1
|
Signal intensity alteration and maximal area of pericruciate fat pad are associated with incident radiographic osteoarthritis: data from the Osteoarthritis Initiative. Eur Radiol 2021; 32:489-496. [PMID: 34327582 DOI: 10.1007/s00330-021-08193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine whether pericruciate fat pad (PCFP) signal intensity alteration and maximal area are associated with incident radiographic osteoarthritis (ROA) over 4 years in the Osteoarthritis Initiative (OAI) study. METHODS Participants were from the Osteoarthritis Initiative (OAI) study. Case knees (n = 355) were defined by incident ROA between 12 and 48 months visits and were matched by sex, age, and radiographic status with control knees (n = 355). Magnetic resonance images (MRIs) were used to assess PCFP signal intensity alteration and PCFP maximal area at P0 (time of onset of ROA), P-1 (1 year prior to P0), and baseline. Conditional logistic regression analyses were applied to assess associations between PCFP measures and the risk of incident ROA. RESULTS The mean age of participants was 60.1 years and 66.9% were women. In multivariable analyses, PCFP signal intensity alteration measured at three time points (OR [95%CI]: 1.28 [1.10-1.50], 1.52 [1.30-1.78], 1.50 [1.27-1.76], respectively) and PCFP maximal area (OR [95%CI]: 1.21 [1.03-1.42], 1.27 [1.07-1.52], 1.37 [1.15-1.62], respectively) were significantly associated with incident ROA. CONCLUSIONS PCFP signal intensity alteration and maximal area were associated with incident ROA over 4 years, implying that they may have roles to play in ROA. KEY POINTS • Pericruciate fat pad signal intensity alteration and maximal area were associated with incident ROA, implying that they may have roles to play in ROA.
Collapse
|
2
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Blaker CL, Clarke EC, Little CB. Adding insult to injury: synergistic effect of combining risk-factors in models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2019; 27:1731-1734. [PMID: 31276817 DOI: 10.1016/j.joca.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
Affiliation(s)
- C L Blaker
- Murray Maxwell Biomechanics Laboratory, St Leonards, NSW, Australia
| | - E C Clarke
- Murray Maxwell Biomechanics Laboratory, St Leonards, NSW, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|
4
|
Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4-6 fold after knee injury - a systematic review and meta-analysis. Br J Sports Med 2019; 53:1454-1463. [PMID: 31072840 DOI: 10.1136/bjsports-2018-100022] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To estimate knee osteoarthritis (OA) risk following anterior cruciate ligament (ACL), meniscus or combined ACL and meniscus injury. DESIGN Systematic review and meta-analysis. DATA SOURCES MEDLINE, Embase, SPORTDiscus, CINAHL and Web of Science until November 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Prospective or retrospective studies with at least 2-year follow-up including adults with ACL injury, meniscal injury or combined injuries. Knee OA was defined by radiographs or clinical diagnosis and compared with the contralateral knee or non-injured controls. STUDY APPRAISAL AND SYNTHESIS Risk of bias was assessed using the SIGN50 checklist. ORs for developing knee OA were estimated using random effects meta-analysis. RESULTS 53 studies totalling ∼1 million participants were included: 185 219 participants with ACL injury, mean age 28 years, 35% females, 98% surgically reconstructed; 83 267 participants with meniscal injury, mean age 38 years, 36% females, 22% confirmed meniscectomy and 73% unknown; 725 362 participants with combined injury, mean age 31 years, 26% females, 80% treated surgically. The OR of developing knee OA were 4.2 (95% CI 2.2 to 8.0; I2=92%), 6.3 (95% CI 3.8 to 10.5; I2=95%) and 6.4 (95% CI 4.9 to 8.3; I2=62%) for patients with ACL injury, meniscal injury and combined injuries, respectively. CONCLUSION The odds of developing knee OA following ACL injury are approximately four times higher compared with a non-injured knee. A meniscal injury and a combined injury affecting both the ACL and meniscus are associated with six times higher odds compared with a non-injured knee. Large inconsistency (eg, study design, follow-up period and comparator) and few high-quality studies suggest that future studies may change these estimates. CLINICAL RELEVANCE Patients sustaining a major knee injury have a substantially increased risk of developing knee OA, highlighting the importance of knee injury prevention programmes and secondary prevention strategies to prevent or delay knee OA development.PROSPERO registration number CRD42015016900.
Collapse
Affiliation(s)
- Erik Poulsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Glaucia H Goncalves
- Department of Physical Therapy, Universidade Federal de Sao Carlos, Sao Carlos, Brazil
| | - Alessio Bricca
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ewa M Roos
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jonas B Thorlund
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carsten B Juhl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Department of Occupational and Physical Therapy, Gentofte and Herlev Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|