1
|
Briolay A, Duboeuf F, Delplace S, Brizuela L, Peyruchaud O, Magne D, Bougault C. Voluntary exercise in mice triggers an anti-osteogenic and pro-tenogenic response in the ankle joint without affecting long bones. Bone Rep 2024; 23:101810. [PMID: 39493871 PMCID: PMC11530850 DOI: 10.1016/j.bonr.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions (n = 20 per group). Free access to activity wheels resulted in a running exercise of 5.5 ± 0.8 km/day at 14.5 ± 0.5 m/min. Serum levels of alkaline phosphatase, IL-6, IL-8/Kc, IL-17a, and TNF-α were measured. No change in systemic inflammation was detected. The bone architecture of the femur and the calcaneus was unchanged, as revealed by μCT and histology of the enthesis of the Achilles tendon. mRNAs were extracted from femurs, tibias, and ankle joints before RT-qPCR analysis. The expression of the mechanosensitive genes Sclerostin (Sost) and Periostin (Postn) was not impacted by the exercise in long bones. Oppositely, Sost and Postn levels were modulated by exercise in joints, and osteogenic markers (Col10a1, Runx2, Osx, and Dmp1) were downregulated in the exercise group. In addition, the tenogenic markers Scx, Mkx, and Tnmd were upregulated by exercise. Thus, voluntary exercise affected the phenotype of joint cells without impacting long bones. As gene expression of Bmp2, Bmp4, and Id1 was also reduced in these cells, an off-regulation of BMP signaling could be partly responsible for their mechanosensitive response. Running exercise seemed to preserve the tendon from its progressive ossification, as seen in numerous enthesopathies. This study paves the way to future experiments for investigating the effects of mechanical stimulation in various mouse models.
Collapse
Affiliation(s)
- Anne Briolay
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - François Duboeuf
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - Séverine Delplace
- Universite Littoral-Côte d'Opale, ULR 4490, MABLab, F-62327 Boulogne/Mer, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Olivier Peyruchaud
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - David Magne
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Du Y, Wang S, Yang F, Xu H, Cheng Y, Yu J. Effects of chronic ankle instability after grade I ankle sprain on the post-traumatic osteoarthritis. Arthritis Res Ther 2024; 26:168. [PMID: 39342326 PMCID: PMC11438116 DOI: 10.1186/s13075-024-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Untreated acute ankle sprains often result in chronic ankle instability (CAI) and can ultimately lead to the development of post-traumatic osteoarthritis (PTOA). At present, a typical animal model of ankle instability in mice is established by transecting the ligaments around the ankle joint. This study aimed to establish a grade I acute ankle sprain animal model by rapid stretching of peri-ankle joint ligaments. Furthermore, we tried to explore the pathophysiological mechanism of ankle osteoarthritis. METHODS In all, 18 male C57BL/6 J mice (7 weeks) were randomly divided into three groups: calcaneofibular ligament (CFL) laxity group, deltoid ligament (DL) laxity group, and SHAM group. One week after the surgical procedure, all mice were trained to run in the mouse rotation fatigue machine daily. The mice were tested on the balance beam before surgery and three days, 4 weeks, 8 weeks, and 12 weeks after surgery. Footprint analyses were performed on each mouse before surgery and 12 weeks after surgery. Micro-CT scanning was then performed to evaluate the degeneration of ankle joints and histological staining was performed to analyze and evaluate PTOA caused by ankle joint instability. RESULTS After surgery, the mice in the CFL and DL laxity groups took longer to cross the balance beam and slipped more often than those in the SHAM group (p < 0.05). The step length and width in the CFL and DL laxity groups were significantly shorter and smaller than those in the SHAM group 12 weeks after surgery (p < 0.05). There was a significant increase in the bone volume fraction (BV/TV) in the CFL and DL laxity groups compared with the SHAM group (p < 0.05). Histological staining results suggested obvious signs of PTOA in the CFL and DL laxity groups. CONCLUSIONS Based on CFL and DL laxity in a mouse ankle instability model, this study suggests that grade I ankle sprain can contribute to chronic ankle instability, impair motor coordination and balance, and eventually lead to PTOA of ankle with significant degeneration of its adjacent joints.
Collapse
Affiliation(s)
- Yan Du
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China
- School of Physical Education and Sports, Soochow University, 50 Donghuan Road, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Shuo Wang
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 314408, People's Republic of China
| | - Fanlei Yang
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China
| | - Hao Xu
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China
| | - Yu Cheng
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China.
| | - Jia Yu
- Department of Orthopedic Surgery, School of Biology and Basic Medical Sciences, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215007, People's Republic of China.
- School of Physical Education and Sports, Soochow University, 50 Donghuan Road, Suzhou, Jiangsu, 215006, People's Republic of China.
| |
Collapse
|
3
|
Fan Z, Zhao X, Ma J, Zhan H, Ma X. Suppression of YAP Ameliorates Cartilage Degeneration in Ankle Osteoarthritis via Modulation of the Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2024; 115:283-297. [PMID: 38953964 DOI: 10.1007/s00223-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Ankle osteoarthritis is a relatively understudied condition and the molecular mechanisms involved in its development are not well understood. This investigation aimed to explore the role and underlying molecular mechanisms of Yes-associated protein (YAP) in rat ankle osteoarthritis. The results demonstrated that YAP expression levels were abnormally increased in the ankle osteoarthritis cartilage model. In addition, knockdown of YAP expression was shown to hinder the imbalance in ECM metabolism induced by IL-1β in chondrocytes, as demonstrated by the regulation of matrix metalloproteinase (MMP)-3, MMP-9, and MMP-13, a disintegrin, metalloprotease with thrombospondin motifs, aggrecan, and collagen II expression. Additional studies revealed that downregulation of YAP expression markedly inhibited the overexpression of β-catenin stimulated by IL-1β. Furthermore, inhibition of the Wnt/β-catenin signaling pathway reversed the ECM metabolism imbalance caused by YAP overexpression in chondrocytes. It is important to note that the YAP-specific inhibitor verteporfin (VP) significantly delayed the progression of ankle osteoarthritis. In conclusion, the findings highlighted the crucial role of YAP as a regulator in modulating the progression of ankle osteoarthritis via the Wnt/β-catenin signaling pathway. These findings suggest that pharmacological inhibition of YAP can be an effective and critical therapeutic target for alleviating ankle osteoarthritis.
Collapse
Affiliation(s)
- Zhengrui Fan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xingwen Zhao
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Jianxiong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| | - Hongqi Zhan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xinlong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| |
Collapse
|
4
|
Saliba I, Bachy-Razzouk M, Bensidhoum M, Hoc T, Potier E, Vialle R, Hardy A. Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life (Basel) 2024; 14:829. [PMID: 39063583 PMCID: PMC11278175 DOI: 10.3390/life14070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to evaluate potential osteoarthritic alterations within the ankle using a surgically-induced chronic lateral ankle instability (CLAI) model. Twelve rats were assigned randomly to either the control (n = 4) or CLAI group (n = 8). Surgery was performed on the right ankle. Osteoarthritis was assessed through in-vivo micro-CT at 8 weeks and a clinical analysis. Macroscopic analysis, high-resolution ex-vivo micro-CT and histological examination were conducted after euthanasia at 12 weeks. Three subgroups (SG) were analyzed. SG1 comprised the operated ankles of the CLAI group (n = 8). SG2 consisted of the non-operated ankles of the CLAI group (n = 8). SG3 included both sides of the control group (n = 8). In-vivo micro-CT revealed no significant differences among the three subgroups when analyzed together (p = 0.42), and when comparing SG1 with SG2 (p = 0.23) and SG3 (p = 0.43) individually. No noticeable clinical differences were observed. After euthanasia, macroscopic analysis employing OARSI score, did not demonstrate significant differences, except between the medial tibia of SG1 and SG3 (p = 0.03), and in the total score comparison between these two subgroups (p = 0.015). Ex-vivo micro-CT did not reveal any differences between the three subgroups regarding bony irregularities and BV/TV measurements (SG1 vs. SG2 vs. SG3: p = 0.72; SG1 vs. SG2: p = 0.80; SG1 vs. SG3: p = 0.72). Finally, there was no difference between the three subgroups regarding OARSI histologic score (p = 0.27). These findings indicate that the current model failed to induce significant osteoarthritis. However, they lay the groundwork for improving the model's effectiveness and expanding its use in CLAI research, aiming to enhance understanding of this pathology and reduce unnecessary animal sacrifice.
Collapse
Affiliation(s)
- Ibrahim Saliba
- Orthopedics Department, Cochin Hospital, 75014 Paris, France
| | - Manon Bachy-Razzouk
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | - Morad Bensidhoum
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Thierry Hoc
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
- Mechanical Department, Ecole Centrale—Lyon, 69134 Ecully, France
| | - Esther Potier
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Raphaël Vialle
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | | |
Collapse
|
5
|
Wang S, Liu P, Chen K, Zhang H, Yu J. Mouse model of subtalar post-traumatic osteoarthritis caused by subtalar joint instability. J Orthop Surg Res 2022; 17:537. [PMID: 36510269 PMCID: PMC9743676 DOI: 10.1186/s13018-022-03435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Common ankle sprains are often accompanied by injury to the subtalar joint, which eventually leads to subtalar joint instability. Because the clinical manifestations for subtalar joint instability are similar to ankle joint injuries, these are often overlooked. This study aimed to establish an animal model of subtalar joint instability to study post-traumatic osteoarthritis of the subtalar joint caused by long-term subtalar joint instability and to provide a reference for future clinical research on chronic subtalar joint instability. METHODS In all, 24 C57BL/6 male mice were randomly divided into three groups: Sham, cervical ligament (CL) transection and CL + calcaneofibular ligament (CFL) transection groups. One week after surgical operation, all mice were trained to run in the mouse rotation fatigue machine every day. During this period, a balance beam test was used to evaluate the motor level and coordination ability of the mice before the operation and three days, one week, four weeks, eight weeks, and twelve weeks after operation. Further, post-traumatic osteoarthritis of the subtalar joint was quantified via micro-CT and histological staining. RESULTS The mice in the partial ligament transection group took significantly longer than those in the Sham group to pass through the balance beam and showed an increased number of hindfoot slips. Micro-CT analysis showed that the subtalar bone volume fraction in the CL + CFL transection group and CL transection group was 5.8% and 2.8% higher than that in the Sham group, respectively. Histological staining showed obvious signs of post-traumatic osteoarthritis (PTOA) in the subtalar joint of the ligament transection group. CONCLUSIONS The transection of CL and CL + CFL can cause instability of the subtalar joint in mice, resulting in a decrease in motor coordination, and long-term instability of the subtalar joint in mice can cause PTOA of the subtalar joint, which is manifested as destruction and loss of articular cartilage.
Collapse
Affiliation(s)
- Shuo Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006 Jiangsu People’s Republic of China ,grid.263761.70000 0001 0198 0694Orthopaedic Institute, Medical College, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Peixin Liu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006 Jiangsu People’s Republic of China ,grid.263761.70000 0001 0198 0694Orthopaedic Institute, Medical College, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006 Jiangsu People’s Republic of China , Department of Orthopedics, Suzhou Xiangcheng People’s Hospital, 1060 Huayuan Road, Suzhou, 215131 Jiangsu People’s Republic of China
| | - Kaiwen Chen
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006 Jiangsu People’s Republic of China ,grid.263761.70000 0001 0198 0694Orthopaedic Institute, Medical College, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Hongtao Zhang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006 Jiangsu People’s Republic of China ,grid.263761.70000 0001 0198 0694Orthopaedic Institute, Medical College, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Jia Yu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006 Jiangsu People’s Republic of China ,grid.263761.70000 0001 0198 0694Orthopaedic Institute, Medical College, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006 Jiangsu People’s Republic of China
| |
Collapse
|
6
|
Xue X, Zhang Y, Tao W, Wei L, Li Q, Ma T, Xu X, Wang Y, Gu X, Xu Z, Wang H, Hua Y. Longitudinal neuroplasticity after ankle sprain in mice: A voxel-based morphometry study on 11.7T MRI. J Orthop Res 2022; 41:1291-1298. [PMID: 36203347 DOI: 10.1002/jor.25458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Lateral ankle sprains (LAS) might lead to joint sensory deafferentation, which induces maladaptive neuroplasticity, especially the morphological atrophy of the cerebellar vermis. However, longitudinal evidence on the causality of injury and neural differences is still lacking. To this end, this study aimed to determine whether the morphology of the central nervous system would be altered before and after ligament transection in LAS mouse models. A total of 40 C57BL/6 mice were randomly divided among the LAS, Sham and Blank groups. We repeatedly performed the balance beam test and neural voxel-based morphometry (VBM) measurements using an 11.7 T magnetic resonance imaging before and 2 months after the surgery. The results showed that for balance outcomes, the LAS group had a significantly longer time and more slips of the balance beam tests compared with the Sham and Blank groups at 2 months after surgery, with no significant difference among the three groups before surgery. Regarding the VBM analysis, the LAS group showed significantly lower VBM values in the central lobule III of the cerebellar vermis and medial amygdalar nucleus (MEA) compared with the Sham and Blank groups after surgery, with no significant difference among the three groups before surgery. In conclusion, lateral ligament injuries might lead to morphological atrophy of the cerebellar vermis in animal models, which might pave the way for the pathological process of ankle instability after LAS.
Collapse
Affiliation(s)
- Xiao'ao Xue
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Weichu Tao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qianru Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tengjia Ma
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyun Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yiran Wang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xicheng Gu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhangran Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Li J, Chen Z, Cheng Y, Gao C, Li J, Gu X, He F, Luo Z, Yang H, Zhang H, Yu J. Ligamentous injury-induced ankle instability causing posttraumatic osteoarthritis in a mouse model. BMC Musculoskelet Disord 2022; 23:223. [PMID: 35260140 PMCID: PMC8905815 DOI: 10.1186/s12891-022-05164-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to explore the relationship between surgically-induced ankle instability and posttraumatic osteoarthritis (PTOA) in a mouse model, and to provide reference for clinical practice. RESULTS Ligamentectomy was performed on 24 eight-week-old male C57BL/6 J mice, which were divided into three groups. Both the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL) were severed in the CFL + ATFL group, while only the CFL was removed in the CFL group. The SHAM group was set as the blank control group. A wheel-running device was used to accelerate the development of ankle osteoarthritis (OA). Balance measurement, footprint analysis, and histological analysis were used to assess the degree of ankle instability and OA. According to the balance test results, the CFL + ATFL group demonstrated the highest number of slips and the longest crossing beam time at 8 weeks postoperatively. The results of gait analysis exhibited that the CFL + ATFL group had the most significant asymmetry in stride length, stance length, and foot base width compared to the CFL and SHAM groups. The OARSI score of the CFL + ATFL group (16.7 ± 2.18) was also much higher than those of the CFL group (5.1 ± 0.96) and the SHAM group (1.6 ± 1.14). CONCLUSION Based on the mouse model, the findings indicate that severe ankle instability has nearly three times the chance to develop into ankle OA compared to moderate ankle instability.
Collapse
Affiliation(s)
- Junkun Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Orthopedics, Fengcheng Hospital of Fengxian District, Shanghai, P. R. China
| | - Zhi Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Orthopedics, Changshu Hospital affiliated to Soochow University, Changshu No.1 People's Hospital, No.1 Shuyuan St, Changshu, 215500, Jiangsu Province, P. R. China
| | - Yu Cheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Chao Gao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Jiaxin Li
- Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Data Science, Faculty of Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Xiaohui Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Hongtao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China. .,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China. .,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.
| |
Collapse
|
8
|
Zhang Y, Wang X, Chen J, Qian D, Gao P, Qin T, Jiang T, Yi J, Xu T, Huang Y, Wang Q, Zhou Z, Bao T, Zhao X, Liu H, Zheng Z, Fan J, Zhao S, Li Q, Yin G. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology 2022; 20:56. [PMID: 35093078 PMCID: PMC8801111 DOI: 10.1186/s12951-022-01245-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractSubtalar osteoarthritis (STOA) is often secondary to chronic ankle sprains, which seriously affects the quality of life of patients. Due to its etiology and pathogenesis was not studied equivocally yet, there is currently a lack of effective conservative treatments. Although they have been used for tissue repair, platelet-rich plasma-derived exosomes (PRP-Exo) have the disadvantage of low retention and short-lived therapeutic effects. This study aimed to determine whether incorporation of PRP-Exo in thermosensitive hydrogel (Gel) increased their retention in the joint and thereby playing a therapeutic role on STOA due to chronic mechanical instability established by transecting lateral ligaments (anterior talofibular ligament (ATFL)/calcaneal fibular ligament (CFL)). PRP-Exo incorporated Gel (Exo-Gel) system, composed of Poloxamer-407 and 188 mixture-based thermoresponsive hydrogel matrix in an optimal ratio, was determined by its release ability of Exo and rheology of Gel response to different temperature. The biological activity of Exo-Gel was evaluated in vitro, and the therapeutic effect of Exo-Gel on STOA was evaluated in vivo. Exo released from Exo-Gel continuously for 28 days could promote the proliferation and migration of mouse bone mesenchymal stem cells (mBMSCs) and chondrocytes, at the same time enhance the chondrogenic differentiation of mBMSCs, and inhibit inflammation-induced chondrocyte degeneration. In vivo experiments confirmed that Exo-Gel increased the local retention of Exo, inhibited the apoptosis and hypertrophy of chondrocytes, enhanced their proliferation, and potentially played the role in stem cell recruitment to delay the development of STOA. Thus, Delivery of PRP-Exo incorporated in thermosensitive Gel provides a novel approach of cell-free therapy and has therapeutic effect on STOA.
Graphical Abstract
Collapse
|
9
|
Liu P, Chen K, Wang S, Hua C, Zhang H, Yu J. A mouse model of ankle-subtalar joint complex instability induced post-traumatic osteoarthritis. J Orthop Surg Res 2021; 16:541. [PMID: 34470616 PMCID: PMC8408979 DOI: 10.1186/s13018-021-02683-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankle-subtalar joint complex instability is not uncommonly presented in the clinic, but symptoms and signs similar to other conditions can easily lead to its misdiagnosis. Due to the lack of appropriate animal models, research on ankle-subtalar joint complex instability is limited. The aims of the present study were to establish an animal model of ankle-subtalar joint complex instability in mice and to explore its relationship with post-traumatic osteoarthritis (PTOA). METHODS Twenty-one male C57BL/6J mice were randomly divided into three groups: SHAM group (sham surgery group), transected cervical ligament + anterior talofibular ligament (CL+ATFL) group, and transected cervical ligament + deltoid ligament (CL+DL) group. Two weeks after surgery, all mice underwent cage running training. Balance beam and gait tests were used to evaluate the changes in self-movement in the mice after ankle-subtalar ligament injury. Micro-CT and histological staining were used to evaluate the progress of PTOA. RESULTS Compared with the SHAM group, balance and gait were affected in the ligament transection group. Twelve weeks after surgery, the time required to cross the balance beam in the CL+ATFL group was 35.1% longer and the mice slipped 3.6-fold more often than before surgery, and the mean step length on the right side was 7.2% smaller than that in the SHAM group. The time required to cross the balance beam in the CL+DL group was 32.1% longer and the mice slipped 3-fold more often than prior to surgery, and the average step length on the right side was 5.6% smaller than that in the SHAM group. CT images indicated that 28.6% of the mice in the CL+DL group displayed dislocation of the talus. Tissue staining suggested that articular cartilage degeneration occurred in mice with ligament transection 12 weeks after surgery. CONCLUSIONS Transected mice in the CL+ATFL and CL+DL groups displayed mechanical instability of the ankle-subtalar joint complex, and some mice in the CL+DL group also suffered from talus dislocation due to ligament injury leading to loss of stability of the bone structure. In addition, as time progressed, the articular cartilage displayed degenerative changes, which affected the ability of animals to move normally.
Collapse
Affiliation(s)
- Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China.,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Kaiwen Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China.,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Shuo Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China.,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Chunzhuo Hua
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China.,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Hongtao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China. .,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, People's Republic of China. .,Orthopedic Institute, Soochow University, 178 Ganjiangdong Rd, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Chen Z, Liang T, Li J, Gao C, He F, Luo Z, Yang H, Zhang H, Yu J. Early detection of joint degeneration in the subtalar and talonavicular joints secondary to ankle instability in a mouse model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Liu K, Cai F, Liu Y, Abulaiti A, Ren P, Yusufu A. Risk factors of ankle osteoarthritis in the treatment of critical bone defects using ilizarov technique. BMC Musculoskelet Disord 2021; 22:339. [PMID: 33836698 PMCID: PMC8035717 DOI: 10.1186/s12891-021-04214-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Background Distraction osteogenesis using the Ilizarov external circular fixator has been applied in lower limb reconstructive surgery widely. The increasing ankle osteoarthritis (OA) progression and severity are often associated with the period of external fixator and the greater relative instability of the ankle joint, but few studies have quantified risk factors directly during this technique. Methods The study was conducted on 236 patients who underwent bone transport surgery for tibias using the Ilizarov external circular fixator from 2008 to 2018. The cumulative incidence of ankle OA diagnoses in patients after the Ilizarov technique treatment was calculated and stratified by risk factors from preoperative and postoperative management. After the data were significant through the Mann-Whitney U test analyzed, odds ratios were calculated using logistic regression to describe factors associated with the OA diagnosis including gender, age, BMI, location of bone defect, diabetes, hypertension, osteoporosis, the history of metal allergy and glucocorticoid intake, the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-HF scale scores, defect size (DS), the type of bone transport, the bone union time, external fixator time (EFT), and external fixator index (EFI). Results There were 199 males and 37 females with a mean age of 47 years (range 28–59 years). Out of 236 patients, 49 had an additional treatment for ankle OA after the Ilizarov technique treatment of bone defects (average follow-up time 2.1 years, range 1.6–4.2 years). The incidence of postoperative ankle OA was 20.8 %, with 19 patients classified as K&L grade 3 and seven patients as grade 4. The top five risk factors included double-level bone transport (OR3.79, P = 0.005), EFI > 50days/cm (OR3.17, P = 0.015), age > 45years (OR2.29, P = 0.032), osteoporosis (OR1.58, P < 0.001), BMI > 25 (OR1.34, P < 0.001). Male, BMI > 25, diabetes, osteoporosis, and AOFAS ankle-HF scale scores are the independent risk factors. Conclusions Ilizarov external circular fixator is a safe and effective method of treatment for critical bone defects. The double level bone transport, EFI > 50days/cm, age > 45years, osteoporosis, BMI > 25 are the top five relevant risk factors of ankle OA. The probability of developing ankle OA among patients having three or more risk factors is 50–70 %.
Collapse
Affiliation(s)
- Kai Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Feiyu Cai
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Yanshi Liu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Alimujiang Abulaiti
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China
| | - Peng Ren
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| | - Aihemaitijiang Yusufu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
12
|
He X, Gao K, Lu S, Wu R. LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis. BMC Musculoskelet Disord 2021; 22:67. [PMID: 33435956 PMCID: PMC7802157 DOI: 10.1186/s12891-020-03861-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) has been implicated in the progression of osteoarthritis (OA). This study was aimed to explore the role and molecular mechanism of lncRNA HOXA terminal transcriptional RNA (HOTTIP) in the development of OA. METHODS The expression of HOTTIP, miR-663a and Fyn-related kinase (FRK) in the OA articular cartilage and OA chondrocyte model induced by IL-1β was determined by qRT-PCR. CCK-8, colony formation and flow cytometry were used to determine the cell proliferation and apoptosis of OA chondrocytes. The specific molecular mechanism of HOTTIP in OA chondrocytes was determined by dual luciferase reporter assay, qRT-PCR, western blotting and RNA pull-down. RESULTS The expression of HOTTIP and FRK were up-regulated, while miR-663a was down-regulated in OA cartilage tissues. Knockdown of HOTTIP decreased the proliferation and induced the apoptosis of OA cartilage model cells, while overexpression of HOTTIP increased the proliferation and reduced the apoptosis of OA cartilage model cells. Moreover, HOTTIP could bind to miR-663a as competitive endogenous RNA. Inhibition of miR-663a expression could alleviate the effect of HOTTIP knockdown on the proliferation and apoptosis of OA cartilage model cells. Furthermore, FRK was found to be a direct target of miR-663a, which could markedly down-regulate the expression of FRK in OA chondrocytes, while HOTTIP could remarkably up-regulate the expression of FRK. In addition, miR-663a inhibition increased the proliferation and reduced the apoptosis of OA cells, while FRK knockdown reversed the effect of miR-663a inhibition on the proliferation and apoptosis of OA cells. Meanwhile, overexpression of miR-663a decreased the proliferation and induced the apoptosis of OA cells, while overexpression of FRK reversed the effect of miR-663a overexpression on the proliferation and apoptosis of OA cells. CONCLUSION HOTTIP was involved in the proliferation and apoptosis of OA chondrocytes via miR-663a/ FRK axis, and HOTTIP/miR-663a/FRK might be a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Xianwei He
- Department of Orthopaedics, Fudan University Jinshan Hospital, No.1508 Longhang Road, Jinshan District, Shanghai City, 201508, China
| | - Kun Gao
- Ze Tian Xing Zhi Di Cosmetology Clinic, Shanghai, 200000, China
| | - Shuaihua Lu
- Ze Tian Xing Zhi Di Cosmetology Clinic, Shanghai, 200000, China
| | - Rongbo Wu
- Department of Orthopaedics, Fudan University Jinshan Hospital, No.1508 Longhang Road, Jinshan District, Shanghai City, 201508, China.
| |
Collapse
|
13
|
Jimbo S, Terashima Y, Teramoto A, Takebayashi T, Ogon I, Watanabe K, Sato T, Ichise N, Tohse N, Yamashita T. Antinociceptive effects of hyaluronic acid on monoiodoacetate-induced ankle osteoarthritis in rats. J Pain Res 2019; 12:191-200. [PMID: 30655688 PMCID: PMC6322704 DOI: 10.2147/jpr.s186413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Ankle osteoarthritis (OA) causes significant pain and debilitation; yet, its underlying mechanisms remain unclear. Clinically, hyaluronic acid (HA) is widely used to treat OA. The present study aimed to investigate the roles of HA in pain-related behavior, joint function, swelling, and pathological changes in cartilage in a rat model of monoiodoacetate (MIA)-induced ankle OA. Materials and methods Male Sprague Dawley rats were assigned to three experimental groups as follows: 1) MIA rats injected with 1 mg MIA in the right tibiotarsal joint for two consecutive days; 2) sham rats injected with saline instead of MIA; and 3) MIA-HA rats injected with HA in the tibiotarsal joint at 7, 14, and 21 days after MIA injection. Joint swelling, range of motion (ROM), and pain-related behavior were evaluated 1 day before and on the 7th, 14th, 21st, and 28th day after MIA or saline injection. Pathological changes in the ankle joint were assessed 28 days after MIA or saline injection. Results No significant difference in the degree of ankle swelling or ROM reduction was observed between MIA rats and MIA-HA rats. However, compared with those in MIA rats, mechanical and thermal hypersensitivity was significantly reduced and stride length significantly improved in MIA-HA rats. Histologic analysis revealed that cartilage degeneration was significantly suppressed in MIA-HA rats compared with that in MIA rats, reflecting the chondroprotective effects of HA. Conclusion HA improved pain-related behavior and stride length and suppressed MIA-induced cartilage degeneration. HA may thus inhibit OA progression and suppress peripheral and/or central sensitization.
Collapse
Affiliation(s)
- Shunsuke Jimbo
- Department of Orthopaedic surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan,
| | - Yoshinori Terashima
- Department of Orthopaedic surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan, .,Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan,
| | | | - Izaya Ogon
- Department of Orthopaedic surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan,
| | - Kota Watanabe
- Department of Second Division of Physical Therapy, Sapporo Medical University School of Health Sciences, Sapporo 060-8556, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan,
| |
Collapse
|
14
|
Gerbaix M, White H, Courbon G, Shenkman B, Gauquelin-Koch G, Vico L. Eight Days of Earth Reambulation Worsen Bone Loss Induced by 1-Month Spaceflight in the Major Weight-Bearing Ankle Bones of Mature Mice. Front Physiol 2018; 9:746. [PMID: 29988558 PMCID: PMC6026650 DOI: 10.3389/fphys.2018.00746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023] Open
Abstract
Spaceflight induces bone alterations with site-specific rates of bone loss according to the weight-bearing function of the bone. For the first time, this study aimed to characterize bone microarchitecture and density alterations of three ankle bones (calcaneus, navicular, and talus) of mice after spaceflight and to evaluate the impact of 8 days of Earth reambulation. Ten C57BL/6N male 4-month-old mice flew on the Bion-M1 biosatellite for 1 month; half were euthanized within 24-h of return and half after 8-days recovery on Earth. Bone microarchitecture and quality was assessed by microtomography (μCT). Whole calcaneus bone volume fraction decreased in Flight group (-6.4%, p < 0.05), and worsened in the Recovery group (-11.08%, p < 0.01), when compared to Control group. Navicular and talus trabecular bone volume fraction showed trends toward decrease in Flight and differences reached statistical significance in Recovery group (-8.16%; -8.87%, respectively; p < 0.05) when compared to Control group. At calcaneus, cortical thickness decreased in Recovery vs. Control groups (-11.69%; p < 0.01). Bone surface area, reflecting periosteal bone erosion, significantly increased in all bone sites analyzed. Qualitative analyses of 3-D bone reconstruction revealed local sites of cortical thinning and bone erosion, predominantly at articulations, muscle insertions, and ground contact bone sites. Overall, spaceflight-induced bone loss in ankle bones was site and compartment specific whilst the tissue mineral density of the remaining bone was preserved. Eight days after landing, bone status worsened as compared to immediate return.
Collapse
Affiliation(s)
- Maude Gerbaix
- French National Center for Space Studies, Paris, France.,INSERM, UMR 1059, University of Lyon, Jean Monnet University, Saint-Étienne, France
| | - Heather White
- INSERM, UMR 1059, University of Lyon, Jean Monnet University, Saint-Étienne, France
| | - Guillaume Courbon
- INSERM, UMR 1059, University of Lyon, Jean Monnet University, Saint-Étienne, France
| | - Boris Shenkman
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Laurence Vico
- INSERM, UMR 1059, University of Lyon, Jean Monnet University, Saint-Étienne, France
| |
Collapse
|
15
|
El-Jawhari JJ, Brockett CL, Ktistakis I, Jones E, Giannoudis PV. The regenerative therapies of the ankle degeneration: a focus on multipotential mesenchymal stromal cells. Regen Med 2018; 13:175-188. [PMID: 29553890 DOI: 10.2217/rme-2017-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ankle degeneration ranging from focal osteochondral lesions to osteoarthritis can cause a total joint function loss. With rising life expectancy and activity of the patients, various regenerative therapies were introduced aiming to preserve the joint function via the induction of cartilage and bone repair. Here, biological events and mechanical changes of the ankle degeneration were discussed. The regenerative therapies were reviewed versus the standard surgical treatment. We especially focused on the use of mesenchymal (multipotential) stromal cells (MSCs) highlighting their dual functions of regeneration and cell modulation with an emphasis on the emerging MSC-based clinical studies. Being at an early step, more basic and clinical research is needed to optimize the applications of all ankle regenerative therapies including MSC-based methods.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Clinical pathology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claire L Brockett
- Institute of Medical & Biological Engineering, University of Leeds, Leeds, UK
| | - Ioannis Ktistakis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Academic Unit of Trauma and Orthopaedic Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Academic Unit of Trauma and Orthopaedic Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
16
|
Liang D, Sun J, Wei F, Zhang J, Li P, Xu Y, Shang X, Deng J, Zhao T, Wei L. Establishment of rat ankle post-traumatic osteoarthritis model induced by malleolus fracture. BMC Musculoskelet Disord 2017; 18:464. [PMID: 29149841 PMCID: PMC5693506 DOI: 10.1186/s12891-017-1821-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malleolar fracture, which is present in 37-53% of human ankle osteoarthritis (OA), is the most common type of fracture in the ankle joint. In spite of this, no rat animal model has been developed for this type of injury to date. Here, we established a rat ankle post-traumatic OA (PTOA) model induced by malleolar fracture; this model will be useful in ankle OA research. METHODS Two-month-old male Sprague Dawley (SD) rats were randomized into 2 groups (n = 19 per group): 1) malleolus articular fracture, dislocation, and immediate reduction on the right joints and 2) malleolus articular fracture on the right ankle. The contralateral ankle joints were used as controls. The fracture and healing processes were confirmed and monitored by radiography. Changes in inflammation were monitored in vivo by fluorescence molecular tomography (FMT). Cartilage damage and changes in expression of OA-related genes were analyzed by histology, immunohistochemistry, Real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) at 8 weeks post-surgery. RESULTS X-rays showed that all fractures were healed at 8 weeks post-surgery. A reproducible, mild to moderate degree of OA cartilage damage with reduced aggrecan was detected by histology in all animals in both groups but there was no significant difference between the two groups. Decreased Col-II and increased Col-X and MMP-13 levels were detected by qPCR, immunohistochemistry, ELISA and FMT from both groups cartilage. CONCLUSIONS Malleolus articular fracture alone induces ankle OA with lesions on the central weight bearing area of the tibiotalar joint in rats. This model will provide a reproducible and useful tool for researchers to study ankle OA.
Collapse
Affiliation(s)
- Dawei Liang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fangyuan Wei
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Beijing, China
| | - Jianzhong Zhang
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Beijing, China
| | - Pengcui Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yingke Xu
- School of Community Health Science, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada USA
| | - Xianwen Shang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ting Zhao
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI USA
| | - Lei Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI USA
| |
Collapse
|
17
|
Abstract
Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease.
Collapse
Affiliation(s)
- Blandine Poulet
- Institute of Ageing and Chronic Disease, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, Apex Building, West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
18
|
Hubbard-Turner T, Wikstrom EA, Guderian S, Turner MJ. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space. J Athl Train 2017; 52:587-591. [PMID: 28437129 DOI: 10.4085/1062-6050-52.3.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known. OBJECTIVE To measure knee-joint space after a single surgically induced ankle sprain in mice. DESIGN Randomized controlled trial. SETTING University research laboratory. PATIENTS OR OTHER PARTICIPANTS Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice. MAIN OUTCOME MEASURE(S) Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs. RESULTS Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups. CONCLUSIONS Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function.
Collapse
Affiliation(s)
| | - Erik A Wikstrom
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | | | - Michael J Turner
- Department of Kinesiology, University of North Carolina at Charlotte
| |
Collapse
|
19
|
Delco ML, Kennedy JG, Bonassar LJ, Fortier LA. Post-traumatic osteoarthritis of the ankle: A distinct clinical entity requiring new research approaches. J Orthop Res 2017; 35:440-453. [PMID: 27764893 PMCID: PMC5467729 DOI: 10.1002/jor.23462] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
The diagnosis of ankle osteoarthritis (OA) is increasing as a result of advancements in non-invasive imaging modalities such as magnetic resonance imaging, improved arthroscopic surgical technology and heightened awareness among clinicians. Unlike OA of the knee, primary or age-related ankle OA is rare, with the majority of ankle OA classified as post-traumatic (PTOA). Ankle trauma, more specifically ankle sprain, is the single most common athletic injury, and no effective therapies are available to prevent or slow progression of PTOA. Despite the high incidence of ankle trauma and OA, ankle-related OA research is sparse, with the majority of clinical and basic studies pertaining to the knee joint. Fundamental differences exist between joints including their structure and molecular composition, response to trauma, susceptibility to OA, clinical manifestations of disease, and response to treatment. Considerable evidence suggests that research findings from knee should not be extrapolated to the ankle, however few ankle-specific preclinical models of PTOA are currently available. The objective of this article is to review the current state of ankle OA investigation, highlighting important differences between the ankle and knee that may limit the extent to which research findings from knee models are applicable to the ankle joint. Considerations for the development of new ankle-specific, clinically relevant animal models are discussed. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:440-453, 2017.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| | - John G. Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| |
Collapse
|
20
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|