1
|
Zhang C, Li X, Wen P, Li Y. Ellagic acid improves osteoarthritis by inhibiting PGE2 production in M1 macrophages via targeting PTGS2. Clin Exp Pharmacol Physiol 2024; 51:e13918. [PMID: 39188023 DOI: 10.1111/1440-1681.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterised by inflammation and cartilage degeneration. Ellagic acid (EA) might have therapeutic potential in OA, but its molecular mechanisms of action remain unclear. In this study, we aimed to identify the docking protein of EA in M1 macrophage-related pro-inflammation in OA. Bioinformatics analysis was performed to identify ellagic acid's potential targets among OA-related dysregulated genes. THP-1 cells were induced into M0 and polarised into M1 macrophages for in vitro studies. Mice knee models of OA were generated for in vivo studies. Results showed that PTGS2 (also known as COX-2) is a potential target of ellagic acid among OA-related dysregulated genes. EA has multiple low-energy binding sites on PTGS2, including sites containing amino acid residues critical for the enzyme's catalytic activity. Surface plasmon resonance (SPR) assays confirmed the physical interaction between ellagic acid and recombinant PTGS2 protein, with a dissociation constant (KD) of 5.03 ± 0.84 μM. EA treatment suppressed PTGS2 expression and prostaglandin E2 (PGE2) production in M1 macrophages. Besides, ellagic acid can directly inhibit PTGS2 enzyme activity, with an IC50 around 50 μM. Importantly, in a mouse model of OA, ellagic acid administration alleviated disease severity, reduced collagen II degradation and MMP13 generation, and decreased serum PGE2 levels. Collectively, these results suggest that PTGS2 is a key target of ellagic acid's anti-inflammatory and chondroprotective effects in OA.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Pengyuan Wen
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuan Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
2
|
Wake JL, Chung B, Bottoni CR, Zhou L. Management Considerations for Unicompartmental Osteoarthritis in Athletic Populations: A Review of the Literature. J Knee Surg 2024; 37:693-701. [PMID: 35798349 DOI: 10.1055/s-0042-1750750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unicompartmental osteoarthritis in the young athlete poses a challenge for both patients and providers. Coronal plane malalignment is frequently a concomitant finding that adds to the complexity of management. Military surgeons are presented unique challenges, in that they must consider optimal joint-preservation methods while returning patients to a high-demand occupational function. Management options range from lifestyle changes to surgical interventions. We present a concise review of the available literature on this subject, with a specific focus on indications and outcomes within the military and young athletic population.
Collapse
Affiliation(s)
- Jeffrey L Wake
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Tripler AMC, Hawaii
| | - Brandon Chung
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Tripler AMC, Hawaii
| | - Craig R Bottoni
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Tripler AMC, Hawaii
| | - Liang Zhou
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Tripler AMC, Hawaii
| |
Collapse
|
3
|
Deng Z, Yang C, Xiang T, Dou C, Sun D, Dai Q, Ling Z, Xu J, Luo F, Chen Y. Gold nanoparticles exhibit anti-osteoarthritic effects via modulating interaction of the "microbiota-gut-joint" axis. J Nanobiotechnology 2024; 22:157. [PMID: 38589904 PMCID: PMC11000357 DOI: 10.1186/s12951-024-02447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Department of Orthopedics, Chinese PLA 76th Army Corps Hospital, Xining, People's Republic of China.
| |
Collapse
|
4
|
Sun Y, Hu T, Zhang M, Song J, Qin Z, Liu M, Ji J, Li Z, Qiu Z, Bian J. Structure-Guided Discovery of Potent and Selective CLK2 Inhibitors for the Treatment of Knee Osteoarthritis. J Med Chem 2024. [PMID: 38500250 DOI: 10.1021/acs.jmedchem.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Osteoarthritis is the most common joint disorder. However, there are no disease-modifying drugs approved for OA treatment. CDC2-like kinase 2 (CLK2) could modulate Wnt signaling via alternative splicing of Wnt target genes and further affect bone differentiation, chondrocyte function, and inflammation, making CLK2 an attractive target for OA therapy. In this study, we designed and synthesized a series of highly potent CLK2 inhibitors based on Indazole 1. Among them, compound LQ23 showed more elevated inhibitory activity against CLK2 than the lead compound (IC50, 1.4 nM) with high CLK2/CLK3 selectivity (>70-fold). Furthermore, LQ23 showed outstanding antiosteoarthritis effects in vitro and in vivo, with the roles specific in decreased inflammatory cytokines, downregulated cartilage degradative enzymes, and increased joint cartilage via suppressing CLK2/Wnt signaling pathway. Overall, these data support LQ23 as a potential candidate for intra-articular knee OA therapy, leveraging its unique mechanism of action for targeted treatment.
Collapse
Affiliation(s)
- Yongqiang Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianxing Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengdi Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaxing Song
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mai Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinliang Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Li P, Huang Y, Miao L, Zhu Z, Shi Z. Protective effects of ectoine on articular chondrocytes and cartilage in rats for treating osteoarthritis. PLoS One 2024; 19:e0299351. [PMID: 38421984 PMCID: PMC10903896 DOI: 10.1371/journal.pone.0299351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease that primarily includes articular cartilage destruction and inflammatory reactions, and effective treatments for this disease are still lacking. The present study aimed to explore the protective effects of ectoine, a compatible solute found in nature, on chondrocytes in rats and its possible application in OA treatment. In the in vitro studies, the morphology of the chondrocytes after trypsin digestion for 2 min and the viability of the chondrocytes at 50°C were observed after ectoine treatment. The reactive oxygen species (ROS) levels in chondrocytes pretreated with ectoine and post-stimulated with H2O2 were detected using an ROS assay. Chondrocytes were pretreated with ectoine before IL-1β stimulation. RT‒qPCR was used to measure the mRNA levels of cyclooxygenase-2 (COX-2), metallomatrix proteinase-3, -9 (MMP-3, -9), and collagen type II alpha 1 (Col2A1). In addition, immunofluorescence was used to assess the expression of type II collagen. The in vivo effect of ectoine was evaluated in a rat OA model induced by the modified Hulth method. The findings revealed that ectoine significantly increased the trypsin tolerance of chondrocytes, maintained the viability of the chondrocytes at 50°C, and improved their resistance to oxidation. Compared with IL-1β treatment alone, ectoine pretreatment significantly reduced COX-2, MMP-3, and MMP-9 expression and maintained type II collagen synthesis in chondrocytes. In vivo, the cartilage of ectoine-treated rats exhibited less degeneration and lower Osteoarthritis Research Society International (OARSI) scores. The results of this study suggest that ectoine exerts protective effects on chondrocytes and cartilage and can, therefore, be used as a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yong Huang
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lishuai Miao
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Zhiqi Zhu
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Zhanjun Shi
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Kim J, Ryu G, Seo J, Go M, Kim G, Yi S, Kim S, Lee H, Lee JY, Kim HS, Park MC, Shin DH, Shim H, Kim W, Lee SY. 5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis. Nat Commun 2024; 15:1024. [PMID: 38310093 PMCID: PMC10838344 DOI: 10.1038/s41467-024-45174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Gina Ryu
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Gyungmin Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Sol Yi
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Suwon Kim
- Department of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Hae Shin
- Department of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Wankyu Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Cheleschi S, Veronese N, Carta S, Collodel G, Bottaro M, Moretti E, Corsaro R, Barbarino M, Fioravanti A. MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β. Int J Mol Sci 2023; 24:14994. [PMID: 37834442 PMCID: PMC10573984 DOI: 10.3390/ijms241914994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Viale Scaduto, 90100 Palermo, Italy
| | - Serafino Carta
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
8
|
Geczy QE, Thirumaran AJ, Carroll PR, McLachlan AJ, Hunter DJ. What is the most effective and safest Non-steroidal anti-inflammatory drug for treating osteoarthritis in patients with comorbidities? Expert Opin Drug Metab Toxicol 2023; 19:681-695. [PMID: 37817419 DOI: 10.1080/17425255.2023.2267424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Understanding what the most effective and safe non-steroidal anti-inflammatory drug (NSAID) is for managing osteoarthritis (OA) is complicated. OA is prevalent worldwide and people living with OA commonly have multiple comorbidities. The efficacy and safety of NSAIDs in a patient are influenced by their intrinsic and extrinsic factors. Current guidelines recommend the lowest dose for the shortest duration, monitoring patients for risk factors and comorbidities but generally do not specify, which NSAID is most suitable for a patient with specific comorbidities. AREAS COVERED This paper looks at the mechanism of action of all NSAIDs and reviews the current literature concerning their safety in patients with and without comorbidities. Relevant publications were identified by searching PubMed and Cochrane Library using key terms. The search was conducted from inception to 18 July 2023 and included results published before 18 July 2023. The search results and their references were then manually reviewed. EXPERT OPINION In the paper, we determine whether the current practice of 'lowest dose for shortest duration' is in fact the best approach for prescribing NSAIDs and identify which NSAIDs are most suitable given a patient's risk factors and comorbidities. Our aim is to help guide health professionals in recommending the most suitable NSAID for each patient.
Collapse
Affiliation(s)
- Quentin E Geczy
- Sydney Medical Program, The University of Sydney, Sydney, NSW, Australia
| | | | - Peter R Carroll
- School of Medicine Sydney, University of Notre Dame, Darlinghurst, NSW, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J Hunter
- Sydney Musculoskeletal Health, Arabanoo Precinct, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Rheumatology Department, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
9
|
Gao P, Rao ZW, Li M, Sun XY, Gao QY, Shang TZ, Chen C, Zhang CL. Tetrandrine Represses Inflammation and Attenuates Osteoarthritis by Selective Inhibition of COX-2. Curr Med Sci 2023:10.1007/s11596-023-2725-6. [PMID: 37204627 DOI: 10.1007/s11596-023-2725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE There is a lack of effective and long-term safe drugs for the treatment of osteoarthritis (OA). Tetrandrine (Tet) has been approved and used to treat rheumatoid arthritis for several decades, but its effect on OA has not been investigated. Herein, we explored the effect of Tet on OA and its underlying mechanism. METHODS OA was induced using destabilization of the medial meniscus (DMM) in C57BL/6J mice. The animals were randomly divided into sham, DMM, Tet, celecoxib (CXB), and indomethacin (INDO) groups. Each group was given solvent or corresponding drugs by gavage for 7 weeks after convalescence. Pathological staining, OARSI scores, micro-computed tomography and behavior tests were performed to evaluate the effects of Tet. RESULTS Tet remarkably alleviated cartilage injury in the knee joint, limited bone remodeling in the subchondral bone, and delayed progression of OA. Tet also significantly relieved joint pain and maintained function. Further mechanistic studies revealed that Tet lowered inflammatory cytokine levels and selectively suppressed gene and protein expression of cyclooxygenase (COX)-2 but not COX-1 (P<0.01). Tet also reduced the production of prostaglandin E2 without damaging the gastric mucosa. CONCLUSION We found that Tet could selectively inhibit COX-2 gene expression and decrease cytokine levels in mice, thus reducing inflammation and improving OA without obvious gastric adverse events. These results provide a scientific basis for the clinical application of Tet in the treatment of OA.
Collapse
Affiliation(s)
- Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Zhi-Wei Rao
- Department of Pharmacy, Central Hospital of Xianning, the First Affiliate Hospital of Hubei University of Science and Technology, Xianning, 437100, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu-Ying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Yan Gao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Ze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Jeon J, Lee H, Jeon MS, Kim SJ, Choi C, Kim KW, Yang DJ, Lee S, Bae YS, Choi WI, Jung J, Eyun SI, Yang S. Blockade of Activin Receptor IIB Protects Arthritis Pathogenesis by Non-Amplification of Activin A-ACVR2B-NOX4 Axis Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205161. [PMID: 36950748 DOI: 10.1002/advs.202205161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Although activin receptor IIB (ACVR2B) is emerging as a novel pathogenic receptor, its ligand and assembled components (or assembly) are totally unknown in the context of osteoarthritis (OA) pathogenesis. The present results suggest that upregulation of ACVR2B and its assembly could affect osteoarthritic cartilage destruction. It is shown that the ACVR2B ligand, activin A, regulates catabolic factor expression through ACVR2B in OA development. Activin A Tg mice (Col2a1-Inhba) exhibit enhanced cartilage destruction, whereas heterozygous activin A KO mice (Inhba+/- ) show protection from cartilage destruction. In silico analysis suggests that the Activin A-ACVR2B axis is involved in Nox4-dependent ROS production. Activin A Tg:Nox4 KO (Col2a1-Inhba:Nox4-/- ) mice show inhibition of experimental OA pathogenesis. NOX4 directly binds to the C-terminal binding site on ACVR2B-ACVR1B and amplifies the pathogenic signal for cartilage destruction through SMAD2/3 signaling. Together, the findings reveal that the ACVR2B assembly, which comprises Activin A, ACVR2B, ACVR1B, Nox4, and AP-1-induced HIF-2α, accelerates OA development. Furthermore, it is shown that shRNA-mediated ACVR2B knockdown or trapping ligands of ACVR2B abrogate OA development by competitively disrupting the ACVR2B-Activin A interaction. These results suggest that the ACVR2B assembly is required to amplify osteoarthritic cartilage destruction and could be a potential therapeutic target in efforts to treat OA.
Collapse
Affiliation(s)
- Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seok-Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, 11765, Republic of Korea
| | - Cham Choi
- MicroCT Applications, 3rd floor, 11, Sumyeong-ro 1-gil, Gangseo-gu, Seoul, 07644, Republic of Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
- Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dong Joo Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
- Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- CIRNO, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Higa S, Nakata K, Karasawa Y, Ohwaki K. Comparative effectiveness of early initiation of oral nonsteroidal anti-inflammatory drug and oral acetaminophen therapies on the time to knee replacement in patients with knee osteoarthritis in Japan. BMC Musculoskelet Disord 2023; 24:297. [PMID: 37060072 PMCID: PMC10103473 DOI: 10.1186/s12891-023-06415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Although disease-modifying properties of nonsteroidal anti-inflammatory drugs (NSAIDs) for osteoarthritis (OA) have been reported, the effects of NSAIDs on OA progression remain controversial. The purpose of this study was to investigate the effect of early initiation of oral NSAID therapy on the progression of knee OA. METHODS In this retrospective cohort study, we extracted data of patients newly diagnosed with knee OA between November 2007 and October 2018 from a Japanese claims database. The primary outcome was the time to knee replacement (KR), and the secondary outcome was the time to composite event including joint lavage and debridement, osteotomy, or arthrodesis in addition to KR. Weighted Cox regression analysis with standardized mortality/morbidity ratio (SMR) weight was performed to compare the outcomes between patients prescribed oral NSAID (NSAID group) and those prescribed oral acetaminophen (APAP) (APAP group) early after a diagnosis of knee OA. Propensity scores were calculated using logistic regression conditioned on potential confounding factors, and SMR weights were calculated using the propensity scores. RESULTS The study population comprised 14,261 patients, who were divided into two groups as follows: 13,994 in the NSAID group and 267 in the APAP group. The mean ages of patients in the NSAID and APAP groups were 56.9 and 56.1 years, respectively. Furthermore, 62.01% and 68.16% patients in the NSAID and APAP groups, respectively, were female. The NSAID group had a reduced risk of KR compared with the APAP group in the analysis using SMR weighting (SMR-weighted hazard ratio, 0.19; 95% confidence interval, 0.05-0.78). While no statistically significant difference was found for the risk of composite event between the two groups (SMR-weighted hazard ratio, 0.56; 95% confidence interval, 0.16-1.91). CONCLUSIONS The risk of KR in the NSAID group was significantly lower than that in the APAP group after accounting for residual confounding using SMR weighting. This finding suggests that oral NSAID therapy early after the initial diagnosis is associated with a reduced risk of KR in patients with symptomatic knee OA.
Collapse
Affiliation(s)
- Shingo Higa
- Teikyo University Graduate School of Public Health, Tokyo, Japan.
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo, Japan.
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Karasawa
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo, Japan
| | - Kazuhiro Ohwaki
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| |
Collapse
|
12
|
Tellegen AR, Rudnik-Jansen I, Utomo L, Versteeg S, Beukers M, Maarschalkerweerd R, van Zuilen D, van Klaveren NJ, Houben K, Teske E, van Weeren PR, Karssemakers-Degen N, Mihov G, Thies J, Eijkelkamp N, Creemers LB, Meij BP, Tryfonidou MA. Sustained release of locally delivered celecoxib provides pain relief for osteoarthritis: a proof of concept in dog patients. Osteoarthritis Cartilage 2023; 31:351-362. [PMID: 36473675 DOI: 10.1016/j.joca.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Drug delivery platforms that allow for gradual drug release after intra-articular administration have become of much interest as a treatment strategy for osteoarthritis (OA). The aim of this study was to investigate the safety and efficacy of an intra-articular sustained release formulation containing celecoxib (CXB), a cyclooxygenase-2 (COX-2) selective inhibitor. METHODS Amino acid-based polyesteramide microspheres (PEAMs), a biodegradable and non-toxic platform, were loaded with CXB and employed in two in vivo models of arthritis: an acute inflammatory arthritis model in rats (n = 12), and a randomized controlled study in chronic OA dog patients (n = 30). In parallel, the bioactivity of sustained release of CXB was evaluated in monolayer cultures of primary dog chondrocytes under inflammatory conditions. RESULTS Sustained release of CXB did not alleviate acute arthritis signs in the rat arthritis model, based on pain measurements and synovitis severity. However, in OA dog patients, sustained release of CXB improved limb function as objective parameter of pain and quality of life based on gait analysis and owner questionnaires. It also decreased pain medication dependency over a 2-month period and caused no adverse effects. Prostaglandin E2 levels, a marker for inflammation, were lower in the synovial fluid of CXB-treated dog OA patients and in CXB-treated cultured dog chondrocytes. CONCLUSION These results show that local sustained release of CXB is less suitable to treat acute inflammation in arthritic joints, while safe and effective in treating pain in chronic OA in dogs.
Collapse
Affiliation(s)
- A R Tellegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - I Rudnik-Jansen
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - L Utomo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - S Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Beukers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - R Maarschalkerweerd
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - D van Zuilen
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - N J van Klaveren
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - K Houben
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - E Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P R van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - G Mihov
- DSM Biomedical, Geleen, the Netherlands
| | - J Thies
- DSM Biomedical, Geleen, the Netherlands
| | - N Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L B Creemers
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - B P Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M A Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Veronese N, Ecarnot F, Cheleschi S, Fioravanti A, Maggi S. Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet Disord 2022; 23:1084. [PMID: 36510167 PMCID: PMC9743630 DOI: 10.1186/s12891-022-06046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported that glucosamine sulfate (GS) can improve knee osteoarthritis (OA) symptomatology. In parallel, the disease-modifying effects of non-steroidal anti-inflammatory drugs (NSAIDs) in knee OA have also been investigated. However, limited literature has reported the combined effect of GS and NSAIDs. The aim of this scoping review is to describe the scope and volume of the literature investigating the potential benefits and synergistic effect of a combination of GS and NSAIDs in patients with knee OA. METHODS PubMed and Embase were searched for studies published from inception through April 2022, evaluating the effects of the combination of GS and NSAIDs in OA patients, versus either treatment alone. Data are reported narratively. RESULTS Five studies were included in this review; 4 were randomized control trials and one was a prospective observational study. The duration of combination treatment was 6 to 12 weeks. The combination was compared to celecoxib in 2 studies, meloxicam in 1, etoricoxib in 1, and a conventional NSAID in 1 (ibuprofen or piroxicam). All 5 studies reported that in patients with knee OA, the combination of GS plus NSAID yielded a significantly greater benefit than single-agent therapy, in terms of outcomes including pain reduction, function, joint stiffness, and markers of inflammatory activity and cartilage degradation. CONCLUSION The 5 studies included in this scoping review all report a significantly greater clinical benefit with a combination of GS plus NSAID compared to either treatment alone. The evidence supports efficacy in reducing pain, improving function, and possibly regulating joint damage. However, further randomized trials with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicola Veronese
- grid.10776.370000 0004 1762 5517Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - Fiona Ecarnot
- grid.7459.f0000 0001 2188 3779Research Unit EA3920, University of Franche-Comté, 25000 Besançon, France ,grid.411158.80000 0004 0638 9213Department of Cardiology, University Hospital Besancon, 3 Boulevard Fleming, 25000 Besancon, France
| | - Sara Cheleschi
- grid.411477.00000 0004 1759 0844Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Antonella Fioravanti
- grid.411477.00000 0004 1759 0844Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Stefania Maggi
- grid.418879.b0000 0004 1758 9800National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
14
|
Effects of platelet-rich plasma combined with collagen matrix on arthritis chondrocyte regeneration and nanoparticles on oxygen free radicals. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Elmaidomy AH, Mohamed EM, Aly HF, Younis EA, Shams SGE, Altemani FH, Alzubaidi MA, Almaghrabi M, Harbi AA, Alsenani F, Sayed AM, Abdelmohsen UR. Anti-Inflammatory and Antioxidant Properties of Malapterurus electricus Skin Fish Methanolic Extract in Arthritic Rats: Therapeutic and Protective Effects. Mar Drugs 2022; 20:639. [PMID: 36286462 PMCID: PMC9604635 DOI: 10.3390/md20100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
The protective and therapeutic anti-inflammatory and antioxidant potency of Malapterurus electricus (F. Malapteruridae) skin fish methanolic extract (FE) (300 mg/kg.b.wt/day for 7 days, orally) was tested in monosodium urate(MSU)-induced arthritic Wistar albino male rats' joints. Serum uric acid, TNF-α, IL-1β, NF-𝜅B, MDA, GSH, catalase, SOD, and glutathione reductase levels were all measured. According to the findings, FE significantly reduced uric acid levels and ankle swelling in both protective and therapeutic groups. Furthermore, it has anti-inflammatory effects by downregulating inflammatory cytokines, primarily through decreased oxidative stress and increased antioxidant status. All the aforementioned lesions were significantly improved in protected and treated rats with FE, according to histopathological findings. iNOS immunostaining revealed that protected and treated arthritic rats with FE had weak positive immune-reactive cells. Phytochemical analysis revealed that FE was high in fatty and amino acids. The most abundant compounds were vaccenic (24.52%), 9-octadecenoic (11.66%), palmitic (34.66%), stearic acids (14.63%), glycine (0.813 mg/100 mg), and alanine (1.645 mg/100 mg). Extensive molecular modelling and dynamics simulation experiments revealed that compound 4 has the potential to target and inhibit COX isoforms with a higher affinity for COX-2. As a result, we contend that FE could be a promising protective and therapeutic option for arthritis, aiding in the prevention and progression of this chronic inflammatory disease.
Collapse
Affiliation(s)
- Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa M. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza 12566, Egypt
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Eman A. Younis
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Shams Gamal Eldin Shams
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Bouhouth St., Dokki, Giza 12622, Egypt
| | - Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A. Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 42353, Saudi Arabia
| | - Adnan Al Harbi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
16
|
Analysis of the Anti-Inflammatory and Anti-Osteoarthritic Potential of Flonat Fast®, a Combination of Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum), Evaluated in In Vitro Models of Inflammation Relevant to Osteoarthritis. Pharmaceuticals (Basel) 2022; 15:ph15101263. [PMID: 36297375 PMCID: PMC9609228 DOI: 10.3390/ph15101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a joint disease characterized by inflammation of the synovium, angiogenesis, cartilage degradation, and osteophyte formation. Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum) are plants which extracts, together to Bromelain and Escin (Aesculus hippocastanum) are traditionally used in OA. However, their mechanistic role remains unclear. We aimed to investigate whether these bioactives alone or in combination (as in Flonat Fast®) can suppress TNF-α-induced inflammation, angiogenesis, and osteophyte formation using two cell models involved in OA: endothelial cells and monocytes. Each plant extract was evaluated for its polyphenol content, antioxidant activity, and toxicity. In endothelial cells and monocytes, expression of genes involved in OA was assessed, functional assays for inflammation and angiogenesis were performed, and impairment of reactive oxygen species production (ROS) was evaluated. Exposure of cells to the bioactives alone and in combination before cytokine stimulation resulted in differential counterregulation of several gene and protein expressions, including those for cyclooxygenases-2, metalloproteinase-9, transforming growth factor β1, and bone morphogenic protein-2. We demonstrated that these bioactives modulated monocyte adhesion to endothelial cells as well as cell migration and endothelial angiogenesis. Consistent with radical scavenging activity in the cell-free system, the bioactives curbed TNF-α-stimulated intracellular ROS production. We confirmed the potential anti-inflammatory and antiangiogenic effects of the combination of Harpagophytum procumbens, Boswellia, Curcuma, Bromelain, and Escin and provided new mechanistic evidence for their use in OA. However, further clinical studies are needed to evaluate the true clinical utility of these bioactives as supportive, preventive, and therapeutic agents.
Collapse
|
17
|
Steiner BUK, Konkle BA. Exploring a potential role for selective COX-2 inhibitors for the prevention of hemophilic arthropathy. Haemophilia 2022; 28:e254-e255. [PMID: 36097142 DOI: 10.1111/hae.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno U K Steiner
- Washington Center for Bleeding Disorders, University of Washington, Seattle, Washington, USA
| | - Barbara A Konkle
- Washington Center for Bleeding Disorders, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Kwak SG, Jung HJ, Choi WK. Integrative medicine in patients with degenerative arthritis of the knee: A pilot randomized control study. Medicine (Baltimore) 2022; 101:e30385. [PMID: 36042635 PMCID: PMC9410661 DOI: 10.1097/md.0000000000030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We aimed to comparatively analyze the effect of integrative medicine treatments (lifestyle change education, use of anti-inflammatory drugs, acupuncture, manual therapy-type massage) and conventional medical treatments (lifestyle change education and use of anti-inflammatory drugs) on pain control, knee function improvement, and quality of life improvement in patients with degenerative knee arthritis. METHODS In this study, 30 patients were randomly divided into the control group (n = 15) and the experimental group (n = 15). Both groups were prescribed anti-inflammatory drugs and lifestyle change education for 12 weeks. The experimental group underwent acupuncture including electroacupuncture, moxibustion, and manual therapy-type massage 12 times during the first 6 weeks. Evaluations were performed at 3 visits: visit 1 (before treatment), visit 2 (6 weeks after initial treatment), and visit 3 (12 weeks after initial treatment). The effect of each treatment was measured using Visual Analog Scale (VAS, 0-10), Western Ontario and McMaster Universities index (WOMAC), and SF-36. RESULTS From visit 1 to visit 2, the mean value of VAS decreased by 0.72 and 3.17 in the control and experimental groups, respectively. From visit 2 to visit 3, the mean VAS value decreased by 0.25 in the control group but increased by 0.87 in the experimental group. Among the sub-area of SF-36, the physical role restriction area and mental health area showed significant differences between the 2 groups over time (P = .024, P = .006). CONCLUSION Integrative medicine treatment has superior effects in pain control over conventional medical treatment. In integrative medicine treatment, pain control tends to decrease with time, but still superior over conventional medical treatment up to 6 weeks after treatment (12 weeks after initial treatment).
Collapse
Affiliation(s)
- Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Jung Jung
- Department of Diagnostics, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Won-Kee Choi
- Department of Orthopaedic Surgery, College of Medicine, Daegu Catholic University, Daegu, Republic of Korea
- *Correspondence: Won-Kee Choi, Department of Orthopaedic Surgery, Daegu Catholic University Hospital, 3056-6, Daemyung-4-dong, Nam-gu, Daegu, Republic of Korea (e-mail: )
| |
Collapse
|
19
|
Haartmans MJ, Timur UT, Emanuel KS, Caron MM, Jeuken RM, Welting TJ, van Osch GJ, Heeren RM, Cillero-Pastor B, Emans PJ. Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage Ex Vivo and in a Rat Osteoarthritis Model. Cartilage 2022; 13:19476035221115541. [PMID: 35932105 PMCID: PMC9364198 DOI: 10.1177/19476035221115541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The potential chondroprotective effect of celecoxib, a nonsteroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor used to reduce pain and inflammation in knee osteoarthritis patients, is disputed. This study aimed at investigating the chondroprotective effects of celecoxib on (1) human articular cartilage explants and (2) in an in vivo osteoarthritis rat model. DESIGN Articular cartilage explants from 16 osteoarthritis patients were cultured for 24 hours with celecoxib or vehicle. Secreted prostaglandins (prostaglandin E2, prostaglandin F2α, prostaglandin D2) and thromboxane B2 (TXB2) concentrations were determined in medium by ELISA, and protein regulation was measured with label-free proteomics. Cartilage samples from 7 of these patients were analyzed for gene expression using real-time quantitative polymerase chain reaction. To investigate the chondroprotective effect of celecoxib in vivo, 14 rats received an intra-articular injection of celecoxib or 0.9% NaCl after osteoarthritis induction by anterior cruciate ligament transection and partial medial meniscectomy (ACLT/pMMx model). Histopathological scoring was used to evaluate osteoarthritis severity 12 weeks after injection. RESULTS Secretion of prostaglandins, target of Nesh-SH3 (ABI3BP), and osteonectin proteins decreased, whereas tissue inhibitor of metalloproteinase 2 (TIMP-2) increased significantly after celecoxib treatment in the human (ex vivo) explant culture. Gene expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS4/5) and metalloproteinase 13 (MMP13) was significantly reduced after celecoxib treatment in human cartilage explants. Cartilage degeneration was reduced significantly in an in vivo osteoarthritis knee rat model. CONCLUSIONS Our data demonstrated that celecoxib acts chondroprotective on cartilage ex vivo and a single intra-articular bolus injection has a chondroprotective effect in vivo.
Collapse
Affiliation(s)
- Mirella J.J. Haartmans
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Kaj S. Emanuel
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marjolein M.J. Caron
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Ralph M. Jeuken
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Tim J.M. Welting
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports
Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The
Netherlands,Department of Otorhinolaryngology,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands,MERLN Institute for Technology-Inspired
Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering,
Maastricht University, Maastricht, The Netherlands,Dr. Berta Cillero-Pastor, Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass
Spectrometry, Maastricht University, Maastricht, The Netherlands; MERLN
Institute for Technology-Inspired Regenerative Medicine, Department of Cell
Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel
40, 6229 ER, Maastricht, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Pieter J. Emans
- Laboratory for Experimental
Orthopedics, Joint Preserving Clinic, Department of Orthopaedic Surgery, Maastricht
University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
20
|
Guo X, Lou J, Wang F, Fan D, Qin Z. Recent Advances in Nano-Therapeutic Strategies for Osteoarthritis. Front Pharmacol 2022; 13:924387. [PMID: 35800449 PMCID: PMC9253376 DOI: 10.3389/fphar.2022.924387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and the leading cause of disability globally. It tends to occur in middle age or due to an injury or obesity. OA occurs with the onset of symptoms, including joint swelling, joint effusion, and limited movement at a late stage of the disease, which leads to teratogenesis and loss of joint function. During the pathogenesis of this degenerative joint lesion, several local inflammatory responses are activated, resulting in synovial proliferation and pannus formation that facilitates the destruction of the bone and the articular cartilage. The commonly used drugs for the clinical diagnosis and treatment of OA have limitations such as low bioavailability, short half-life, poor targeting, and high systemic toxicity. With the application of nanomaterials and intelligent nanomedicines, novel nanotherapeutic strategies have shown more specific targeting, prolonged half-life, refined bioavailability, and reduced systemic toxicity, compared to the existing medications. In this review, we summarized the recent advancements in new nanotherapeutic strategies for OA and provided suggestions for improving the treatment of OA.
Collapse
Affiliation(s)
- Xinjing Guo
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| |
Collapse
|
21
|
van Bergen E, Monnikhof M, Lafeber F, Schutgens R, Mastbergen S, van Vulpen L. The fear for adverse bleeding and cardiovascular events in hemophilia patients using (non-)selective non-steroidal anti-inflammatory drugs: A systematic review reporting on safety. Blood Rev 2022; 56:100987. [DOI: 10.1016/j.blre.2022.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
22
|
Long-term anti-inflammatory effects of injectable celecoxib nanoparticle hydrogels for Achilles tendon regeneration. Acta Biomater 2022; 144:183-194. [PMID: 35331938 DOI: 10.1016/j.actbio.2022.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.
Collapse
|
23
|
The Efficacy of Harpagophytum procumbens (Teltonal) in Patients with Knee Osteoarthritis: A Randomized Active-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5596892. [PMID: 34712343 PMCID: PMC8548091 DOI: 10.1155/2021/5596892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023]
Abstract
Purpose The high prevalence of knee osteoarthritis (KOA) is a major cause of disability among elders. NSAIDs are recommended to reduce KOA patients' symptoms, but their adverse side effects limit their consumption. In this study, we evaluated the effectiveness of Harpagophytum procumbens compared to a routine NSAID (meloxicam) on pain reduction and functional improvement of KOA patients. Patients and Methods. Sixty patients aged 40–60 years, with painful knee osteoarthritis (grades 1-2 of Kellgren–Lawrence scale) for at least one month, were randomized into two groups with different routine medication periods. Group A consisted of daily administration of two Harpagophytum procumbens (Teltonal) tablets (2∗480 mg) for one month, and group B consisted of daily administration of meloxicam (15 mg) for ten days. The visual analogue scale (VAS), Western Ontario McMaster University Osteoarthritis Index (WOMAC), Oxford Knee Scale (OKS), and patient satisfaction were evaluated at the baseline and after 2, 4, and 8 weeks. Results There were no statistically significant differences between demographic characteristics, pain intensity, and function scores before the treatment. VAS, OKS, and WOMAC scores improved in both groups (p < 0.001) over time, but no significant superiority was shown; after 8 weeks: VAS (Teltonal (4.80 ± 1.80) vs. meloxicam (5.06 ± 1.43)), OKS (34.06 ± 4.38, 34.00 ± 7.87, Teltonal vs. meloxicam, respectively), and WOMAC scores (25.73 ± 10.11 Teltonal vs. 26.20 ± 13.94, meloxicam). Conclusion Teltonal is an effective and safe treatment in patients with mild KOA in the short term. However, no significant superiority was shown in using Teltonal or meloxicam, in people who cannot take NSAIDs, it can be a good alternative, although difference in medication periods should be considered.
Collapse
|
24
|
Paglia DN, Kanjilal D, Kadkoy Y, Moskonas S, Wetterstrand C, Lin A, Galloway J, Tompson J, Culbertson MD, O’Connor JP. Naproxen treatment inhibits articular cartilage loss in a rat model of osteoarthritis. J Orthop Res 2021; 39:2252-2259. [PMID: 33274763 PMCID: PMC8175455 DOI: 10.1002/jor.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
The effects of naproxen, a nonsteroidal anti-inflammatory drug (NSAID), on articular cartilage degeneration in female Sprague-Dawley rats was examined. Osteoarthritis (OA) was induced by destabilization of the medial meniscus (DMM) in each knee. Rats were treated with acetaminophen (60 mg/kg), naproxen (8 mg/kg), or 1% carboxymethylcellulose (placebo) by oral gavage twice daily for 3 weeks, beginning 2 weeks after surgery. OA severity was assessed by histological Osteoarthritis Research Society International (OARSI) scoring and by measuring proximal tibia cartilage depth using contrast enhanced µCT (n = 6 per group) in specimens collected at 2, 5, and 7 weeks after surgery as well as on pristine knees. Medial cartilage OARSI scores from the DMM knees of naproxen-treated rats were statistically lower (i.e., better) than the medial cartilage OARSI scores from the DMM knees of placebo-treated rats at 5-weeks (8.7 ± 3.6 vs. 13.2 ± 2.4, p = 0.025) and 7-weeks (9.5 ± 1.2 vs. 12.5 ± 2.5, p = 0.024) after surgery. At 5 weeks after DMM surgery, medial articular cartilage depth in the proximal tibia specimens was significantly greater in the naproxen (1.78 ± 0.26 mm, p = 0.005) and acetaminophen (1.94 ± 0.12 mm, p < 0.001) treated rats as compared with placebo-treated rats (1.34 ± 0.24 mm). However, at 7 weeks (2 weeks after drug withdrawal), medial articular cartilage depth for acetaminophen-treated rats (1.36 ± 0.29 mm) was significantly reduced compared with specimens from the naproxen-treated rats (1.88 ± 0.14 mm; p = 0.004). The results indicate that naproxen treatment reduced articular cartilage degradation in the rat DMM model during and after naproxen treatment.
Collapse
Affiliation(s)
| | | | - Yazan Kadkoy
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | - Anthony Lin
- Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | - J. Patrick O’Connor
- Rutgers-New Jersey Medical School, Newark, NJ, USA
- School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
25
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Pemmari A, Tuure L, Hämäläinen M, Leppänen T, Moilanen T, Moilanen E. Effects of ibuprofen on gene expression in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. RMD Open 2021; 7:rmdopen-2021-001657. [PMID: 34497153 PMCID: PMC8438934 DOI: 10.1136/rmdopen-2021-001657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs are a widely used symptomatic treatment in osteoarthritis (OA), but their effects on cartilage remain controversial. We studied the effects of ibuprofen on gene expression in chondrocytes from patients with OA using RNA-Seq. Chondrocytes were isolated from cartilage samples of patients with OA undergoing knee replacement surgery, cultured with ibuprofen, and total mRNA was sequenced. Differentially expressed genes were identified with edgeR using pairwise comparisons. Functional analysis was performed using ingenuity pathway analysis (IPA). Ibuprofen did not induce statistically significant changes in chondrocyte transcriptome when the cells were cultured in the absence of added cytokines. In inflammatory conditions (when the cells were exposed to the OA-related cytokine interleukin (IL)-1β), 51 genes were upregulated and 42 downregulated by ibuprofen with fold change >1.5 in either direction. The upregulated genes included anti-inflammatory factors and genes associated with cell adhesion, while several mediators of inflammation were among the downregulated genes. IPA analysis revealed ibuprofen having modulating effects on inflammation-related pathways such as integrin, IL-8, ERK/MAPK and cAMP-mediated signalling pathways. In conclusion, the effects of ibuprofen on primary OA chondrocyte transcriptome appear to be neutral in normal conditions, but ibuprofen may shift chondrocyte transcriptome towards anti-inflammatory phenotype in inflammatory environments.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
27
|
Cyclooxygenase-2 regulates PTHrP transcription in human articular chondrocytes and is involved in the pathophysiology of osteoarthritis in rats. J Orthop Translat 2021; 30:16-30. [PMID: 34466385 PMCID: PMC8374645 DOI: 10.1016/j.jot.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2) inhibitors are prescribed for the management of osteoarthritis (OA)-associated pain and inflammation. However, the role of COX-2 in normal and osteoarthritic articular chondrocytes has not been well investigated. We hypothesize that COX-2 plays a role in articular chondrocytes under normal conditions and during OA progression. Methods In vivo COX-2 levels in articular cartilage of normal and papain-induced osteoarthritic rats were compared. The role of COX-2 in human articular chondrocytes (HACs) was tested in vitro by COX-2 overexpression or activity inhibition. The levels of COX-2 and marker gene for normal function or articular cartilage degeneration were evaluated: mRNA by qRT-PCR; proteins by western blotting or immunohistochemistry; and glycosaminoglycan (GAG) by Safranin O-fast green staining. Parathyroid hormone-related protein (PTHrP) promoter activity was detected with luciferase reporter assays. Results In the OA rat study, COX-2 and PTHrP were simultaneously increased in osteoarthritic rat chondrocytes, while increased PTHrP levels were reduced by celecoxib, a COX-2 selective inhibitor. The levels of normal cartilage matrices, GAG and type II collagen decreased, while markers of degeneration, collagen type X and MMP13 were elevated in osteoarthritic articular chondrocytes. Celecoxib rescued the loss of GAG and the increased collagen type X and MMP13 levels. In vitro, COX-2 overexpression in HACs significantly increased Col2a1, Col10a1, PTHrP and MMP13 mRNA expression, which was decreased when COX-2 activity was suppressed. More importantly, COX-2 overexpression upregulated the PTHrP transcription, mRNA expression and protein levels. Conclusion COX-2 plays a pathophysiological role by preventing terminal differentiation of articular chondrocytes by upregulating PTHrP expression at the early stage of OA progression. The Translational potential of this article COX2 up-regulates PTHrP expression in normal and OA articular chondrocytes.
Collapse
|
28
|
A Combination of Celecoxib and Glucosamine Sulfate Has Anti-Inflammatory and Chondroprotective Effects: Results from an In Vitro Study on Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms22168980. [PMID: 34445685 PMCID: PMC8396455 DOI: 10.3390/ijms22168980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigated the possible anti-inflammatory and chondroprotective effects of a combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic (OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination with IL-1β (10 ng/mL) and a specific nuclear factor (NF)-κB inhibitor (BAY-11-7082, 1 µM). Gene expression and release of some pro-inflammatory mediators, metalloproteinases (MMPs), and type II collagen (Col2a1) were evaluated by qRT-PCR and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry; B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-κB subunits were analyzed by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-1β significantly reduced expression and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and MMPs, while it increased Col2a1, compared to baseline or IL-1β. Both drugs reduced apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination demonstrated an increased inhibitory effect on IL-1β than that observed by each single treatment. Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress through the modulation of the NF-κB pathway, supporting their combined use for the treatment of OA.
Collapse
|
29
|
Chen L, Tiwari SR, Zhang Y, Zhang J, Sun Y. Facile Synthesis of Hollow MnO 2 Nanoparticles for Reactive Oxygen Species Scavenging in Osteoarthritis. ACS Biomater Sci Eng 2021; 7:1686-1692. [PMID: 33787210 DOI: 10.1021/acsbiomaterials.1c00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease whose molecular mechanism has not been revealed clearly, and there is still no effective approach to cure OA completely. Recently, reactive oxygen species (ROS) are exposed as an important mediator of OA's inflammatory response, and it has been regarded as a therapeutic target for OA treatment. MnO2 nanoparticles possess good biocompatibility and can act as an artificial nanoenzyme to scavenge ROS in various diseases effectively. In this study, the modified Stöber method was applied to synthesize hollow MnO2 (H-MnO2) and H-MnO2 was modified with NH2-PEG-NH2, which possesses excellent biological stability and biocompatibility. It induced a change in the articular cartilage structure changes in vivo, with the knee tissue staining and micro-CT scanning of the whole knee suggesting that H-MnO2 nanoparticles could effectively remove ROS and significantly relieve the inflammatory response of OA without obvious side effects. This study reveals the therapeutic effects of MnO2-based nanomedicine toward OA, which provides potential alternative therapeutic options for patients with inflammation tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Shashi Ranjan Tiwari
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yingqi Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Jincheng Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yeqing Sun
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| |
Collapse
|
30
|
Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Modulation of Inflammatory Mediators by Polymeric Nanoparticles Loaded with Anti-Inflammatory Drugs. Pharmaceutics 2021; 13:pharmaceutics13020290. [PMID: 33672354 PMCID: PMC7926915 DOI: 10.3390/pharmaceutics13020290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line treatment of osteoarthritis is based on anti-inflammatory drugs, the most currently used being nonsteroidal anti-inflammatory drugs, selective cyclooxygenase 2 (COX-2) inhibitors and corticoids. Most of them present cytotoxicity and low bioavailability in physiological conditions, making necessary the administration of high drug concentrations causing several side effects. The goal of this work was to encapsulate three hydrophobic anti-inflammatory drugs of different natures (celecoxib, tenoxicam and dexamethasone) into core-shell terpolymer nanoparticles with potential applications in osteoarthritis. Nanoparticles presented hydrodynamic diameters between 110 and 130 nm and almost neutral surface charges (between −1 and −5 mV). Encapsulation efficiencies were highly dependent on the loaded drug and its water solubility, having higher values for celecoxib (39–72%) followed by tenoxicam (20–24%) and dexamethasone (14–26%). Nanoencapsulation reduced celecoxib and dexamethasone cytotoxicity in human articular chondrocytes and murine RAW264.7 macrophages. Moreover, the three loaded systems did not show cytotoxic effects in a wide range of concentrations. Celecoxib and dexamethasone-loaded nanoparticles reduced the release of different inflammatory mediators (NO, TNF-α, IL-1β, IL-6, PGE2 and IL-10) by lipopolysaccharide (LPS)-stimulated RAW264.7. Tenoxicam-loaded nanoparticles reduced NO and PGE2 production, although an overexpression of IL-1β, IL-6 and IL-10 was observed. Finally, all nanoparticles proved to be biocompatible in a subcutaneous injection model in rats. These findings suggest that these loaded nanoparticles could be suitable candidates for the treatment of inflammatory processes associated with osteoarthritis due to their demonstrated in vitro activity as regulators of inflammatory mediator production.
Collapse
Affiliation(s)
- Gloria María Pontes-Quero
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, 28760 Madrid, Spain;
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Lorena Benito-Garzón
- Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.B.-G.); (M.R.A.); Tel.: +34-915-622-900 (M.R.A.)
| | - Juan Pérez Cano
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, 28760 Madrid, Spain;
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Correspondence: (L.B.-G.); (M.R.A.); Tel.: +34-915-622-900 (M.R.A.)
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
31
|
Perry TA, Wang X, Nevitt M, Abdelshaheed C, Arden N, Hunter DJ. Association between current medication use and progression of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology (Oxford) 2021; 60:4624-4632. [PMID: 33502488 PMCID: PMC8487312 DOI: 10.1093/rheumatology/keab059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Use of specific medications may accelerate the progression of radiographic knee OA (RKOA). Our aim was to examine the effect of medication use on the progression of RKOA. Methods We used longitudinal data from the Osteoarthritis Initiative (OAI), an observational study of risk factors for knee OA. At baseline, we selected participants with RKOA (Kellgren–Lawrence grade ≥2) and excluded those with a history of knee-related injury/surgery and other musculoskeletal disorders. Current medication use (use/non-use in the previous 30 days) and radiographic medial minimum joint space width (mJSW) data were available at baseline and annually up to 96 months follow-up. We used random effects, panel regression to assess the association between current medication use (non-users as reference group) and change in mJSW. Results Of 2054 eligible participants, 2003 participants with baseline mJSW data were included [55.7% female, mean age 63.3 (s.d. 8.98) years]. Of seven medication classes, at baseline NSAIDs were the most frequently used analgesia (14.7%), anti-histamine (10.4%) use was frequent and the following comorbidity medications were used most frequently: statins (27.4%), anti-hypertensives (up to 15.0%), anti-depressant/anxiolytics/psychotropics (14.0%), osteoporosis-related medication (10.9%) and diabetes-related medication (6.9%). Compared with current non-users, current use of NSAIDs was associated with a loss of mJSW (b = −0.042, 95% CI −0.08, −0.0004). No other associations were observed. Conclusions In current users of NSAIDs, mJSW loss was increased compared with current non-users in participants with RKOA. Clinical trials are required to assess the potential disease-modifying effects of these medications.
Collapse
Affiliation(s)
- Thomas A Perry
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom.,Institute of Bone and Joint Research, Rheumatology Department, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Xia Wang
- Institute of Bone and Joint Research, Rheumatology Department, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Nevitt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Christina Abdelshaheed
- Faculty of Medicine and Health, School of Public Health, University of Sydney, New South Wales, Australia.,Institute for Musculoskeletal Health, University of Sydney, Sydney, Australia
| | - Nigel Arden
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom.,MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - David J Hunter
- Institute of Bone and Joint Research, Rheumatology Department, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Chang MC, Chiang PF, Kuo YJ, Peng CL, Chen KY, Chiang YC. Hyaluronan-Loaded Liposomal Dexamethasone-Diclofenac Nanoparticles for Local Osteoarthritis Treatment. Int J Mol Sci 2021; 22:ijms22020665. [PMID: 33440880 PMCID: PMC7826786 DOI: 10.3390/ijms22020665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) remains one of the common degenerative joint diseases and a major cause of pain and disability in older adult individuals. Oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) (such as diclofenac, DIC) or intra-articular injected gluco-corticosteroids (such as dexamethasone, DEX) were the conventional treatment strategies for OA to reduce joint pain. Current limitations for both drugs including severe adverse effects with risks of toxicity were noted. The aim of the present study was to generate a novel OA treatment formulation hyaluronic acid (HA)-Liposomal (Lipo)-DIC/DEX to combat joint pain. The formulation was prepared by constructing DIC with DEX-loaded nanostructured lipid carriers Lipo-DIC/DEX mixed with hyaluronic acid (HA) for prolonged OA application. The prepared Lipo-DIC/DEX nanoparticles revealed the size as 103.6 ± 0.3 nm on average, zeta potential as −22.3 ± 4.6 mV, the entrapment efficiency of 90.5 ± 5.6%, and the DIC and DEX content was 22.5 ± 4.1 and 2.5 ± 0.6%, respectively. Evidence indicated that HA-Lipo-DIC/DEX could reach the effective working concentration in 4 h and sustained the drug-releasing time for at least 168 h. No significant toxicities but increased cell numbers were observed when HA-Lipo-DIC/DEX co-cultured with articular chondrocytes cells. Using live-animal In vivo imaging system (IVIS), intra-articular injection of each HA-Lipo-DIC/DEX sufficed to reduce knee joint inflammation in OA mice over a time span of four weeks. Single-dose injection could reduce the inflammation volume down to 77.5 ± 5.1% from initial over that time span. Our results provided the novel drug-releasing formulation with safety and efficiency which could be a promising system for osteoarthritis pain control.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Ping-Fang Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Yu-Jen Kuo
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Kuan-Yin Chen
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, Medicine College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71842); Fax: +886-2-23114965
| |
Collapse
|
33
|
Fayet M, Hagen M. Pain characteristics and biomarkers in treatment approaches for osteoarthritis pain. Pain Manag 2021; 11:59-73. [DOI: 10.2217/pmt-2020-0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a progressive disease and OA pain intensity is related to ongoing pathophysiological changes. However, OA pain is complex and multimodal; its characteristics, including severity, localization and the stimuli that elicit it, can change as the disease progresses and differ greatly among patients. Understanding mechanisms underlying specific pain characteristics may help guide clinicians in choosing appropriate treatments, targeting treatments to those patients most likely to benefit. Associations have been demonstrated between biomarkers and some characteristics of OA pain, and to processes linked to the shift in pain characteristics over the course of OA. This article examines how understanding OA pain characteristics and their relation to the disease process could inform treatment choice when applying well-established treatment guidelines.
Collapse
Affiliation(s)
- Marina Fayet
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| | - Martina Hagen
- GSK Consumer Healthcare S.A., Route de l'Etraz 2, 1260, Nyon, Switzerland
| |
Collapse
|
34
|
Madzia A, Agrawal C, Jarit P, Petterson S, Plancher K, Ortiz R. Sustained Acoustic Medicine Combined with A Diclofenac Ultrasound Coupling Patch for the Rapid Symptomatic Relief of Knee Osteoarthritis: Multi-Site Clinical Efficacy Study. Open Orthop J 2020; 14:176-185. [PMID: 33408796 PMCID: PMC7784557 DOI: 10.2174/1874325002014010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sustained Acoustic Medicine (SAM) is an emerging, non-invasive, non-narcotic, home-use ultrasound therapy for the daily treatment of joint pain. The aim of this multi-site clinical study was to examine the efficacy of long-duration continuous ultrasound combined with a 1% diclofenac ultrasound gel patch in treating pain and improving function in patients with knee osteoarthritis. METHODS The Consolidated Standards of Reporting Trials (CONSORT) were followed. Thirty-two (32) patients (18-males, 14-females) 54 years of average age with moderate to severe knee pain and radiographically confirmed knee osteoarthritis (Kellgren-Lawrence (KL) grade II/III) were enrolled for treatment with the SAM device and diclofenac patch applied daily to the treated knee. SAM ultrasound (3 MHz, 0.132 W/cm2, 1.3 W) and 6 grams of 1% diclofenac were applied with a wearable device for 4 hours daily for 1 week, delivering 18,720 Joules of ultrasound energy per treatment. The primary outcome was the daily change in pain intensity using a numeric rating scale (NRS 0-10), which was assessed prior to intervention (baseline, day 1), before and after each daily treatment, and after 1 week of daily treatment (day 7). Rapid responders were classified as those patients exhibiting greater than a 1-point reduction in pain following the first treatment. Change in Western Ontario McMaster Osteoarthritis Questionnaire (WOMAC) score from baseline to day 7 was the secondary functional outcome measure. Additionally, a series of daily usability and user experience questions related to devising ease of use, functionality, safety, and effectiveness, were collected. Data were analyzed using t-tests and repeated measure ANOVAs. RESULTS The study had a 94% retention rate, and there were no adverse events or study-related complaints across 224 unique treatment sessions. Rapid responders included 75% of the study population. Patients exhibited a significant mean NRS pain reduction over the 7-day study of 2.06-points (50%) for all subjects (n=32, p<0.001) and 2.96-points (70%) for rapid responders (n=24, p<0.001). The WOMAC functional score significantly improved by 351 points for all subjects (n=32, p<0.001), and 510 points for rapid responders (n=24, p<0.001). Over 95% of patients found the device safe, effective and easy to use, and would continue treatment for their knee OA symptoms. CONCLUSION Sustained Acoustic Medicine combined with 1% topical diclofenac rapidly reduced pain and improved function in patients with moderate to severe osteoarthritis-related knee pain. The clinical findings suggest that this treatment approach may be used as a conservative, non-invasive treatment option for patients with knee osteoarthritis. Additional research is warranted on non-weight bearing joints of the musculoskeletal system as well as different topical drugs that could benefit from improved localized delivery.Clinical Trial Registry Number: (NCT04391842).
Collapse
Affiliation(s)
- Alex Madzia
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Chirag Agrawal
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Paddy Jarit
- Sport and Orthopaedic Physical Therapy, Fairfield, CT 06824, USA
| | | | - Kevin Plancher
- Albert Einstein College of Medicine, Bronx, NY, New York, USA
- Weill Cornell Medical College, New York, NY 13053, USA
- Plancher Orthopaedics & Sports Medicine, New York, NY 13053, USA
| | - Ralph Ortiz
- Medical Pain Consultants, Dryden, NY 13053, USA
| |
Collapse
|
35
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
36
|
Herbal Composition LI73014F2 Alleviates Articular Cartilage Damage and Inflammatory Response in Monosodium Iodoacetate-Induced Osteoarthritis in Rats. Molecules 2020; 25:molecules25225467. [PMID: 33238379 PMCID: PMC7700416 DOI: 10.3390/molecules25225467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1β level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.
Collapse
|
37
|
Lima EP, Gonçalves OH, Ames FQ, Castro-Hoshino LV, Leimann FV, Cuman RKN, Comar JF, Bersani-Amado CA. Anti-inflammatory and Antioxidant Activity of Nanoencapsulated Curcuminoids Extracted from Curcuma longa L. in a Model of Cutaneous Inflammation. Inflammation 2020; 44:604-616. [PMID: 33164160 DOI: 10.1007/s10753-020-01360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
The present study evaluated the anti-inflammatory effect of nanoencapsulated curcuminoid preparations of poly(vinyl pyrrolidone) (Nano-cur) and free curcuminoids (Cur) in an experimental model of croton oil-induced cutaneous inflammation. Male Swiss mice, weighing 25-30 g, received oral treatment by gavage 1 h before CO application or topical treatment immediately after CO application (200 μg diluted in 70% acetone) with a single dose of Cur and Nano-cur. After 6 h, the animals were anesthetized and euthanized. The ears were sectioned into disks (6.0 mm diameter) and used to determine edema, myeloperoxidase (MPO) activity, and oxidative stress. Photoacoustic spectroscopy (PAS) was used to evaluate the percutaneous penetration of Cur and Nano-cur. Topical treatment with both preparations had a similar inhibitory effect on the development of edema, MPO activity, and the oxidative response. The PAS technique showed that the percutaneous permeation of both topically applied preparations was similar. Oral Nano-cur administration exerted a higher anti-inflammatory effect than Cur. Topical Cur and Nano-cur application at the same dose similarly inhibited the inflammatory and oxidative responses. Oral Nano-cur administration inhibited such responses at doses that were eight times lower than Cur, suggesting the better bioavailability of Nano-cur compared with Cur.Graphical abstract.
Collapse
Affiliation(s)
- Emanuele P Lima
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Odinei H Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), P O Box 271, BR 369, km 0.5, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Q Ames
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Lidiane V Castro-Hoshino
- Department of Physics, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Fernanda V Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), P O Box 271, BR 369, km 0.5, Campo Mourão, PR, 87301-006, Brazil
| | - Roberto K N Cuman
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Ciomar A Bersani-Amado
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil.
| |
Collapse
|
38
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
39
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
40
|
Effects of Dexmedetomidine on the Pharmacokinetics of Parecoxib and Its Metabolite Valdecoxib in Beagles by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1563874. [PMID: 32832543 PMCID: PMC7428950 DOI: 10.1155/2020/1563874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
A sensitive and reliable ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of parecoxib and its metabolite valdecoxib in beagles. The effects of dexmedetomidine on the pharmacokinetics of parecoxib and valdecoxib in beagles were studied. The plasma was precipitated by acetonitrile, and the two analytes were separated on an Acquity UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm); the mobile phase was acetonitrile and 0.1% formic acid with gradient mode, and the flow rate was 0.4 mL/min. In the negative ion mode, the two analytes and internal standard (IS) were monitored by multiple reaction monitoring (MRM), and the mass transition pairs were as follows: m/z 369.1 → 119.1 for parecoxib, m/z 313.0 → 118.0 for valdecoxib, and m/z 380.0 → 316.0 for celecoxib (IS). Six beagles were designed as a double cycle self-control experiment. In the first cycle, after intramuscular injection of parecoxib 1.33 mg/kg, 1.0 mL blood samples were collected at different times (group A). In the second cycle, the same six beagles were intravenously injected with 2 μg/kg dexmedetomidine for 7 days after one week of washing period. On day 7, after intravenous injection of 2 μg/kg dexmedetomidine for 0.5 hours, 6 beagle dogs were intramuscularly injected with 1.33 mg/kg parecoxib, and blood samples were collected at different time points (group A). The concentration of parecoxib and valdecoxib was detected by UPLC-MS/MS, and the main pharmacokinetic parameters were calculated by DAS 2.0 software. Under the experimental conditions, the method has a good linear relationship for both analytes. The interday and intraday precision was less than 8.07%; the accuracy values were from -1.20% to 2.76%. Cmax of parecoxib in group A and group B was 2148.59 ± 406.13 ng/mL and 2100.49 ± 356.94 ng/mL, t1/2 was 0.85 ± 0.36 h and 0.85 ± 0.36 h, and AUC(0‐t) was 2429.96 ± 323.22 ng·h/mL and 2506.38 ± 544.83 ng·h/mL, respectively. Cmax of valdecoxib in group A and group B was 2059.15 ± 281.86 ng/mL and 2837.39 ± 276.78 ng/mL, t1/2 was 2.44 ± 1.55 h and 2.91 ± 1.27 h, and AUC(0‐t) was 4971.61 ± 696.56 ng·h/mL and 6770.65 ± 453.25 ng·h/mL, respectively. There was no significant change in the pharmacokinetics of parecoxib in groups A and B. Cmax and AUC(0 − ∞) of valdecoxib in group A were 37.79% and 36.19% higher than those in group B, respectively, and t1/2 was increased from 2.44 h to 2.91 h. Vz/F and CLz/F were correspondingly reduced, respectively. The developed UPLC-MS/MS method for simultaneous determination of parecoxib and valdecoxib in beagle plasma was specific, accurate, rapid, and suitable for the pharmacokinetics and drug-drug interactions of parecoxib and valdecoxib. Dexmedetomidine can inhibit the metabolism of valdecoxib in beagles and increase the exposure of valdecoxib, but it does not affect the pharmacokinetics of parecoxib.
Collapse
|
41
|
Tuure L, Pemmari A, Hämäläinen M, Moilanen T, Moilanen E. Regulation of gene expression by MF63, a selective inhibitor of microsomal PGE synthase 1 (mPGES1) in human osteoarthritic chondrocytes. Br J Pharmacol 2020; 177:4134-4146. [PMID: 32449517 PMCID: PMC7443472 DOI: 10.1111/bph.15142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/15/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose mPGES1 catalyses the production of PGE2, the most abundant prostanoid related to inflammation and pain in arthritis. mPGES1 is suggested to be a safer and more selective drug target in inflammatory conditions compared to the COX enzymes inhibited by NSAIDs. In the present study, we investigated the effects of the selective mPGES1 inhibitor MF63 on gene expression in primary human chondrocytes from patients with osteoarthritis (OA). Experimental Approach Chondrocytes were isolated from articular cartilage obtained from osteoarthritis patients undergoing knee replacement surgery. The effects of MF63 were studied in the primary chondrocytes with RNA‐sequencing based genome‐wide expression analysis. The main results were confirmed with qRT‐PCR and compared with the effects of the NSAID ibuprofen. Functional analysis was performed with the GO database and interactions between the genes were studied with STRING. Key Results MF63 enhanced the expression of multiple metallothionein 1 (MT1) isoforms as well as endogenous antagonists of IL‐1 and IL‐36. The expression of IL‐6, by contrast, was down‐regulated. These genes were also essential in functional and interaction network analyses. The effects of MF63 were consistent in qRT‐PCR analysis, whereas the effects of ibuprofen overlapped only partly with MF63. There were no evident findings of catabolic effects by MF63. Conclusion and Implications Metallothionein 1 has been suggested to have anti‐inflammatory and protective effects in cartilage. Up‐regulation of the antagonists of IL‐1 superfamily and down‐regulation of the pro‐inflammatory cytokine IL‐6 also support novel anti‐inflammatory and possibly disease‐modifying effects of mPGES1 inhibitors in arthritis.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
42
|
Nannoni G, Volterrani G, Mattarocci A, Minoretti P, Emanuele E. Comparative efficacy and safety of Verbascox ® - a proprietary herbal extract capable of inhibiting human cyclooxygenase-2 - and celecoxib for knee osteoarthritis. Drug Discov Ther 2020; 14:129-134. [PMID: 32669521 DOI: 10.5582/ddt.2020.03034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this randomized, single-blind, active-controlled pilot study was to investigate the clinical efficacy of oral supplementation with Verbascox®, a proprietary herbal extract capable of inhibiting human cyclooxygenase-2 (COX-2), in patients with mild-to-moderate osteoarthritis (OA) of the knee. Patients in the control group (n = 50) did not undergo any treatment (watchful waiting). Patients in the Verbascox® group (n = 50) received oral supplementation (800 mg/day) with the herbal extract for 2 weeks. The final study group consisted of patients (n = 50) who received celecoxib, a known pharmacological inhibitor of COX-2, 200 mg/day for 2 weeks. Examining physicians and laboratory personnel were blinded to group assignment, whereas patients were unblinded. All participants were evaluated using standard measures of pain relief and improvement in functional capacity at baseline, after 1 week, and at the end of the 2-week treatment course. Moreover, serum levels of substance P (SP), a member of the tachykinin family of neuropeptides involved in pain perception, were measured at the three time points. Both Verbascox® and celecoxib reduced pain, improved functional capacity, and lowered serum SP levels at 2 weeks compared with baseline, without significant inter-arm differences. Both Verbascox® and celecoxib showed a limited number of treatment-emergent adverse events. In summary, oral supplementation with Verbascox® (800 mg/day) in patients with mild-to-moderate OA of the knee is as effective and safe as a standard therapeutic dose of celecoxib in terms of pain relief and improvement in functional capacity after a 2-week treatment course.
Collapse
|
43
|
L-Theanine Reduced the Development of Knee Osteoarthritis in Rats via Its Anti-Inflammation and Anti-Matrix Degradation Actions: In Vivo and In Vitro Study. Nutrients 2020; 12:nu12071988. [PMID: 32635404 PMCID: PMC7400703 DOI: 10.3390/nu12071988] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
The etiology of osteoarthritis (OA) is multifactorial, with no effective disease-modifying-drugs. L-theanine has been reported to inhibit inflammatory responses in some diseases and this study aimed to investigate the effect of L-theanine on Interleukin-1(IL-1)β-stimulated chondrocytes, and in an injury-induced OA rat model. Primary chondrocytes were stimulated by IL-1β (10 ng/mL) for 24 h and then co-cultured with L-theanine for 24 h. The effects of L-theanine on IL-1β-stimulated expression of pro-inflammatory cytokines and hydrolytic enzyme were analyzed using Western blotting, quantitative polymerase chain reaction (q-PCR) and enzyme-linked immunosorbent assay (ELISA) kits. An immunofluorescence assay was used to detect nuclear factor kappa B (NF-κB) phosphorylation. OA was induced by anterior cruciate ligament transection (ACLT) surgery in rats and celecoxib was used as a positive control. OA severity was measured using the Osteoarthritis Research Society International (OARSI) grading system to describe histological changes. The results showed that L-theanine decreased the expression of pro-inflammatory mediators, including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), both in vivo and in vitro. L-theanine treatment inhibited IL-1β-induced upregulation of matrix metalloproteinases (MMP)-3 and MMP-13, as well as inhibited NF-κB p65 activation. In vivo animal model showed that L-theanine administration (200 mg/kg) significantly alleviated OA lesions and decreased OARSI score. Our data indicated that L-theanine decreased inflammatory cytokines and protected extracellular matrix degradation through inhibition of the NF-κB pathway, and L-theanine may be considered a promising therapeutic strategy in OA prevention.
Collapse
|
44
|
Lin YY, Jean YH, Lin SC, Feng CW, Kuo HM, Lai YC, Kuo TJ, Chen NF, Lee HP, Wen ZH. Etoricoxib prevents progression of osteolysis in repeated intra-articular monosodium urate-induced gouty arthritis in rats. J Adv Res 2020; 24:109-120. [PMID: 32257433 PMCID: PMC7114632 DOI: 10.1016/j.jare.2020.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Deposition of monosodium urate (MSU) crystals in the joint or synovium is the major factor in Gouty arthritis (GA). The clinical features of chronic and recurrent GA include pain and the subsequent development of chronic tophaceous GA with multiple tophi deposits accompanied by osteolysis. The majority of previous animal studies have focused on MSU-induced acute GA without making observations regarding osteolysis. In the study, intra-articular injections of MSU into the knee (2 times/week for 10 weeks) was used to induce chronic and recurrent attacks of GA that in turn induced progressive osteolysis. Moreover, we also evaluated whether the clinical, nonsteroidal anti-inflammatory drug (NSAID) etoricoxib attenuated the osteoclastogenesis of progressive osteolysis. The knee morphometry and the expression of osteoclastogenesis-related proteins (cathepsin K and matrix metalloproteinase-9 and -13) in the knee were examined by micro-CT and immunohistochemistry, respectively. Results showed that oral etoricoxib not only significantly attenuated the nociceptive behaviors of the rats but that it also inhibited the expression of osteoclastogenesis-related proteins in their knee joints in chronic and recurrent attacks of GA. Our findings thus suggest that NSAIDs not only inhibit nociception but also prevent the progression of osteolysis in chronic and repeated attacks of GA.
Collapse
Affiliation(s)
- Yen-You Lin
- Department of Sports Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, No. 60, Dalian Road, Pingtung 90059, Taiwan
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, No. 60, Dalian Road, Pingtung 90059, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan
| | - Hsiao-Mei Kuo
- Center for Neuroscience, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Road, Zuoying District, Kaohsiung 81362, Taiwan
| | - Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan
- Department of Stomatology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Road, Zuoying District, Kaohsiung 81362, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, #2, Zhongzheng 1st Road, Lingya District, Kaohsiung 802, Taiwan
| | - Hsin-Pai Lee
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, No. 60, Dalian Road, Pingtung 90059, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan
| |
Collapse
|
45
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
46
|
Feng S, Cong H, Ji L. Salvianolic Acid A Exhibits Anti-Inflammatory and Antiarthritic Effects via Inhibiting NF-κB and p38/MAPK Pathways. Drug Des Devel Ther 2020; 14:1771-1778. [PMID: 32440102 PMCID: PMC7217308 DOI: 10.2147/dddt.s235857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Osteoarthritis (OA), a chronic joint disease, combines with massive inflammation and plays a vital role in cartilage degeneration. The main strategy in clinic is controlling inflammation, thereby treating osteoarthritis. Salvianolic acid A (SAA) is a type of phenolic acid, derived from a traditional chinese herbal medicine Danshen that is extensively used clinically. METHODS AND RESULTS We observed the anti-inflammatory and antiarthritic effects of SAA in IL-1β-stimulated cells. We found that SAA evidently decreased the expression of mainly inflammatory factors, exerted the remarkable effects of anti-inflammation and anti-arthritis. Furthermore, SAA inhibited the expression of Matrix metalloproteinases (MMP1, MMP13), and ADAMTS-5 and raised the synthesis of collagen II and aggrecan. Additionally, the results indicated that SAA gave rise to the effects by down-regulation of NF-κB and p38/MAPK pathways. DISCUSSION Our study demonstrates that SAA may be a promising anti-inflammatory for the treatment of OA in clinic.
Collapse
Affiliation(s)
- Shuang Feng
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| | - Hui Cong
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| | - Lei Ji
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
47
|
Improved Analgesic and Anti-Inflammatory Effect of Diclofenac Sodium by Topical Nanoemulgel: Formulation Development—In Vitro and In Vivo Studies. J CHEM-NY 2020. [DOI: 10.1155/2020/4071818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to develop diclofenac sodium nanoemulgel for managing pain and inflammation using the low-energy emulsification technique. Nanoemulsion of diclofenac was formulated using clove oil with adequate amount of surfactants and cosurfactants, and it was converted to hydrogel form using Carbopol 980 as the gelling agent. The droplet size of the oil globules in the nanoemulsion was found to be 64.07 ± 2.65 nm with a low polydispersity index (0.238 ± 0.02) along with high negative zeta potential (−39.06 mV). The developed nanoemulgel exhibited non-Newtonian and pseudoplastic behavior. The in vitro release profile of the developed nanoemulgel was higher as compared to marketed and conventional gel. The carrageenan-induced paw edema test was performed in rats to evaluate the anti-inflammatory activity of developed nanoemulgel. The developed nanoemulgel showed significantly higher (p<0.01) effect in reducing pain and inflammation symptoms as compared to marketed as well as conventional gel of diclofenac. The overall findings of the study suggest that the developed nanoemulgel formulation of diclofenac can be used as a potential approach for the management of pain and inflammation.
Collapse
|
48
|
Fang-Ji-Huang-Qi-Tang Attenuates Degeneration of Early-Stage KOA Mice Related to Promoting Joint Lymphatic Drainage Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3471681. [PMID: 32280355 PMCID: PMC7109589 DOI: 10.1155/2020/3471681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the breakdown of articular cartilage, subchondral bone remodeling, and inflammation of the synovium. In this study, we investigated whether Fang-Ji-Huang-Qi-Tang (FJHQT) decoction improved the joint structure of OA or delayed the process of knee joint degeneration in OA mice by promoting lymphatic drain function. The mice were randomly divided into four groups, the sham group, the PBS group, the FJHQT-treated group, and the Mobic-treated group. The mice in each group were tested for lymphatic draining function at 4, 6, 8, and 10 weeks postsurgery (WPS), then sacrificed (N = 10/group). Using a near-infrared indocyanine green (NIR-ICG) lymphatic imaging system, we found that the lymphatic drain function was significantly reduced in the PBS group compared with the sham group. After treatment with the FJHQT decoction, the lymphatic draining function improved at 4 wps and 6 wps. The results of the analysis indicated a strong correlation between lymphatic draining function (ICG clearance) and the degree of joint structural damage (OARSI score). By Alcian blue/orange G (ABOG) staining of the paraffin sections, the FJHQT-treated group exhibited less cartilage destruction and lower OARSI scores. Moreover, the result of immunohistochemical staining (IHC) shows that FJHQT decoction increased the content of type II collagen in knee joints of OA mice at 4 wps and 6 wps. By the double immunofluorescence staining of podoplanin and smooth muscle actin in the paraffin sections, the capillaries and mature lymphatics in the FJHQT group increased at 4 wps. In conclusion, the FJHQT decoction can increase lymphatic vessel number, promote joint lymphatic draining function, and postpone knee osteoarthritis pathologic progression in the early stage of a collagen-induced mouse model. Therefore, the application of sufficient lymphatic drainage in the knee joint may be a new treatment method for knee joint osteoarthritis (KOA).
Collapse
|
49
|
Li SL, Zhu YL, Zhu CY, Li SB, Li ZH, Qiu XJ. Simultaneous Determination of Parecoxib and Its Metabolite Valdecoxib Concentrations in Beagle Plasma by UPLC-MS/MS and Application for Pharmacokinetics Study. Drug Des Devel Ther 2020; 14:1117-1125. [PMID: 32214797 PMCID: PMC7078782 DOI: 10.2147/dddt.s226349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/03/2020] [Indexed: 11/23/2022] Open
Abstract
A method for the simultaneous determination of parecoxib and its metabolite valdecoxib in beagle plasma by UPLC-MS/MS was developed and validated. After the plasma was extracted by acetonitrile precipitation, the analytes were separated on an Acquity UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) using acetonitrile-formic acid as the mobile phase in gradient mode. The analytes were monitored by multiple reaction monitoring (MRM) in electrospray negative ion mode. The mass transfer pairs were m/z 368.97→119.01 for parecoxib, m/z 312.89→118.02 for valdecoxib, and m/z 379.98→316.02 for celecoxib (internal standard, IS). The correlation coefficients of parecoxib and valdecoxib ranged from 5 to 4000 ng/mL were greater than 0.9998. The recovery of parecoxib and valdecoxib was greater than 82.54%. The inter- and intra-day precision RSD values were 1.36~3.65% and 2.28~5.91%, respectively. The accuracy of RE values were −1.38%~1.96%. Finally, the matrix effect (ME) and stability were also within acceptable criteria. This method had been successfully applied to the pharmacokinetics of parecoxib and valdecoxib in beagle plasma after injection of parecoxib (1.33 mg/kg, intramuscular injection).
Collapse
Affiliation(s)
- Shuang-Long Li
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Yong-Liang Zhu
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Chun-Yang Zhu
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Shao-Bin Li
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Zi-Heng Li
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Xiang-Jun Qiu
- Medical College of Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| |
Collapse
|
50
|
Nifedipine inhibits oxidative stress and ameliorates osteoarthritis by activating the nuclear factor erythroid-2-related factor 2 pathway. Life Sci 2020; 253:117292. [PMID: 31927051 DOI: 10.1016/j.lfs.2020.117292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
Abstract
Nifedipine is a voltage-gated calcium channel inhibitor widely used in the treatment of hypertension. Nifedipine has been reported to have antioxidant and anti-apoptotic effects and promotes cell proliferation. However, the effects of nifedipine on oxidative stress and apoptosis in osteoarthritic (OA) chondrocytes are still unclear. In this study, we sought to investigate whether nifedipine alleviates oxidative stress and apoptosis in OA through nuclear factor erythroid-2-related factor 2 (Nrf2) activation. The cytotoxicity of nifedipine against human chondrocytes was detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) kit, whereas mRNA and protein expression levels were measured using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The oxidative stress level was analyzed by measuring reactive oxygen species (ROS), glutathione peroxidase (GSH-px), catalase (CAT) and superoxide dismutase (SOD) activities. The role of Nrf2 in the effect of nifedipine on OA was analyzed using an Nrf2 inhibitor brusatol (BR). The result showed that nifedipine inhibited the expression of matrix metalloprotein(MMP)-13, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, inducible nitric oxide (NO) synthase (iNOS), and prostaglandin E2 (PGE2), as well as reduced ROS production in human OA chondrocytes, which was partially reversed by BR. Nifedipine prevented cartilage degeneration and contributed to the expression of Nrf-2 in chondrocytes. These results indicate that nifedipine inhibited inflammation and oxidative stress in chondrocytes via activation of Nrf-2/HO-1 signaling.
Collapse
|