells residing in articular cartilage. In this study, we investigated the characteristics and potential of human CSPCs combined with poly(lactic-co-glycolic acid) (PLGA) scaffolds to induce osteochondral regeneration in rabbit knees. We isolated CSPCs from human adult articular cartilage undergoing total knee replacement (TKR) surgery. We characterized CSPCs and compared them with infrapatellar fat pad-derived stem cells (IFPs) in a colony formation assay and by multilineage differentiation analysis in vitro. We further evaluated the osteochondral regeneration of the CSPC-loaded PLGA scaffold during osteochondral defect repair in rabbits. The characteristics of CSPCs were similar to those of mesenchymal stem cells (MSCs) and exhibited chondrogenic and osteogenic phenotypes without chemical induction. For in vivo analysis, CSPC-loaded PLGA scaffolds produced a hyaline-like cartilaginous tissue, which showed good integration with the host tissue and subchondral bone. Furthermore, CSPCs migrated in response to injury to promote subchondral bone regeneration. Overall, we demonstrated that CSPCs can promote osteochondral regeneration. A monophasic approach of using diseased CSPCs combined with a PLGA scaffold may be beneficial for repairing complex tissues, such as osteochondral tissue.
Collapse
|
4
|
Liu X, Lu X, Wang Z, Yang X, Dai G, Yin J, Huang Y. Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Determining the Optimal Conditions for the Production by Supercritical CO 2 of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment. Polymers (Basel) 2021; 13:polym13101645. [PMID: 34069337 PMCID: PMC8158779 DOI: 10.3390/polym13101645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/09/2023] Open
Abstract
Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lactide-co-glycolide) (50:50 and 75:25) were studied to determine their effect on the expansion factor and on the glass transition temperature of the polymer foams and their consequences on the release profile of the rutin entrapped in them. The impregnated foams were characterized by scanning electron microscopy, differential scanning calorimetry, and mercury intrusion porosimetry. A greater impregnation of rutin into the polymer foam pores was observed as pressure was increased. The release of rutin in a phosphate buffer solution was investigated. The controlled release tests confirmed that the modification of certain variables would result in considerable differences in the drug release profiles. Thus, five-day drug release periods were achieved under high pressure and temperature while the depressurization rate remained low.
Collapse
|
6
|
Park Y, Huh KM, Kang SW. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int J Mol Sci 2021; 22:2491. [PMID: 33801273 PMCID: PMC7958286 DOI: 10.3390/ijms22052491] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.
Collapse
Affiliation(s)
- Yujin Park
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
7
|
Royer C, Guay‐Bégin A, Chanseau C, Chevallier P, Bordenave L, Laroche G, Durrieu M. Bioactive micropatterning of biomaterials for induction of endothelial progenitor cell differentiation: Acceleration of in situ endothelialization. J Biomed Mater Res A 2020; 108:1479-1492. [DOI: 10.1002/jbm.a.36918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Caroline Royer
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Andrée‐Anne Guay‐Bégin
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
| | | | - Pascale Chevallier
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | | | - Gaétan Laroche
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Marie‐Christine Durrieu
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
| |
Collapse
|
8
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, Athanasiou KA. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 2019; 15:550-570. [PMID: 31296933 PMCID: PMC7192556 DOI: 10.1038/s41584-019-0255-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Nikolaos Paschos
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Cheng CH, Lai YH, Chen YW, Yao CH, Chen KY. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration. J Biomater Appl 2019; 33:1147-1156. [PMID: 30739563 DOI: 10.1177/0885328218820636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone scaffold surface characterization is important for improving cell adhesion, migration, and differentiation. In this study, bone morphogenetic protein-2 (BMP-2) was immobilized to the surface of the gelatin/hydroxyapatite composite using avidin–biotin binding system to produce a bone-tissue engineering scaffold. Firstly, hydroxyapatite particles reacted with hexamethylene diisocyanate and then the terminal group was converted into a primary amine group. Avidin was then immobilized on the surfaces of hydroxyapatite particles using N-ethyl-N′-(3-(dimethylamino)propyl) carbodiimide and N-hydroxysuccinimide as coupling agents. Gelatin was blended with avidin-modified hydroxyapatite and pure hydroxyapatite to obtain gelain/hydroxyapatite composite. The composite was then cross-linked with glutaraldehyde. Finally, biotin-conjugated BMP-2 was immobilized on the surface of the composite via avidin–biotin binding. In vitro study indicated that BMP-2-immobilized composite film had a higher ALP activity than that composite film without BMP-2. The composite scaffolds were then implanted into rabbit skulls to check bone-tissue regeneration. Ultrasound and micro-CT scans demonstrated that neovascularization and new bone formation in the BMP-2-immobilized composite scaffolds were higher than those in composite scaffolds without BMP-2. Histological evaluation result was similar to that of the micro-CT. Therefore, the surface immobilization of BMP-2 could effectively improve osteogenesis in the gelatin/hydroxyapatite composite scaffold.
Collapse
Affiliation(s)
- Cheng-Hsin Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan
| | - Yi-Hui Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
- School of Chinese Medicine, China Medical University, Taichung
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin
| |
Collapse
|
10
|
Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Int J Mol Sci 2019; 20:ijms20020326. [PMID: 30650528 PMCID: PMC6359257 DOI: 10.3390/ijms20020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 μm) and large (200–500 μm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Wen-Hui Cheng
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, 2 Yude Rd., Taichung 40447, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
11
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
12
|
Wang HC, Lin YT, Lin TH, Chang NJ, Lin CC, Hsu HC, Yeh ML. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. PLoS One 2018; 13:e0209747. [PMID: 30596714 PMCID: PMC6312252 DOI: 10.1371/journal.pone.0209747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
14
|
Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv Healthc Mater 2018; 7. [PMID: 29171928 DOI: 10.1002/adhm.201701035] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) is one of the most versatile biomedical polymers, already approved by regulatory authorities to be used in human research and clinics. Due to its valuable characteristics, PLGA can be tailored to acquire desirable features for control bioactive payload or scaffold matrix. Moreover, its chemical modification with other polymers or bioconjugation with molecules may render PLGA with functional properties that make it the Holy Grail among the synthetic polymers to be applied in the biomedical field. In this review, the physical-chemical properties of PLGA, its synthesis, degradation, and conjugation with other polymers or molecules are revised in detail, as well as its applications in drug delivery and regeneration fields. A particular focus is given to successful examples of products already on the market or at the late stages of trials, reinforcing the potential of this polymer in the biomedical field.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Flávia Sousa
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar; Universidade do Porto; Rua de Jorge Viterbo Ferreira 228 4050-313 Porto Portugal
| | - Francisca Araújo
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; Rua Central de Gandra 1317 4585-116 Gandra Portugal
| |
Collapse
|
15
|
Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, Li W, Lin G, Wu H, Liu C. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. J Biomed Mater Res A 2017; 106:1008-1021. [PMID: 29115001 DOI: 10.1002/jbm.a.36287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huaixi Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hao Cheng
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jingyuan Chen
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Jun Zhang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wei Wang
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Wenkai Li
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Guanlin Lin
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Hua Wu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095; Wuhan 430030 People's Republic of China
| |
Collapse
|
16
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
17
|
Song JE, Tripathy N, Cha SR, Jeon SH, Kwon SY, Suh DS, Khang G. Three-dimensional duck’s feet collagen/PLGA scaffold for chondrification: role of pore size and porosity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:932-941. [DOI: 10.1080/09205063.2017.1394712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Se Rom Cha
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung Hyun Jeon
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Soon Yong Kwon
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, Catholic University of Korea, Seoul, Korea
| | | | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
18
|
Ali TS, Thibbotuwawa N, Gu Y, Momot KI. MRI magic-angle effect in femorotibial cartilages of the red kangaroo. Magn Reson Imaging 2017; 43:66-73. [PMID: 28716681 DOI: 10.1016/j.mri.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Kangaroo knee cartilages are robust tissues that can support knee flexion and endure high levels of compressive stress. This study aimed to develop a detailed understanding of the collagen architecture in kangaroo knee cartilages and thus obtain insights into the biophysical basis of their function. DESIGN Cylindrical/square plugs from femoral and tibial hyaline cartilage and tibial fibrocartilage were excised from the knees of three adult red kangaroos. Multi-slice, multi-echo MR images were acquired at the sample orientations 0° and 55° ("magic angle") with respect to the static magnetic field. Maps of the transverse relaxation rate constant (R2) and depth profiles of R2 and its anisotropic component (R2A) were constructed from the data. RESULTS The R2A profiles confirmed the classic three-zone organisation of all cartilage samples. Femoral hyaline cartilage possessed a well-developed, thick superficial zone. Tibial hyaline cartilage possessed a very thick radial zone (80% relative thickness) that exhibited large R2A values consistent with highly ordered collagen. The R2A profile of tibial fibrocartilage exhibited a unique region near the bone (bottom 5-10%) consistent with elevated proteoglycan content ("attachment sub-zone"). CONCLUSIONS Our observations suggest that the well-developed superficial zone of femoral hyaline cartilage is suitable for supporting knee flexion; the thick and well-aligned radial zone of tibial hyaline cartilage is adapted to endure high compressive stress; while the innermost part of the radial zone of tibial fibrocartilage may facilitate anchoring of the collagen fibres to withstand high shear deformation. These findings may inspire new designs for cartilage tissue engineering.
Collapse
Affiliation(s)
- Tonima S Ali
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation, Kelvin Grove, QLD 4059, Australia
| | - Namal Thibbotuwawa
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - YuanTong Gu
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Konstantin I Momot
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
19
|
Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, Kim KJ, Park YG, Chung JY. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage 2017; 25:570-580. [PMID: 27789339 DOI: 10.1016/j.joca.2016.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 09/26/2016] [Accepted: 10/15/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have gained popularity as a promising cell source for regenerative medicine, but limited in vivo studies have reported cartilage repair. In addition, the roles of MSCs in cartilage repair are not well-understood. The purpose of this study was to investigate the feasibility of transplanting hUCB-MSCs and hyaluronic acid (HA) hydrogel composite to repair articular cartilage defects in a rabbit model and determine whether the transplanted cells persisted or disappeared from the defect site. DESIGN Osteochondral defects were created in the trochlear grooves of the knees. The hUCB-MSCs and HA composite was transplanted into the defect of experimental knees. Control knees were transplanted by HA or left untreated. Animals were sacrificed at 8 and 16 weeks post-transplantation and additionally at 2 and 4 weeks to evaluate the fate of transplanted cells. The repair tissues were evaluated by gross, histological and immunohistochemical analysis. RESULTS Transplanting hUCB-MSCs and HA composite resulted in overall superior cartilage repair tissue with better quality than HA alone or no treatment. Cellular architecture and collagen arrangement at 16 weeks were similar to those of surrounding normal articular cartilage tissue. Histological scores also revealed that cartilage repair in experimental knees was better than that in control knees. Immunohistochemical analysis with anti-human nuclear antibody confirmed that the transplanted MSCs disappeared gradually over time. CONCLUSION Transplanting hUCB-MSCs and HA composite promote cartilage repair and interactions between hUCB-MSCs and host cells initiated by paracrine action may play an important role in cartilage repair.
Collapse
Affiliation(s)
- Y B Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea.
| | - C W Ha
- Department of Orthopedic Surgery, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - J A Kim
- Department of Orthopedic Surgery, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - W J Han
- Department of Orthopedic Surgery, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - J H Rhim
- Department of Orthopedic Surgery, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - H J Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea.
| | - K J Kim
- Department of Orthopedic Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, South Korea.
| | - Y G Park
- Department of Orthopedic Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, South Korea.
| | - J Y Chung
- Department of Orthopedic Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
20
|
Li H, Liao H, Bao C, Xiao Y, Wang Q. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition. AAPS PharmSciTech 2017; 18:529-538. [PMID: 27126006 DOI: 10.1208/s12249-016-0536-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to prepare and evaluate a sustained-release mangiferin scaffold for improving alveolar bone defect repair in diabetes. Mangiferin-loaded poly(D,L-lactide-co-glycolide) (PLGA) scaffolds were prepared using a freeze-drying technique with ice particles as the porogen material. The produced scaffolds were examined using a scanning electron microscope (SEM). Drug content and drug release were detected using a spectrophotometer. Degradation behaviors were monitored as a measure of weight loss and examined using SEM. Then, the scaffolds were incubated with rat bone marrow stromal cells under the diabetic condition in vitro, and cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Afterward, the scaffolds were implanted into alveolar bone defects of diabetic rats, and bone repair was examined using hematoxylin and eosin staining. The fabricated scaffolds showed porous structures, with average pore size range from 111.35 to 169.45 μm. A higher PLGA concentration led to decreased average pore size. A lower PLGA concentration or a higher mangiferin concentration resulted in increased drug content. The prepared scaffolds released mangiferin in a sustained manner with relatively low initial burst during 10 weeks. Their degradation ratios gradually increased as degradation proceeded. The mangiferin-loaded scaffolds attenuated cell viability decrease under the diabetic condition in vitro. Moreover, they increased histological scorings of bone regeneration and improved delayed alveolar bone defect healing in diabetic rats. These results suggest that the produced mangiferin-loaded scaffolds may provide a potential approach in the treatment of impaired alveolar bone healing in diabetes.
Collapse
|
21
|
Electrospinnability of Poly Lactic-co-glycolic Acid (PLGA): the Role of Solvent Type and Solvent Composition. Pharm Res 2017; 34:738-749. [DOI: 10.1007/s11095-017-2100-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
22
|
Abstract
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.
Collapse
Affiliation(s)
- Tiago Ramos
- a Faculty of Engineering; University of Oporto ; Porto , Portugal.,b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Maqsood Ahmed
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands
| | - Paul Wieringa
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| | - Lorenzo Moroni
- b University of Twente ; Department of Tissue Regeneration ; Enschede , The Netherlands.,c Maastricht University ; Department of Complex Tissue Regeneration ; Maastricht , The Netherlands
| |
Collapse
|
23
|
Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 2016; 20:10. [PMID: 27148455 PMCID: PMC4855474 DOI: 10.1186/s40824-016-0057-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Collapse
Affiliation(s)
- Cen Chen
- />Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Sumi Bang
- />Seoul National University of Science and Technology, 232 Gongneung-roNowongu, Seoul, 11811 Republic of Korea
| | - Younghak Cho
- />Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 11811 Republic of Korea
| | - Sahnghoon Lee
- />Department of Orthopaedic Surgery, Seoul National University College of Medicine/Seoul National University Hospital, Seoul, 110-799 Republic of Korea
| | - Inseop Lee
- />Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
- />Institute of Natural Sciences, Yonsei University, Seoul, 03722 Korea
| | - ShengMin Zhang
- />Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Insup Noh
- />Seoul National University of Science and Technology, 232 Gongneung-roNowongu, Seoul, 11811 Republic of Korea
- />Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811 Republic of Korea
| |
Collapse
|
24
|
Fu JY, Lim SY, He PF, Fan CJ, Wang DA. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition. Ann Biomed Eng 2016; 44:2957-2970. [PMID: 27066786 DOI: 10.1007/s10439-016-1615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.
Collapse
Affiliation(s)
- J Y Fu
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - S Y Lim
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - P F He
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - C J Fan
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - D A Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| |
Collapse
|
25
|
Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold. Tissue Eng Part C Methods 2016; 22:208-20. [PMID: 26651081 DOI: 10.1089/ten.tec.2015.0365] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 10(6) cells/cm(3). Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 10(6) BMSCs/cm(3). For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 10(6) BMNCs/cm(3) and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to predifferentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5-10 × 10(6) BMSCs/cm(3). Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5-10 × 10(6) BMSCs/cm(3) based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5-50 × 10(6) BMNCs/cm(3), while collagen II deposition occurred in scaffolds seeded at 10-50 × 10(6) BMNCs/cm(3). The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 × 10(6) BMNCs/cm(3). Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5-10 × 10(6) BMSCs/cm(3) and 50 × 10(6) BMNCs/cm(3), respectively.
Collapse
Affiliation(s)
- Troy D Bornes
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| |
Collapse
|
26
|
Feng Z, Liu J, Shen C, Lu N, Zhang Y, Yang Y, Qi F. Biotin-avidin mediates the binding of adipose-derived stem cells to a porous β-tricalcium phosphate scaffold: Mandibular regeneration. Exp Ther Med 2015; 11:737-746. [PMID: 26997987 PMCID: PMC4774400 DOI: 10.3892/etm.2015.2961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/22/2015] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to investigate the properties of a promising bone scaffold for bone repair, which consisted of a novel composite of adipose-derived stem cells (ADSCs) attached to a porous β-tricalcium phosphate (β-TCP) scaffold with platelet-rich plasma (PRP). The β-TCP powder was synthesized and its composition was determined using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology and microstructure of the fabricated porous β-TCP scaffold samples were analyzed using light and scanning electron microscopy, and their porosity and compressive strength were also evaluated. In addition, the viability of rabbit ADSCs incubated with various concentrations of the β-TCP extraction fluid was analyzed. The rate of attachment and the morphology of biotinylated ADSCs (Bio-ADSCs) on avidin-coated β-TCP (Avi-β-TCP), and untreated ADSCs on β-TCP, were compared. Furthermore, in vivo bone-forming abilities were determined following the implantation of group 1 (Bio-ADSCs/Avi-β-TCP) and group 2 (Bio-ADSCs/Avi-β-TCP/PRP) constructs using computed tomography, and histological osteocalcin (OCN) and alkaline phosphatase (ALP) expression analyses in a rabbit model of mandibulofacial defects. The β-TCP scaffold exhibited a high porosity (71.26±0.28%), suitable pore size, and good mechanical strength (7.93±0.06 MPa). Following incubation with β-TCP for 72 h, 100% of viable ADSCs remained. The avidin-biotin binding system significantly increased the initial attachment rate of Bio-ADSCs to Avi-β-TCP in the first hour (P<0.01). Following the addition of PRP, group 2 exhibited a bony-union and mandibular body shape, newly formed bone and increased expression levels of OCN and ALP in the mandibulofacial defect area, as compared with group 1 (P<0.05). The results of the present study suggested that the novel Bio-ADSCs/Avi-β-TCP/PRP composite may have potential application in bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Zihao Feng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Congcong Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Nanhang Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yong Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
27
|
Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 2015; 28:128-137. [PMID: 26407650 DOI: 10.1016/j.actbio.2015.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full-thickness osteochondral regeneration in rabbit knee joint models. STATEMENT OF SIGNIFICANCE Promoting effective hyaline cartilage regeneration rather than fibrocartilage scar tissue remains clinically challenging. To address the obstacle, we fabricated a spongy cell-free PLGA scaffold, and designed a reasonable exercise program to generate combined therapeutic effects. First, the implanting scaffold generates an affordable mechanical structure to bear the loading forces and bridge with the host to offer a space in the full-thickness osteochondral regeneration in rabbit knee joint. After implantation, rabbits were performed by an early treadmill exercise 15 min/day, 5 days/week for 2 weeks that directly exerts in situ endogenous growth factor and anti-inflammatory effects in the reparative site. The advanced therapeutic strategy showed that neo-hyaline cartilage formation with enriched collagen type II, higher glycosaminoglycan, integrating subchondral bone formation and modest inflammation.
Collapse
|
28
|
Chang NJ, Lin YT, Lin CC, Wang HC, Hsu HC, Yeh ML. The repair of full-thickness articular cartilage defect using intra-articular administration of N-acetyl-D-glucosamine in the rabbit knee: randomized controlled trial. Biomed Eng Online 2015; 14:105. [PMID: 26582033 PMCID: PMC4652361 DOI: 10.1186/s12938-015-0100-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023] Open
Abstract
Background Although various alterative models of therapy are used for cartilage repair, no definite conclusion has been reached. Glucosamine (GlcN) is widely used as a nutritional supplement. However, the clinical- evidence-based outcome of GlcN administration remains controversial. N-acetyl-d-glucosamine (GlcNAc), a derivative of GlcN, shows chondroprotective activity and mediates the activation of articular chondrocytes. Therefore, we investigated the effect of intra-articular administration of GlcNAc in rabbits’ knee joints with experimental full-thickness articular cartilage (FTAC) defects. Methods Twelve male adult New Zealand white rabbits, providing 24 knees, were used in this study. FTAC defects were created in the high-weight-bearing area of the medial femoral condyles of bilateral knees. All rabbits were randomly allocated to analysis at postsurgical week 4 or postsurgical week 12. In the week 4 group, rabbits’ knees (six per group) were intra-articularly injected with normal saline or with GlcNAc twice per week for 3 weeks, beginning 1 week postoperatively. In the week 12 group, the rabbits’ knees (six in each group) were intra-articularly injected with normal saline or with GlcNAc twice per week for 4 weeks, beginning 1 week postoperatively. Rabbits were sacrificed at 4 or 12 weeks after surgery for macroscopic, histological and radiological examinations of the knee joints. Results All rabbits had no systemic or local adverse effects. The saline and GlcNAc groups showed visible differences in healing of the FTAC defect at the end of testing. At week 4, the GlcNAc group had a higher level of collagen type II (COL II) and showed up-regulated production of transforming growth factor (TGF)-β2 and TGF-β3, suggesting the involvement of endogenous growth factors. At week 12, the GlcNAc group displayed formation of hyaline-like cartilage regeneration with mature chondrocytes (SOX9+), robust glycosaminoglycan (GAG) content, and positive COL II content in both the adjacent cartilage and reparative sites. However, the saline group demonstrated mainly fibrocartilage scar tissue, indicating COL I expression. Furthermore, the GlcNAc group had significantly higher bone volume per tissue volume and higher trabecular thickness than the saline group. Conclusions Intra-articular GlcNAc may promote the repair of experimental FTAC defects in the rabbit knee joint model.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Ting Lin
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan.
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
29
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|
30
|
O’Brien MP, Penmatsa M, Palukuru U, West P, Yang X, Bostrom MPG, Freeman T, Pleshko N. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy. Cartilage 2015; 6:174-84. [PMID: 26175863 PMCID: PMC4481387 DOI: 10.1177/1947603515572874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology. DESIGN Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and IFOP data obtained from defect and adjacent regions at 2, 4, 6, 8, 12, and 16 weeks postsurgery. Tissues were assessed histologically using the modified O'Driscoll score, by FT-IRIS, and by partial least squares (PLS) modeling of IFOP spectra. RESULTS The FT-IRIS parameters of collagen content, proteoglycan content, and collagen index correlated significantly with modified O'Driscoll score (P = 0.05, 0.002, and 0.02, respectively), indicative of their sensitivity to tissue healing. Repair tissue IFOP spectra were distinguished from normal tissue IFOP spectra in all samples by PLS analysis. However, the PLS model for prediction of histological score had a high prediction error, which was attributed to the spectral information being acquired from the tissue surface only. CONCLUSION The strong correlations between FT-IRIS data and histological score support further development of the IFOP technique for clinical applications, although further studies to optimize data collection from the full sample depths are required.
Collapse
Affiliation(s)
- Megan P. O’Brien
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Madhuri Penmatsa
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Uday Palukuru
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Paul West
- Department of Mathematics, Engineering & Computer Science, LaGuardia Community College, Long Island City, NY, USA
| | - Xu Yang
- Hospital of Special Surgery; New York, NY, USA
| | | | - Theresa Freeman
- Department of Orthopaedics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, Hashi AA, Abdul Rahman S, Sha'ban M. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue Cell 2015; 47:420-30. [PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
Collapse
Affiliation(s)
- Rozlin Abdul Rahman
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Norhamiza Mohamad Sukri
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Noorhidayah Md Nazir
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Muhammad Aa'zamuddin Ahmad Radzi
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Ahmad Hafiz Zulkifly
- Department of Orthopaedics, Traumatology and Rehabilitation, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Aminudin Che Ahmad
- Department of Orthopaedics, Traumatology and Rehabilitation, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdurezak Abdulahi Hashi
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Suzanah Abdul Rahman
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
| | - Munirah Sha'ban
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
32
|
Zhu H, Yang F, Tang B, Li XM, Chu YN, Liu YL, Wang SG, Wu DC, Zhang Y. Mesenchymal stem cells attenuated PLGA-induced inflammatory responses by inhibiting host DC maturation and function. Biomaterials 2015; 53:688-98. [DOI: 10.1016/j.biomaterials.2015.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
|
33
|
Abstract
For many decades, fundamental cancer research has relied on two-dimensional in vitro cell culture models. However, these provide a poor representation of the complex three-dimensional (3D) architecture of living tissues. The more recent 3D culture systems, which range from ridged scaffolds to semiliquid gels, resemble their natural counterparts more closely. The arrangement of the cells in 3D systems allows better cell-cell interaction and facilitates extracellular matrix secretion, with concomitant effects on gene and protein expression and cellular behavior. Many studies have reported differences between 3D and 2D systems as regards responses to therapeutic agents and pivotal cellular processes such as cell differentiation, morphology, and signaling pathways, demonstrating the importance of 3D culturing for various cancer cell lines.
Collapse
|
34
|
Sachenberg EI, Nikolaenko NN, Pinaev GP. Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on various extracellular matrix proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Lam J, Lu S, Lee EJ, Trachtenberg JE, Meretoja VV, Dahlin RL, van den Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis Cartilage 2014; 22:1291-300. [PMID: 25008204 PMCID: PMC4150851 DOI: 10.1016/j.joca.2014.06.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/02/2014] [Accepted: 06/25/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the ability of cell-laden bilayered hydrogels encapsulating chondrogenically and osteogenically (OS) pre-differentiated mesenchymal stem cells (MSCs) to effect osteochondral defect repair in a rabbit model. By varying the period of chondrogenic pre-differentiation from 7 (CG7) to 14 days (CG14), the effect of chondrogenic differentiation stage on osteochondral tissue repair was also investigated. METHODS Rabbit MSCs were subjected to either chondrogenic or osteogenic pre-differentiation, encapsulated within respective chondral/subchondral layers of a bilayered hydrogel construct, and then implanted into femoral condyle osteochondral defects. Rabbits were randomized into one of four groups (MSC/MSC, MSC/OS, CG7/OS, and CG14/OS; chondral/subchondral) and received two similar constructs bilaterally. Defects were evaluated after 12 weeks. RESULTS All groups exhibited similar overall neo-tissue filling. The delivery of OS cells when compared to undifferentiated MSCs in the subchondral construct layer resulted in improvements in neo-cartilage thickness and regularity. However, the addition of CG cells in the chondral layer, with OS cells in the subchondral layer, did not augment tissue repair as influenced by the latter when compared to the control. Instead, CG7/OS implants resulted in more irregular neo-tissue surfaces when compared to MSC/OS implants. Notably, the delivery of CG7 cells, when compared to CG14 cells, with OS cells stimulated morphologically superior cartilage repair. However, neither osteogenic nor chondrogenic pre-differentiation affected detectable changes in subchondral tissue repair. CONCLUSIONS Cartilage regeneration in osteochondral defects can be enhanced by MSCs that are chondrogenically and osteogenically pre-differentiated prior to implantation. Longer chondrogenic pre-differentiation periods, however, lead to diminished cartilage repair.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX
| | - Esther J. Lee
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | | | | | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark E. Wong
- Department of Surgery, Division of Oral and Maxillofacial Surgery, The University of Texas School of Dentistry, Houston, TX
| | - John A. Jansen
- Department of Biomaterials, Radboud umc, Nijmegen, The Netherlands
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX,Corresponding Authors: Antonios G. Mikos, Ph.D., Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, w: 713-348-5355, , F. Kurtis Kasper, Ph.D., Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, w: 713-348-3027,
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX,Corresponding Authors: Antonios G. Mikos, Ph.D., Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, w: 713-348-5355, , F. Kurtis Kasper, Ph.D., Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, w: 713-348-3027,
| |
Collapse
|
36
|
Amler E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine (Lond) 2014; 9:1083-94. [DOI: 10.2217/nnm.14.57] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction.
Collapse
Affiliation(s)
- Evžen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Nanoprogres, z.s.p.o., Nová 306, 53009, Pardubice, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Institute of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Třinecká 1024, 273 43 Buštěhrad, Czech Republic
| | - Eva Prosecká
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michala Rampichová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Třinecká 1024, 273 43 Buštěhrad, Czech Republic
| | - Alois Nečas
- University of Veterinary & Pharmaceutical Sciences Brno, CEITEC – Central European Institute of Technology, Brno, Czech Republic
| | - Patcharakamon Nooeaid
- Institute of Biomaterials, Department of Materials Science & Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science & Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| |
Collapse
|
37
|
Garg T, Goyal AK. Biomaterial-based scaffolds – current status and future directions. Expert Opin Drug Deliv 2014; 11:767-89. [DOI: 10.1517/17425247.2014.891014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther 2014; 16:432. [PMID: 25606595 PMCID: PMC4289291 DOI: 10.1186/s13075-014-0432-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Articular cartilage has a limited capacity to repair following injury. Early intervention is required to prevent progression of focal traumatic chondral and osteochondral defects to advanced cartilage degeneration and osteoarthritis. Novel cell-based tissue engineering techniques have been proposed with the goal of resurfacing defects with bioengineered tissue that recapitulates the properties of hyaline cartilage and integrates into native tissue. Transplantation of mesenchymal stem cells (MSCs) is a promising strategy given the high proliferative capacity of MSCs and their potential to differentiate into cartilage-producing cells - chondrocytes. MSCs are historically harvested through bone marrow aspiration, which does not require invasive surgical intervention or cartilage extraction from other sites as required by other cell-based strategies. Biomaterial matrices are commonly used in conjunction with MSCs to aid cell delivery and support chondrogenic differentiation, functional extracellular matrix formation and three-dimensional tissue development. A number of specific transplantation protocols have successfully resurfaced articular cartilage in animals and humans to date. In the clinical literature, MSC-seeded scaffolds have filled a majority of defects with integrated hyaline-like cartilage repair tissue based on arthroscopic, histologic and imaging assessment. Positive functional outcomes have been reported at 12 to 48 months post-implantation, but future work is required to assess long-term outcomes with respect to other treatment modalities. Despite relatively positive outcomes, further investigation is required to establish a consensus on techniques for treatment of chondral and osteochondral defects with respect to cell source, isolation and expansion, implantation density, in vitro precultivation, and scaffold composition. This will allow for further optimization of MSC proliferation, chondrogenic differentiation, bioengineered cartilage integration, and clinical outcome.
Collapse
Affiliation(s)
- Troy D Bornes
- />Department of Surgery, University of Alberta, Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Edmonton, Alberta T6G 2E1 Canada
- />Division of Orthopaedic Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2B7 Canada
| | - Adetola B Adesida
- />Department of Surgery, University of Alberta, Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Edmonton, Alberta T6G 2E1 Canada
- />Division of Orthopaedic Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2B7 Canada
| | - Nadr M Jomha
- />Department of Surgery, University of Alberta, Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Edmonton, Alberta T6G 2E1 Canada
- />Division of Orthopaedic Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2B7 Canada
| |
Collapse
|