1
|
Malaguez GG, Artuzi FE, Quevedo AS, Puricelli E, Ponzoni D. Can treatment with chondroitin and glucosamine sulphate prevent changes in the articular disc caused by temporomandibular joint osteoarthritis? J Oral Rehabil 2024; 51:2289-2296. [PMID: 39092654 DOI: 10.1111/joor.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chondroitin and glucosamine sulphates (CGS) are considered structure-modifying drugs and have been studied in the prevention, delay or reversal of structural morphological changes in joints caused by osteoarthritis. OBJECTIVE The aim of the present study was to investigate the action of CGS on the progression of chemically induced osteoarthritis in the temporomandibular joint (TMJ) of rabbits by evaluating the serum levels of tumour necrosis factor (TNF-α) and collagen in the articular discs. MATERIALS AND METHODS A sample of 36 male rabbits was divided into three groups: control (CG), osteoarthritis (OG) and treatment (TG). The disease was induced by intra-articular injection of sodium monoiodoacetate (10 mg/mL) in the OG and TG groups bilaterally. After 10 days, the TG animals received subcutaneous injection of chondroitin sulphates and glucosamine (7.5 mg/kg) and the OG and CG received saline solution (50 μL). Euthanasia times were subdivided into 40 and 100 days. Collagen quantification was performed by biochemical and histological analysis and for the quantification of serum levels of TNF-α, an enzyme immunoassay was used. RESULTS The TG showed an increase in the collagen area of the articular disc when compared to the CG and the OG. The increase collagen concentration in the discs did not show a statistically significant difference between the groups. Post-treatment TNF-α levels were significantly lower in TG compared to OG. CONCLUSIONS The results indicate that CGS treatment delayed the degeneration of the collagen in the TMJ articular disc and reduced serum TNF-α levels, indicating a preventive effect on OA progression.
Collapse
Affiliation(s)
- Giulia Giacomini Malaguez
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Ernesto Artuzi
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Silva Quevedo
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Edela Puricelli
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Oral and Maxillofacial Surgery, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deise Ponzoni
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Oral and Maxillofacial Surgery, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
She Y, Sun Y, Jiang N. The mechanics of tissue-engineered temporomandibular joint discs: Current status and prospects for enhancement. J Biomater Appl 2024; 39:269-287. [PMID: 39023922 DOI: 10.1177/08853282241265059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The temporomandibular joint (TMJ) disc is an essential protective but vulnerable fibrocartilage. Their high mechanical strength is vital in absorbing loads, reducing friction, and protecting the condylar surface. Many diseases can lead to the destruction or degeneration of the mechanical function of the TMJ disc. Unfortunately, conservative treatment is ineffective in restoring the defective mechanical properties of the discs. Tissue engineering has been investigated as a promising alternative treatment approach to approximate the properties of native tissue. However, it is difficult for tissue-engineered discs to obtain sufficient mechanical properties. Several approaches have been proposed to improve the mechanical properties of tissue-engineered constructs. In this review, we summarized the mechanical properties of native TMJ discs and discussed the current mechanical testing methods. We then summarized the current advances in improving the mechanical properties of TMJ disc tissue-engineered constructs. Moreover, existing challenges and outbreak directions are discussed. This review assists future research in better understanding the mechanical properties of both native and tissue-engineered TMJ discs. It provides new insights into future mechanical property enhancement for TMJ disc tissue engineering.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases, and National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, and National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, and National Clinical Research Center for Oral Disease, and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang N, Tan P, Sun Y, Zhou J, Ren R, Li Z, Zhu S. Microstructural, Micromechanical Atlas of the Temporomandibular Joint Disc. J Dent Res 2024; 103:555-564. [PMID: 38594786 DOI: 10.1177/00220345241227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc. First, the naive microstructure and mechanical properties were investigated in porcine TMJ discs (resting and functional conditions). Subsequently, the perforation and tear models (pathological conditions) were compared. Following this, a rabbit model of anterior disc displacement (abnormal stress) was studied. Results show diverse microstructures and mechanical properties at the nanometer to micrometer scale. In the functional state, gradual unfolding of the crimping cycle in secondary and tertiary structures leads to D-cycle prolongation in the primary structure, causing tissue failure. Pathological conditions lead to stress concentration near the injury site due to collagen interfibrillar traffic patterns, resulting in earlier damage manifestation. Additionally, the abnormal stress model shows collagen damage initiating at the primary structure and extending to the superstructure over time. These findings highlight collagen's various roles in different pathophysiological states. Our study offers valuable insights into TMJ disc function and dysfunction, aiding the development of diagnostic and therapeutic strategies for TMJ disorders, as well as providing guidance for the design of structural biomimetic materials.
Collapse
Affiliation(s)
- N Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - P Tan
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Sun
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Zhou
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Ren
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Li
- Ao Research Institute Davos, Davos, Graubünden, Switzerland
| | - S Zhu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sagl B, Schmid-Schwap M, Piehslinger E, Yao H, Rausch-Fan X, Stavness I. The effect of bolus properties on muscle activation patterns and TMJ loading during unilateral chewing. J Mech Behav Biomed Mater 2024; 151:106401. [PMID: 38237207 DOI: 10.1016/j.jmbbm.2024.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Mastication is a vital human function and uses an intricate coordination of muscle activation to break down food. Collection of detailed muscle activation patterns is complex and commonly only masseter and anterior temporalis muscle activation are recorded. Chewing is the orofacial task with the highest muscle forces, potentially leading to high temporomandibular joint (TMJ) loading. Increased TMJ loading is often associated with the onset and progression of temporomandibular disorders (TMD). Hence, studying TMJ mechanical stress during mastication is a central task. Current TMD self-management guidelines suggest eating small and soft pieces of food, but patient safety concerns inhibit in vivo investigations of TMJ biomechanics and currently no in silico model of muscle recruitment and TMJ biomechanics during chewing exists. For this purpose, we have developed a state-of-the-art in silico model, combining rigid body bones, finite element TMJ discs and line actuator muscles. To solve the problems regarding muscle activation measurement, we used a forward dynamics tracking approach, optimizing muscle activations driven by mandibular motion. We include a total of 256 different combinations of food bolus size, stiffness and position in our study and report kinematics, muscle activation patterns and TMJ disc von Mises stress. Computed mandibular kinematics agree well with previous measurements. The computed muscle activation pattern stayed stable over all simulations, with changes to the magnitude relative to stiffness and size of the bolus. Our biomedical simulation results agree with the clinical guidelines regarding bolus modifications as smaller and softer food boluses lead to less TMJ loading. The computed mechanical stress results help to strengthen the confidence in TMD self-management recommendations of eating soft and small pieces of food to reduce TMJ pain.
Collapse
Affiliation(s)
- Benedikt Sagl
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
| | - Martina Schmid-Schwap
- Division of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Eva Piehslinger
- Division of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Hai Yao
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, United States; Department of Oral Health Sciences, Medical University of South Carolina, 29425, Charleston, SC, United States
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, SK S7N 5C9 Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Mosaddad SA, Hussain A, Tebyaniyan H. Exploring the Use of Animal Models in Craniofacial Regenerative Medicine: A Narrative Review. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:29-59. [PMID: 37432898 DOI: 10.1089/ten.teb.2023.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The craniofacial region contains skin, bones, cartilage, the temporomandibular joint (TMJ), teeth, periodontal tissues, mucosa, salivary glands, muscles, nerves, and blood vessels. Applying tissue engineering therapeutically helps replace lost tissues after trauma or cancer. Despite recent advances, it remains essential to standardize and validate the most appropriate animal models to effectively translate preclinical data to clinical situations. Therefore, this review focused on applying various animal models in craniofacial tissue engineering and regeneration. This research was based on PubMed, Scopus, and Google Scholar data available until January 2023. This study included only English-language publications describing animal models' application in craniofacial tissue engineering (in vivo and review studies). Study selection was based on evaluating titles, abstracts, and full texts. The total number of initial studies was 6454. Following the screening process, 295 articles remained on the final list. Numerous in vivo studies have shown that small and large animal models can benefit clinical conditions by assessing the efficacy and safety of new therapeutic interventions, devices, and biomaterials in animals with similar diseases/defects to humans. Different species' anatomical, physiologic, and biological features must be considered in developing innovative, reproducible, and discriminative experimental models to select an appropriate animal model for a specific tissue defect. As a result, understanding the parallels between human and veterinary medicine can benefit both fields.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
6
|
Chen S, Cheng D, Bao W, Ding R, Shen Z, Huang W, Lu Y, Zhang P, Sun Y, Chen H, Shen C, Wang Y. Polydopamine-Functionalized Strontium Alginate/Hydroxyapatite Composite Microhydrogel Loaded with Vascular Endothelial Growth Factor Promotes Bone Formation and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4462-4477. [PMID: 38240605 DOI: 10.1021/acsami.3c16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Critical-size bone defects are a common and intractable clinical problem that typically requires filling in with surgical implants to facilitate bone regeneration. Considering the limitations of autologous bone and allogeneic bone in clinical applications, such as secondary damage or immunogenicity, injectable microhydrogels with osteogenic and angiogenic effects have received considerable attention. Herein, polydopamine (PDA)-functionalized strontium alginate/nanohydroxyapatite (Sr-Alg/nHA) composite microhydrogels loaded with vascular endothelial growth factor (VEGF) were prepared using microfluidic technology. This composite microhydrogel released strontium ions stably for at least 42 days to promote bone formation. The PDA coating can release VEGF in a controlled manner, effectively promote angiogenesis around bone defects, and provide nutritional support for new bone formation. In in vitro experiments, the composite microhydrogels had good biocompatibility. The PDA coating greatly improves cell adhesion on the composite microhydrogel and provides good controlled release of VEGF. Therefore, this composite microhydrogel effectively promotes osteogenic differentiation and vascularization. In in vivo experiments, composite microhydrogels were injected into critical-size bone defects in the skull of rats, and they were shown by microcomputed tomography and tissue sections to be effective in promoting bone regeneration. These findings demonstrated that this novel microhydrogel effectively promotes bone formation and angiogenesis at the site of bone defects.
Collapse
Affiliation(s)
- Shi Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Dawei Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Weimin Bao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Ruyuan Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, P. R. China
| | - Zhenguo Shen
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Wenkai Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Yifan Lu
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Panpan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yiwei Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yuanyin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
7
|
Helmer LML, Klop C, Lobbezoo F, Lange JD, Koolstra JH, Dubois L. Changes in load distribution after unilateral condylar fracture: A finite element model study. Arch Oral Biol 2023; 155:105791. [PMID: 37598527 DOI: 10.1016/j.archoralbio.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Premature dental contact on the fractured side and a contralateral open bite are signs of a unilaterally fractured condyle of the temporomandibular joint (TMJ). The lateral pterygoid muscle pulls the condyle inwards, causing angulation of the fractured part and shortening of the ramus. This imbalance after fracture might change the load in both TMJs and consequently induce remodeling. The present study aimed to calculate this change in load. It is hypothesized to decrease on the fractured side and increase on the non-fractured side. DESIGN For these calculations, a finite element model (FEM) was used. In the FEM, shortening of the ramus varied from 2 mm to 16 mm; angulation, from 6.25° to 50°. RESULTS After fracture, load on the non-fractured side increased, but only at maximal mouth opening (MMO). Simultaneously, load on the fractured side decreased, at both timepoints, i.e., MMO and closed mouth. When comparing all simulations at those time points, i.e., from 2 mm and 6.25° to 16 mm and 50°, the load in the fractured condyle declines steadily. However, for both timepoints, a threshold stands out around 6 mm shortening and 18.75° angulation: visualization of the fractured condyle showed, apart from load on the condylar head, a second point of load more medial in the TMJ which was most evident in the 6 mm - 18.75° simulation. CONCLUSIONS These findings could implicate that the balance between both TMJs is more difficult to restore after a fracture with more than 6 mm shortening and more than 18.75° angulation.
Collapse
Affiliation(s)
- Loreine M L Helmer
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Cornelis Klop
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jan Harm Koolstra
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Leander Dubois
- Department of Oral and Maxillofacial Surgery, Amsterdam Academic Medical Centers and Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Donahue RP, Kallins EG, Hu JC, Athanasiou KA. Characterization of the Temporomandibular Joint Disc Complex in the Yucatan Minipig. Tissue Eng Part A 2023; 29:439-448. [PMID: 37073459 PMCID: PMC10440658 DOI: 10.1089/ten.tea.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
The temporomandibular joint (TMJ) disc complex (i.e., the TMJ disc and its six attachments) is crucial to everyday functions such as mastication and speaking. The TMJ can be afflicted by many conditions, including disc displacement and defects. Pathologies of the TMJ disc complex most commonly present first as anterior disc displacement, which the field hypothesizes may implicate the two posterior attachments. As a result of anterior disc displacement, defects may develop in the lateral disc complex. Tissue engineering is poised to improve treatment paradigms for these indications of the TMJ disc complex by engineering biomimetic implants, but, first, gold-standard design criteria for such implants should be established through characterization studies. This study's objective was to characterize the structural, mechanical, biochemical, and crosslinking differences among the two posterior attachments and the lateral disc in the Yucatan minipig, a well-accepted TMJ animal model. In tension, it was found that the posterior inferior attachment (PIA) was significantly stiffer and stronger by 2.13 and 2.30 times, respectively, than the posterior superior attachment (PSA). It was found that collagen in both attachments was primarily aligned mediolaterally; however, the lateral disc was much more aligned and anisotropic than either attachment. Among the three locations, the PSA exhibited the greatest degree of heterogeneity and highest proportion of fat vacuoles. The PIA and lateral disc were 1.93 and 1.91 times more collagenous, respectively, by dry weight (DW) than the PSA. The PIA also exhibited 1.78 times higher crosslinking per DW than the PSA. Glycosaminoglycan per DW was significantly higher in the lateral disc by 1.48 and 5.39 times than the PIA and PSA, respectively. Together, these results establish design criteria for tissue-engineering of the TMJ disc complex and indicate that the attachments are less fibrocartilaginous than the disc, while still significantly contributing to the mechanical stability of the TMJ disc complex during articulation. These results also support the biomechanical function of the PIA and PSA, suggesting that the stiffer PIA anchors the disc to the mandibular condyle during articulation, while the softer PSA serves to allow translation over the articular eminence. Impact Statement Characterization of the temporomandibular joint (TMJ) disc complex (i.e., the disc and its attachments) has important implications for those aiming to tissue-engineer functional replacements and can help elucidate its biomechanical function. For example, the findings shown here suggest that the stiffer posterior inferior attachment anchors the disc during articulation, while the softer posterior superior attachment allows translation over the articular eminence.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Eston G. Kallins
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
10
|
Jiang N, Chen H, Zhang J, Cao P, Wang P, Hou Y, Tan P, Sun J, Li Z, Zhu S. Decellularized-disc based allograft and xenograft prosthesis for the long-term precise reconstruction of temporomandibular joint disc. Acta Biomater 2023; 159:173-187. [PMID: 36708853 DOI: 10.1016/j.actbio.2023.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Currently, no effective disc reconstruction treatment strategy is clinically available for temporomandibular joint (TMJ) disc-related diseases. To address this, we developed a prosthesis construct with laser-drilled decellularized natural disc reinforced by polycaprolactone, which mimics the natural morphology, and structural, biomechanical and biological property of the TMJ disc. The construct demonstrated good biocompatibility, safety and immunological tolerance both in vitro, and in a rat subcutaneous model. During 6 months implantation in an allogeneic rabbit TMJ disc reconstruction model, the disc prosthesis maintained its integrity, collagen fiber-orientation, mechanical property, joint structural stability and prevented articular cartilage and bone from damage. Furthermore, the "upgraded" disc prosthesis obtained from decellularized porcine disc was implanted into a goat TMJ disc reconstruction model. The xenograft prosthesis, with strength and viscoelasticity similar to a natural TMJ disc, was able to restore the structure and function of TMJ up to 20 weeks. These results demonstrate the translational feasibility of an allogeneic or xenogeneic decellularized disc prosthesis for treatment of advanced TMJ disc-related diseases. STATEMENT OF SIGNIFICANCE: This study makes a significant contribution to TMJ disc disease treatment both in theory and in clinics, because: (1) it provided an innovative approach to prepare an artificial TMJ disc with decent mechanical properties and long-term condyle-protecting effect; (2) it specified an advanced decellularized method for fibrocartilage decellularization and xenograft application; (3) it developed a facile and reproducible TMJ disc reconstruction model not only for middle size animal but also for large animal study; (4) the comprehensive and unreported biomechanical tests on the natural TMJ discs would act as a valuable reference for further research in the field of artificial TMJ disc materials or TMJ disc tissue engineering; (5) it suggested a potential treatment for patients with severe TMJ diseases that were commonly met but difficult to treat in clinics.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jialin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Tappert L, Dusfour G, Baldit A, Le Floc’H S, Lipinski P. Experimental study of eigenstrains in temporomandibular joint discs using digital image analysis. J Mech Behav Biomed Mater 2022; 134:105395. [DOI: 10.1016/j.jmbbm.2022.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
12
|
Deliogullari B, Ilhan‐Ayisigi E, Cakmak B, Saglam‐Metiner P, Kaya N, Coskun‐Akar G, Yesil‐Celiktas O. Synthesis of an injectable heparin conjugated poloxamer hydrogel with high elastic recoverability for temporomandibular joint disorders. J Appl Polym Sci 2022. [DOI: 10.1002/app.52736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Buse Deliogullari
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
| | - Esra Ilhan‐Ayisigi
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Betul Cakmak
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Pelin Saglam‐Metiner
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Nusret Kaya
- Department of Materials Science and Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University Cigli Izmir Turkey
| | - Gulcan Coskun‐Akar
- Department of Prosthodontics, Faculty of Dentistry Ege University Izmir Turkey
| | - Ozlem Yesil‐Celiktas
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
13
|
Gan Z, Zhao Y, Wu Y, Yang W, Zhao Z, Zhao L. Three-dimensional, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration. Acta Biomater 2022; 147:221-234. [PMID: 35562008 DOI: 10.1016/j.actbio.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023]
Abstract
Temporomandibular disorder (TMD) remained a huge clinical challenge, with high prevalence but limited, unstable, and only palliative therapeutic methods available. As one of the most vulnerable sites implicated in TMD, the temporomandibular joint disc (TMJD) displayed a complicated microstructure, region-specific fibrocartilaginous distribution, and poor regenerative property, which all further hindered its functional regeneration. To address the problem, with versatile and relatively simple electrospinning (ELS) technique, our study successfully fabricated a biomimetic, three-dimensional poly (ϵ-caprolactone) (PCL)/polylactide (PLA)/carbon nanotubes (CNTs) disc scaffold, whose biconcave gross anatomy and regionally anisotropic microstructure recapitulating those of the native disc. As in vitro results validated the superior mechanical, bioactive, and regenerative properties of the biomimetic scaffolds with optimal CNTs reinforcement, we further performed in vivo experiments. After verifying its biocompatibility and ectopic fibrochondrogenicity in nude mice subcutaneous implantation models, the scaffolds guided disc regeneration and subchondral bone protection were also confirmed orthotopically in rabbits TMJD defected areas, implying the pivotal role of morphological cues in contact-guided tissue regeneration. In conclusion, our work represents a significant advancement in complex, inhomogeneous tissue engineering, providing promising clinical solutions to intractable TMD ailments. STATEMENT OF SIGNIFICANCE: Complex tissue regeneration remains a huge scientific and clinical challenge. Although frequently implicated in temporomandibular joint disorder (TMD), functional regeneration of injured temporomandibular joint disc (TMJD) is extremely hard to achieve, mainly because of the complex anatomy and microstructure with regionally variant, anisotropic fiber alignments in the native disc. In this study, we developed the biomimetic electrospun scaffold with optimal CNTs reinforcement and regionally anisotropic fiber orientations. The excellent mechanical and bioactive properties were confirmed both in vitro and in vivo, effectively promoting defected discs regeneration in rabbits. Besides demonstrating the crucial role of morphological biomimicry in tissue engineering, our work also presents a feasible clinical solution for complex tissue regeneration.
Collapse
Affiliation(s)
- Ziqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China; Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
14
|
Bose S, Li S, Mele E, Silberschmidt VV. Exploring the Mechanical Properties and Performance of Type-I Collagen at Various Length Scales: A Progress Report. MATERIALS 2022; 15:ma15082753. [PMID: 35454443 PMCID: PMC9025246 DOI: 10.3390/ma15082753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
Abstract
Collagen is the basic protein of animal tissues and has a complex hierarchical structure. It plays a crucial role in maintaining the mechanical and structural stability of biological tissues. Over the years, it has become a material of interest in the biomedical industries thanks to its excellent biocompatibility and biodegradability and low antigenicity. Despite its significance, the mechanical properties and performance of pure collagen have been never reviewed. In this work, the emphasis is on the mechanics of collagen at different hierarchical levels and its long-term mechanical performance. In addition, the effect of hydration, important for various applications, was considered throughout the study because of its dramatic influence on the mechanics of collagen. Furthermore, the discrepancies in reports of the mechanical properties of collagenous tissues (basically composed of 20-30% collagen fibres) and those of pure collagen are discussed.
Collapse
Affiliation(s)
- Shirsha Bose
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Correspondence: (E.M.); (V.V.S.)
| | - Vadim V. Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia
- Correspondence: (E.M.); (V.V.S.)
| |
Collapse
|
15
|
Zhang C, Farré-Guasch E, Jin J, van Essen HW, Klein-Nulend J, Bravenboer N. A Three-Dimensional Mechanical Loading Model of Human Osteocytes in Their Native Matrix. Calcif Tissue Int 2022; 110:367-379. [PMID: 34647170 PMCID: PMC8860829 DOI: 10.1007/s00223-021-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Osteocytes are mechanosensory cells which are embedded in calcified collagenous matrix. The specific native matrix of osteocytes affects their regulatory activity, i.e., transmission of signaling molecules to osteoclasts and/or osteoblasts, in the mechanical adaptation of bone. Unfortunately, no existing in vitro model of cortical bone is currently available to study the mechanosensory function of human osteocytes in their native matrix. Therefore, we aimed to develop an in vitro three-dimensional mechanical loading model of human osteocytes in their native matrix. Human cortical bone explants containing osteocytes in their three-dimensional native matrix were cultured and mechanically loaded by three-point bending using a custom-made loading apparatus generating sinusoidal displacement. Osteocyte viability and sclerostin expression were measured 1-2 days before 5 min loading and 1 day after loading. Bone microdamage was visualized and quantified by micro-CT analysis and histology using BaSO4 staining. A linear relationship was found between loading magnitude (2302-13,811 µɛ) and force (1.6-4.9 N) exerted on the bone explants. At 24 h post-loading, osteocyte viability was not affected by 1600 µɛ loading. Sclerostin expression and bone microdamage were unaffected by loading up to 8000 µɛ. In conclusion, we developed an in vitro 3D mechanical loading model to study mechanoresponsiveness of viable osteocytes residing in their native matrix. This model is suitable to study the effect of changed bone matrix composition in metabolic bone disease on osteocyte mechanoresponsiveness.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Elisabet Farré-Guasch
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Huib W van Essen
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Blom RP, Mol D, van Ruijven LJ, Kerkhoffs GMMJ, Smit TH. A Single Axial Impact Load Causes Articular Damage That Is Not Visible with Micro-Computed Tomography: An Ex Vivo Study on Caprine Tibiotalar Joints. Cartilage 2021; 13:1490S-1500S. [PMID: 31540553 PMCID: PMC8804841 DOI: 10.1177/1947603519876353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Excessive articular loading, for example, an ankle sprain, may result in focal osteochondral damage, initiating a vicious degenerative process resulting in posttraumatic osteoarthritis (PTOA). Better understanding of this degenerative process would allow improving posttraumatic care with the aim to prevent PTOA. The primary objective of this study was to establish a drop-weight impact testing model with controllable, reproducible and quantitative axial impact loads to induce osteochondral damage in caprine tibiotalar joints. We aimed to induce osteochondral damage on microscale level of the tibiotalar joint without gross intra-articular fractures of the tibial plafond. DESIGN Fresh-frozen tibiotalar joints of mature goats were used as ex vivo articulating joint models. Specimens were axially impacted by a mass of 10.5 kg dropped from a height of 0.3 m, resulting in a speed of 2.4 m/s, an impact energy of 31.1 J and an impact impulse of 25.6 N·s. Potential osteochondral damage of the caprine tibiotalar joints was assessed using contrast-enhanced high-resolution micro-computed tomography (micro-CT). Subsequently, we performed quasi-static loading experiments to determine postimpact mechanical behavior of the tibiotalar joints. RESULTS Single axial impact loads with a mass of 15.5 kg dropped from 0.3 m, resulted in intra-articular fractures of the tibial plafond, where a mass of 10.55 kg dropped from 0.3 m did not result in any macroscopic damage. In addition, contrast-enhanced high-resolution micro-CT imaging neither reveal any acute microdamage (i.e., microcracks) of the subchondral bone nor any (micro)structural changes in articular cartilage. The Hexabrix content or voxel density (i.e., proteoglycan content of the articular cartilage) on micro-CT did not show any differences between intact and impacted specimens. However, quasi-static whole-tibiotalar-joint loading showed an altered biomechanical behavior after application of a single axial impact (i.e., increased hysteresis when compared with the intact or nonimpacted specimens). CONCLUSIONS Single axial impact loads did not induce osteochondral damage visible with high-resolution contrast-enhanced micro-CT. However, despite the lack of damage on macro- and even microscale, the single axial impact loads resulted in "invisible injuries" because of the observed changes in the whole-joint biomechanics of the caprine tibiotalar joints. Future research must focus on diagnostic tools for the detection of early changes in articular cartilage after a traumatic impact (i.e., ankle sprains or ankle fractures), as it is well known that this could result in PTOA.
Collapse
Affiliation(s)
- Robin P. Blom
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands
| | - Douwe Mol
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands
| | - Leo J. van Ruijven
- Department of Oral Cell Biology and
Functional Anatomy, ACTA–University of Amsterdam and VU University, Amsterdam
Movement Sciences, Amsterdam, the Netherlands
| | - Gino M. M. J. Kerkhoffs
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam Collaboration for Health and Safety in Sports
(ACHSS), IOC Research Center, Amsterdam, the Netherlands
| | - Theo H. Smit
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Department of Medical Biology, Amsterdam
University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Theo H. Smit, Department of Medical Biology,
Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands.
| |
Collapse
|
17
|
Labus KM, Kuiper JP, Rawlinson J, Puttlitz CM. Mechanical characterization and viscoelastic model of the ovine temporomandibular joint Disc in indentation, uniaxial tension, and biaxial tension. J Mech Behav Biomed Mater 2020; 116:104300. [PMID: 33454627 DOI: 10.1016/j.jmbbm.2020.104300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 11/17/2022]
Abstract
There have been recent investigations into developing disc replacements and regenerative medicine to treat internal derangements of the temporomandibular joint (TMJ) disc. Previous attempts at disc replacements have faced challenges related in part to a limited understanding of the TMJ's complex mechanical environment. The purpose of this study was to characterize the mechanical behavior of the ovine TMJ disc and to derive viscoelastic constitutive models from the experimental data. Fresh ovine TMJ discs were tested in indentation stress-relaxation tests on the inferior surface, uniaxial tension tests to failure, and dynamic biaxial tensile tests. Results showed an order of magnitude stiffer behavior in tension in the anteroposterior (primary fiber) direction compared to the mediolateral direction. The stiffness in tension was much greater than in compression. Regional comparisons showed greater elastic moduli in indentation in the posterior and anterior bands compared to the central region. A hyper-viscoelastic constitutive model captured the dynamic stress-stretch behavior in both indentation and biaxial tension with good agreement. These data will support ongoing and future computational modeling of local TMJ mechanics, aid in biomaterials identification, and ultimately enhance development of implant designs for TMJ disc replacement.
Collapse
Affiliation(s)
- Kevin M Labus
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Jason P Kuiper
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Jennifer Rawlinson
- Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Christian M Puttlitz
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA; Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Temporomandibular joint imaging: current clinical applications, biochemical comparison with the intervertebral disc and knee meniscus, and opportunities for advancement. Skeletal Radiol 2020; 49:1183-1193. [PMID: 32162049 DOI: 10.1007/s00256-020-03412-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 02/02/2023]
Abstract
Temporomandibular disorders encompass multiple pathologies of the temporomandibular joint that manifest as middle/inner ear symptoms, headache, and/or localized TMJ symptoms. There is an important although somewhat limited role of imaging in the diagnostic evaluation of temporomandibular disorders. In this manuscript, we provide a comprehensive review of TMJ anatomy, outline potentially important features of TMJ disc ultrastructure and biochemistry in comparison with the intervertebral disc and knee meniscus, and provide imaging examples of the TMJ abnormalities currently evaluable with MRI and CT. In addition, we provide an overview of emerging and investigational TMJ imaging techniques in order to encourage further imaging research based on the biomechanical alterations of the TMJ disc.
Collapse
|
19
|
Tribst JPM, Dal Piva AMDO, Bottino MA, Kleverlaan CJ, Koolstra JH. Mouthguard use and TMJ injury prevention with different occlusions: A three‐dimensional finite element analysis. Dent Traumatol 2020; 36:662-669. [DOI: 10.1111/edt.12577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Affiliation(s)
- João Paulo Mendes Tribst
- Department of Dental Materials and Prosthodontics São Paulo State University (Unesp/SJC) São Paulo Brazil
- Department of Dental Materials Science Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam The Netherlands
| | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials and Prosthodontics São Paulo State University (Unesp/SJC) São Paulo Brazil
- Department of Dental Materials Science Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam The Netherlands
| | - Marco Antonio Bottino
- Department of Dental Materials and Prosthodontics São Paulo State University (Unesp/SJC) São Paulo Brazil
| | - Cornelis Johannes Kleverlaan
- Department of Dental Materials Science Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam The Netherlands
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
20
|
Fernandes BV, Brancher JA, Michels AC, Nagashima S, Johann ACBR, Bóia Ferreira M, da Costa DJ, Rebellato NLB, Klüppel LE, Scariot R, Zielak JC. Immunohistochemical panel of degenerated articular discs from patients with temporomandibular joint osteoarthritis. J Oral Rehabil 2020; 47:1084-1094. [PMID: 32524653 DOI: 10.1111/joor.13034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) is a progressive degenerative disease caused by imbalance between anabolic and catabolic stimuli. OBJECTIVE The aim of this study was to evaluate histopathological changes, collagen degeneration and the expression of eleven TMJOA biomarkers in articular discs. METHODS Specimens were obtained from eight female patients submitted to discectomy. Discs were divided into anterior band (AB), intermediate zone (IZ) and posterior band (PB) for computerised histomorphometric analyses. Each was assigned a histopathological degeneration score (HDS). Collagen degeneration was assessed with Picrosirius-polarisation method. Biomarkers were evaluated through immunohistochemistry, including IGF-1, OPG, VEGF, TNF-α, FGF-23, IHH, MMP-3, MMP-9, TGF-β1 , BMP-2 and WNT-3. Image processing software was used to calculate average immature collagen ratios and immunostained areas. Spearman rank tests were applied to verify correlations, with significance level of 0.05. RESULTS The HDS showed negative correlation with expression of VEGF in IZ and PB (P < .05) and positive with TNF-α in AB (P < .01). Collagen degeneration correlated with TGF-β1 (P < .05), BMP-2 (P < .01) and IHH (P < .05) immunostained areas in the IZ; TGF-β1, BMP-2 and IHH expression correlated among each other in AB and IZ (P < .05). CONCLUSION Angiogenesis and tissue fragmentation may result from aberrant physiologic responses mediated by VEGF and TNF-α, compromising TMJ discs during OA progression. The expression of TGF-β1, BMP-2 and IHH could be related to collagen degeneration in displaced discs and may participate in TMJOA pathogenesis.
Collapse
Affiliation(s)
| | - João A Brancher
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Arieli C Michels
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Marianna Bóia Ferreira
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Biological Sciences, Department of Cell Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Delson J da Costa
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nelson Luis B Rebellato
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leandro E Klüppel
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rafaela Scariot
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - João C Zielak
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil
| |
Collapse
|
21
|
Fazaeli S, Mirahmadi F, Everts V, Smit TH, Koolstra JH, Ghazanfari S. Alteration of structural and mechanical properties of the temporomandibular joint disc following elastase digestion. J Biomed Mater Res B Appl Biomater 2020; 108:3228-3240. [PMID: 32478918 PMCID: PMC7586824 DOI: 10.1002/jbm.b.34660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 11/09/2022]
Abstract
The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load‐bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural–functional contribution of elastin in the temporomandibular joint disc. Using elastase, we selectively perturbed the elastin fiber network in porcine temporomandibular joint discs and investigated the structural, compositional, and mechanical regional changes through: (a) analysis of collagen and elastin fibers by immunolabeling and transmission electron microscopy; (b) quantitative analysis of collagen tortuosity, cell shape, and disc volume; (c) biochemical quantification of collagen, glycosaminoglycan and elastin content; and (d) cyclic compression test. Following elastase treatment, microscopic examination revealed fragmentation of elastin fibers across the temporomandibular joint disc, with a more pronounced effect in the intermediate regions. Also, biochemical analyses of the intermediate regions showed significant depletion of elastin (50%), and substantial decrease in collagen (20%) and glycosaminoglycan (49%) content, likely due to non‐specific activity of elastase. Degradation of elastin fibers affected the homeostatic configuration of the disc, reflected in its significant volume enlargement accompanied by remarkable reduction of collagen tortuosity and cell elongation. Mechanically, elastase treatment nearly doubled the maximal energy dissipation across the intermediate regions while the instantaneous modulus was not significantly affected. We conclude that elastin fibers contribute to the restoration and maintenance of the disc resting shape and actively interact with collagen fibers to provide mechanical resilience to the temporomandibular joint disc.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan H Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands.,Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Fazaeli S, Ghazanfari S, Mirahmadi F, Everts V, Smit TH, Koolstra JH. The dynamic mechanical viscoelastic properties of the temporomandibular joint disc: The role of collagen and elastin fibers from a perspective of polymer dynamics. J Mech Behav Biomed Mater 2019; 100:103406. [PMID: 31473438 DOI: 10.1016/j.jmbbm.2019.103406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/27/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
The temporomandibular joint disc is a structure, characterized as heterogeneous fibrocartilage, and is composed of macromolecular biopolymers. Despite a large body of characterization studies, the contribution of matrix biopolymers on the dynamic viscoelastic behavior of the disc is poorly understood. Given the high permeability and low concentration of glycosaminoglycans in the disc, it has been suggested that poro-elastic behavior can be neglected and that the intrinsic viscoelastic nature of solid matrix plays a dominant role in governing its time-dependent behavior. This study attempts to quantify the contribution of collagen and elastin fibers to the viscoelastic properties of the disc. Using collagenase and elastase, we perturbed the collagen and elastin fibrillar network in porcine temporomandibular joint discs and investigated the changes of dynamic viscoelastic properties in five different regions of the disc. Following both treatments, the storage and loss moduli of these regions were reduced dramatically up to the point that the tissue was no longer mechanically heterogeneous. However, the proportion of changes in storage and loss moduli were different for each treatment, reflected in the decrease and increase of the loss tangent for collagenase and elastase treated discs, respectively. The reduction of storage and loss moduli of the disc correlated with a decrease of biopolymer length. The present study indicates that the compositional and structural changes of collagen and elastin fibers alter the viscoelastic properties of the disc consistent with polymer dynamics.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany.
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Theodoor Henri Smit
- Department of Medical Biology - Academic Medical Center Amsterdam, Amsterdam, the Netherlands.
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Hemmatian H, Jalali R, Semeins CM, Hogervorst JMA, van Lenthe GH, Klein-Nulend J, Bakker AD. Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size. Calcif Tissue Int 2018; 103:675-685. [PMID: 30109376 PMCID: PMC6208961 DOI: 10.1007/s00223-018-0463-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Hormonal changes during lactation are associated with profound changes in bone cell biology, such as osteocytic osteolysis, resulting in larger lacunae. Larger lacuna shape theoretically enhances the transmission of mechanical signals to osteocytes. We aimed to provide experimental evidence supporting this theory by comparing the mechanoresponse of osteocytes in the bone of lactating mice, which have enlarged lacunae due to osteocytic osteolysis, with the response of osteocytes in bone from age-matched virgin mice. The osteocyte mechanoresponse was measured in excised fibulae that were cultured in hormone-free medium for 24 h and cyclically loaded for 10 min (sinusoidal compressive load, 3000 µε, 5 Hz) by quantifying loading-related changes in Sost mRNA expression (qPCR) and sclerostin and β-catenin protein expression (immunohistochemistry). Loading decreased Sost expression by ~ threefold in fibulae of lactating mice. The loading-induced decrease in sclerostin protein expression by osteocytes was larger in lactating mice (55% decrease ± 14 (± SD), n = 8) than virgin mice (33% decrease ± 15, n = 7). Mechanical loading upregulated β-catenin expression in osteocytes in lactating mice by 3.5-fold (± 0.2, n = 6) which is significantly (p < 0.01) higher than the 1.6-fold increase in β-catenin expression by osteocytes in fibulae from virgin mice (± 0.12, n = 4). These results suggest that osteocytes in fibulae from lactating mice with large lacunae may respond stronger to mechanical loading than those from virgin mice. This could indicate that osteocytes residing in larger lacuna show a stronger response to mechanical loading.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Rozita Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Selective Enzymatic Digestion of Proteoglycans and Collagens Alters Cartilage T1rho and T2 Relaxation Times. Ann Biomed Eng 2018; 47:190-201. [PMID: 30288634 DOI: 10.1007/s10439-018-02143-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Our objective was to determine the relationship of T1rho and T2 relaxation mapping to the biochemical and biomechanical properties of articular cartilage through selective digestion of proteoglycans and collagens. Femoral condyles were harvested from porcine knee joints and treated with either chondroitinase ABC (cABC) followed by collagenase, or collagenase followed by cABC. Magnetic resonance images were acquired and cartilage explants were harvested for biochemical, biomechanical, and histological analyses before and after each digestion. Targeted enzymatic digestion of proteoglycans with cABC resulted in elevated T1rho relaxation times and decreased sulfated glycosaminoglycan content without affecting T2 relaxation times. In contrast, extractable collagen and T2 relaxation times were increased by collagenase digestion; however, neither was altered by cABC digestion. Aggregate modulus decreased with digestion of both components. Overall, we found that targeted digestion of proteoglycans and collagens had varying effects on biochemical, biomechanical, and imaging properties. T2 relaxation times were altered with changes in extractable collagen, but not changes in proteoglycan. However, T1rho relaxation times were altered with proteoglycan loss, which may also coincide with collagen disruption. Since it is unclear which matrix components are disrupted first in osteoarthritis, both markers may be important for tracking disease progression.
Collapse
|
25
|
Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater 2018; 79:60-82. [PMID: 30165203 DOI: 10.1016/j.actbio.2018.08.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds. The elasticity of scaffold materials can be attributed to either natural sources, when native elastin or recombinant techniques are used to provide natural polymers, or synthetic sources, when polymers are synthesized. While synthetic elastomers often lack the biocompatibility needed for tissue engineering applications, the production of natural materials in adequate amounts or with proper mechanical strength remains a challenge. However, combining natural and synthetic materials to create hybrid components could overcome these issues. This review explains the synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo. Furthermore, current methods, ranging from proteins and synthetic polymers to hybrid structures that are being investigated for providing elasticity to tissue engineering constructs, are comprehensively discussed. STATEMENT OF SIGNIFICANCE Tissue engineered scaffolds are being developed as treatment options for malfunctioning tissues throughout the body. It is essential that the scaffold is a close mimic of the native tissue with regards to both mechanical and biological functionalities. Therefore, the production of elastic scaffolds is of key importance to fabricate tissue engineered scaffolds of the elastic tissues such as heart valves and blood vessels. Combining naturally derived and synthetic materials to reach this goal proves to be an interesting area where a highly tunable material that unites mechanical and biological functionalities can be obtained.
Collapse
Affiliation(s)
- Anna M J Coenen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstraβe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
26
|
Lin AW, Vapniarsky N, Cissell DD, Verstraete FJM, Lin CH, Hatcher DC, Arzi B. The Temporomandibular Joint of the Domestic Dog (Canis lupus familiaris) in Health and Disease. J Comp Pathol 2018; 161:55-67. [PMID: 30173858 DOI: 10.1016/j.jcpa.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
This study aimed to characterize the histological, biomechanical and biochemical properties of the temporomandibular joint (TMJ) of the domestic dog in health and disease. In addition, we sought to identify structure-function relationships and to characterize TMJ degenerative lesions that may be found naturally in this species. TMJs (n = 20) from fresh cadaver heads (n = 10) of domestic dogs were examined macroscopically and microscopically and by cone-beam computed tomography. The TMJ discs were evaluated for their mechanical and biochemical properties. If TMJ arthritic changes were found, pathological characteristics were described and compared with healthy joints. Five (50%) dogs demonstrated macroscopically normal fibrocartilaginous articular surfaces and fibrous discs and five (50%) dogs exhibited degenerative changes that were observed either in the articular surfaces or the discs. In the articulating surfaces, these changes included erosions, conformational changes and osteophytes. In the discs, degenerative changes were represented by full-thickness perforations. Histologically, pathological specimens demonstrated fibrillations with or without erosions, subchondral bone defects and subchondral bone sclerosis. Significant anisotropy in the TMJ discs was evident on histology and tensile mechanical testing. Specifically, the discs were significantly stiffer and stronger in the rostrocaudal direction compared with the mediolateral direction. No significant differences were detected in compressive properties of different disc regions. Biochemical analyses showed high collagen content and low glycosaminoglycan (GAG) content. No significant differences in biochemical composition, apart from GAG, were detected among the disc regions. GAG concentration was significantly higher in the central region as compared with the caudal (posterior) region. The TMJ of the domestic dog exhibits similarities, but also differences, compared with other mammals with regards to structure-function relationships. The TMJ articular surfaces and the disc exhibit degenerative changes as seen in other species, including perforation of the disc as seen in man. The degenerative changes had greater effects on the mechanical properties compared with the biochemical properties of the TMJ components. Translational motion of the TMJ does occur in dogs, but is limited.
Collapse
Affiliation(s)
- A W Lin
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - N Vapniarsky
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA.
| | - D D Cissell
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - F J M Verstraete
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - C H Lin
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - D C Hatcher
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - B Arzi
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
27
|
Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:345-358. [PMID: 29562835 DOI: 10.1089/ten.teb.2018.0006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Collapse
Affiliation(s)
- Evelia Y Salinas
- Biomedical Engineering Department, University of California , Irvine, California
| | - Jerry C Hu
- Biomedical Engineering Department, University of California , Irvine, California
| | - Kyriacos Athanasiou
- Biomedical Engineering Department, University of California , Irvine, California
| |
Collapse
|
28
|
Lowe J, Bansal R, Badylak S, Brown B, Chung W, Almarza A. Properties of the Temporomandibular Joint in Growing Pigs. J Biomech Eng 2018; 140:2675984. [PMID: 29560497 DOI: 10.1115/1.4039624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/08/2022]
Abstract
A subset of temporomandibular joint (TMJ) disorders are attributed to joint degeneration. The pig has been considered the preferred in-vivo model for the evaluation of potential therapies for TMJ disorders, and practical considerations such as cost and husbandry issues have favored the use of young, skeletally immature animals. However, the effect of growth on the biochemical and biomechanical properties of the TMJ disc and articulating cartilage has not been examined. The present study investigates the effect of age on the biochemical and biomechanical properties of healthy porcine TMJs at 3, 6, and 9 months of age. DNA , hyrdroxyproline, and glycosaminoglycan (GAG) content were determined and the discs and condyles were tested in uniaxial unconfined stress relaxation compression from 10% - 30% strain. TMJ discs were further assessed with a tensile test to failure technique, which included the ability to test multiple samples from the same region of an individual disc to minimize the intra-specimen variation. No differences in biochemical properties for the disc or compressive properties at 30% stress relaxation in the disc and condylar cartilage were found. In tension, no differences were observed for peak stress and tensile modulus. The collagen content of the condyle were higher at 9 months than 3 months (p<0.05), and the GAG content was higher at 9 months than 6 months (p<0.05). There was a trend of increased compressive instantaneous modulus with age. As such, age matched controls for growing pigs are probably appropriate for most parameters measured.
Collapse
Affiliation(s)
- Jesse Lowe
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260
| | - Rohan Bansal
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260
| | - Stephen Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Bryan Brown
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - William Chung
- Oral and Maxillofacial Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Alejandro Almarza
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
29
|
Mirahmadi F, Koolstra JH, Lobbezoo F, van Lenthe GH, Ghazanfari S, Snabel J, Stoop R, Everts V. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose. Arch Oral Biol 2017; 87:102-109. [PMID: 29275153 DOI: 10.1016/j.archoralbio.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. METHODS Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. RESULTS Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. CONCLUSION The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle.
Collapse
Affiliation(s)
- Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Biomechanics section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - G Harry van Lenthe
- Biomechanics section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Samaneh Ghazanfari
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Aachen-Maastrciht Institute for Biobased Materials, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands; Department of Orthopedic Surgery, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | - Reinout Stoop
- TNO Metabolic Health Research, Leiden, The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Gutman S, Kim D, Tarafder S, Velez S, Jeong J, Lee CH. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint. Arch Oral Biol 2017; 86:1-6. [PMID: 29128675 DOI: 10.1016/j.archoralbio.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. DESIGN For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). RESULTS Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. CONCLUSION Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc.
Collapse
Affiliation(s)
- Shawn Gutman
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States
| | - Daniel Kim
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States
| | - Sergio Velez
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States
| | - Julia Jeong
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States
| | - Chang H Lee
- Regenerative Engineering Laboratory, Section for Oral and Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W. 168 St. - VC12-230, New York, NY 10032, United States.
| |
Collapse
|
31
|
Cone SG, Warren PB, Fisher MB. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng Part C Methods 2017; 23:763-780. [PMID: 28726574 PMCID: PMC5689129 DOI: 10.1089/ten.tec.2017.0227] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Large animal models play an essential role in the study of tissue engineering and regenerative medicine (TERM), as well as biomechanics. The porcine model has been increasingly used to study the musculoskeletal system, including specific joints, such as the knee and temporomandibular joints, and tissues, such as bone, cartilage, and ligaments. In particular, pigs have been utilized to evaluate the role of skeletal growth on the biomechanics and engineered replacements of these joints and tissues. In this review, we explore the publication history of the use of pig models in biomechanics and TERM discuss interspecies comparative studies, highlight studies on the effect of skeletal growth and other biological considerations in the porcine model, and present challenges and emerging opportunities for using this model to study functional TERM.
Collapse
Affiliation(s)
- Stephanie G. Cone
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Paul B. Warren
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Matthew B. Fisher
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Betti BF, Everts V, Ket JCF, Tabeian H, Bakker AD, Langenbach GE, Lobbezoo F. Effect of mechanical loading on the metabolic activity of cells in the temporomandibular joint: a systematic review. Clin Oral Investig 2017; 22:57-67. [PMID: 28761983 PMCID: PMC5748425 DOI: 10.1007/s00784-017-2189-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The purpose of this systematic review was to elucidate how different modalities and intensities of mechanical loading affect the metabolic activity of cells within the fibro-cartilage of the temporomandibular joint (TMJ). MATERIALS AND METHODS A systematic review was conducted according to PRISMA guidelines using PubMed, Embase, and Web of Science databases. The articles were selected following a priori formulated inclusion criteria (viz., in vivo and in vitro studies, mechanical loading experiments on TMJ, and the response of the TMJ). A total of 254 records were identified. After removal of duplicates, 234 records were screened by assessing eligibility criteria for inclusion. Forty-nine articles were selected for full-text assessment. Of those, 23 were excluded because they presented high risk of bias or were reviews. Twenty-six experimental studies were included in this systematic review: 15 in vivo studies and 11 in vitro ones. CONCLUSION The studies showed that dynamic mechanical loading is an important stimulus for mandibular growth and for the homeostasis of TMJ cartilage. When this loading is applied at a low intensity, it prevents breakdown of inflamed cartilage. Yet, frequent overloading at excessive levels induces accelerated cell death and an increased cartilage degradation. CLINICAL SIGNIFICANCE Knowledge about the way temporomandibular joint (TMJ) fibrocartilage responds to different types and intensities of mechanical loading is important to improve existing treatment protocols of degenerative joint disease of the TMJ, and also to better understand the regenerative pathway of this particular type of cartilage.
Collapse
Affiliation(s)
- Beatriz F Betti
- Department of Orthodontics, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands. .,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands. .,Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Johannes C F Ket
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Hessam Tabeian
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geerling E Langenbach
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Liu J, Dai J, Wang Y, Lai S, Wang S. Significance of new blood vessels in the pathogenesis of temporomandibular joint osteoarthritis. Exp Ther Med 2017; 13:2325-2331. [PMID: 28565845 PMCID: PMC5443314 DOI: 10.3892/etm.2017.4234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
We studied the significance of new blood vessels in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Fifteen 8-week-old female Sprague-Dawley rats were selected to establish TMJOA models of gradually induced occlusal disorders. Five rats were sacrificed at 4, 8 and 16 weeks, and histological exam was conducted along with micro-computed tomography observation on the condyle specimen. The distribution and number of new blood vessels breaking were observed through the tidemark through CD34 immunofluorescence staining. The proliferation of chondrocytes were detected through Ki67 immunohistochemical staining, and the differentiation functions of chondrocytes were observed through PTHrP and IHH immunohistochemical staining. The degradation functions of cartilage matrix were observed through matrix metalloproteinase (MMP)-9 immunohistochemical staining to detect the expression of vascular growth promotion and inhibition factors with vascular endothelial growth factor (VEGF), CTGF and CHM-1 immunohistochemical staining and screen differentially expressed genes through gene chip analysis method. It was found that the condyle tissue full thickness, fiber layer thickness and calcified cartilage layer thickness were significantly increased with time (P<0.05). Bone mineral density, trabecular thickness and Tb.Sp were also increased significantly with time, BS/BV and trabecular number were decreased significantly with time (P<0.05). The new blood vessels reached the deep layer of calcified cartilage until the tide line was broken and non-calcified cartilage was invaded. The number of vessels were increased significantly with time (P<0.05). Ki67, PTHrP and IHH-positive rates were increased significantly (P<0.05). MMP-9, VEGF, CTGF and CHM-1 were increased significantly (P<0.05). VEGF, CTGF and CHM-1 mRNA were upregulated differentially with the expressed genes. In conclusion, the new blood vessels may be important in the pathogenesis of TMJOA.
Collapse
Affiliation(s)
- Jianlin Liu
- Department of Stomatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Juan Dai
- Department of Stomatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yansong Wang
- Department of Stomatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Siyu Lai
- Department of Stomatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Suwen Wang
- Department of Stomatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
34
|
Francisco L, Moura C, Viana T, Ângelo D, Morouço P, Alves N. Poly(ɛ-caprolactone) and Polyethylene Glycol Diacrylate-based Scaffolds for TMJ Bioengineered Disc Implants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.promfg.2017.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Ghazanfari S, Khademhosseini A, Smit TH. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 2016; 97:74-84. [DOI: 10.1016/j.biomaterials.2016.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
|