1
|
Blichfeldt-Eckhardt MR, Varnum C, Lauridsen JT, Rasmussen LE, Mortensen WCP, Jensen HI, Vaegter HB, Lambertsen KL. Low-grade systemic inflammation, but not neuroinflammation, is associated with 12-month postoperative outcome after total hip arthroplasty in patients with painful osteoarthritis. Bone Joint Res 2024; 13:741-749. [PMID: 39637913 PMCID: PMC11620800 DOI: 10.1302/2046-3758.1312.bjr-2024-0103.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Aims Better prediction of outcome after total hip arthroplasty (THA) is warranted. Systemic inflammation and central neuroinflammation are possibly involved in progression of osteoarthritis and pain. We explored whether inflammatory biomarkers in blood and cerebrospinal fluid (CSF) were associated with clinical outcome, and baseline pain or disability, 12 months after THA. Methods A total of 50 patients from the Danish Pain Research Biobank (DANPAIN-Biobank) between January and June 2018 were included. Postoperative outcome was assessed as change in Oxford Hip Score (OHS) from baseline to 12 months after THA, pain was assessed on a numerical rating scale, and disability using the Pain Disability Index. Multiple regression models for each clinical outcome were included for biomarkers in blood and CSF, respectively, including age, sex, BMI, and Kellgren-Lawrence score. Results Change in OHS was associated with blood concentrations of tumour necrosis factor (TNF), interleukin-8 (IL-8), interleukin-6 receptor (IL-6R), glycoprotein 130 (gp130), and IL-1β (R2 = 0.28, p = 0.006), but not with CSF biomarkers. Baseline pain was associated with blood concentrations of lymphotoxin alpha (LTα), TNFR1, TNFR2, and IL-6R (R2 = 0.37, p < 0.001) and CSF concentrations of TNFR1, TNFR2, IL-6, IL-6R, and IL-1Ra (R2 = 0.40, p = 0.001). Baseline disability was associated with blood concentrations of TNF, LTα, IL-8, IL-6, and IL-1α (R2 = 0.53, p < 0.001) and CSF concentrations of gp130, TNF, and IL-1β (R2 = 0.26, p = 0.002). Thus, preoperative systemic low-grade inflammation predicted 12-month postoperative outcome after THA, and was associated with preoperative pain and disability. Conclusion This study highlights the importance of systemic inflammation in osteoarthritis, and presents a possible path for better patient selection for THA in the future. Preoperative central neuroinflammation was associated with preoperative pain and disability, but not change in OHS after THA.
Collapse
Affiliation(s)
- Morten R. Blichfeldt-Eckhardt
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Pain Research Group, Department of Anesthesiology and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Claus Varnum
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Orthopaedic Surgery, Lillebaelt Hospital - Vejle, University Hospital of Southern Denmark, Vejle, Denmark
| | | | - Lasse E. Rasmussen
- Department of Orthopaedic Surgery, Lillebaelt Hospital - Vejle, University Hospital of Southern Denmark, Vejle, Denmark
| | - Winnie C. P. Mortensen
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Hanne I. Jensen
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Henrik B. Vaegter
- Pain Research Group, Department of Anesthesiology and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research – Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
3
|
Kiełbowski K, Stańska W, Bakinowska E, Rusiński M, Pawlik A. The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. Curr Issues Mol Biol 2024; 46:3640-3675. [PMID: 38666958 PMCID: PMC11049642 DOI: 10.3390/cimb46040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| |
Collapse
|
4
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Paz-González R, Turkiewicz A, Ali N, Ruiz-Romero C, Blanco FJ, Englund M, Önnerfjord P. Proteomic profiling of human menisci from mild joint degeneration and end-stage osteoarthritis versus healthy controls. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100417. [PMID: 38098679 PMCID: PMC10720269 DOI: 10.1016/j.ocarto.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To gain new insight into the molecular changes of the meniscus by comparing the proteome profiles of healthy controls with mild degeneration and end-stage osteoarthritis (OA). Method We obtained tissue plugs from lateral and medial menisci of 37 individuals (central part of the posterior horn) classified as healthy (n = 12), mild signs of joint damage (n = 13) and end-stage OA (n = 12). The protein profile was analysed by nano-liquid chromatography-mass spectrometry using data-independent acquisition and quantified by Spectronaut. Linear-mixed effects modelling was applied to extract the between-group comparisons. Results A similar protein profile was observed for the mild group as compared to healthy controls while the most different group was end-stage OA mainly for the medial compartment. When a pattern of gradual change in protein levels from healthy to end-stage OA was required, a 42-proteins panel was identified, suggesting a potential role in OA development. The levels of QSOX1 were lower and G6PD higher in the mild group following the proposed protein abundance pattern. Qualitative protein changes suggest lower levels of CYTL1 as a potential biomarker of early joint degradation. Conclusion For future targeted proteomic approaches, we propose a candidate panel of 42 proteins based on gradually altered meniscal posterior horn protein abundance patterns associated with joint degradation.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Neserin Ali
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Grupo de Reumatología y Salud, Departamento de Fisioterapia y Medicina. Centro de investigaciones Avanzadas (CICA), Universidad de A Coruña, A Coruña, Spain
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Huang X, Liu J, Huang W. Identification of S100A8 as a common diagnostic biomarkers and exploring potential pathogenesis for osteoarthritis and metabolic syndrome. Front Immunol 2023; 14:1185275. [PMID: 37497233 PMCID: PMC10366475 DOI: 10.3389/fimmu.2023.1185275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Osteoarthritis (OA) is the most frequent musculoskeletal disease and the major contributor to disability worldwide. Metabolic syndrome (MetS) has been recognized as being associated with the pathogenesis of osteoarthritis. However, the exact mechanisms and links between the two are not clear. Methods We downloaded clinical information data and gene expression profiles for OA and MetS from the database of Gene Expression Omnibus (GEO), and immune related gene (IRG) from the database of Immunology Database and Analysis Portal (IMMPORT). After screening OA-DEG and MetS-DEG, we identified the common immune hub gene by screening the overlapping genes between OA-DEG, MetS-DEG and IRG. Then we conducted single-gene analysis of S100A8, assessed the correlation of S100A8 with immune cell infiltration, and verified the diagnostic value of S100A8 in OA and MetS database respectively. Results 323 OA-DEGs,101 MetS-DEGs and an immune-related hub gene, S100A8, were identified. In single gene analysis of S100A8 in OA samples, GSEA suggested that immune-related biological processes were more significantly enriched. The results of immune cell infiltration analysis showed that the enrichment fraction of M2 macrophages was significantly higher in the high S100A8-expressing group, and the level of S100A8 expression was positively correlated with M2 macrophage infiltration. The results of the dataset validation showed that S100A8 expression levels were significantly upregulated in the OA group and performed well in the diagnosis of OA. In single gene analysis of S100A8 in MetS samples, immune cell infiltration analysis showed that monocyte infiltration was higher in the S100A8 high expression samples and that there was a positive correlation between the two. Dataset validation showed that S100A8 is of high value for the diagnosis of MetS. In the validation of the dataset for the four metabolism-related diseases (obesity, diabetes, hypertension and hyperlipidaemia), S100A8 was expressed at higher levels in the disease group and also had a higher diagnostic value for the four metabolism-related diseases. Conclusion S100A8 is a common hub gene and diagnostic biomarker for OA and MetS, and the immune regulation involved in S100A8 may play a central role in the pathogenesis of OA and MetS.
Collapse
Affiliation(s)
- Xu Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection. Life (Basel) 2023; 13:life13020342. [PMID: 36836699 PMCID: PMC9961153 DOI: 10.3390/life13020342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles.
Collapse
|
8
|
Ruan G, Yuan S, Lou A, Mo Y, Qu Y, Guo D, Guan S, Zhang Y, Lan X, Luo J, Mei Y, Zhang H, Wu W, Dai L, Yu Q, Cai X, Ding C. Can metformin relieve tibiofemoral cartilage volume loss and knee symptoms in overweight knee osteoarthritis patients? Study protocol for a randomized, double-blind, and placebo-controlled trial. BMC Musculoskelet Disord 2022; 23:486. [PMID: 35598008 PMCID: PMC9124394 DOI: 10.1186/s12891-022-05434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common joint disease, and is most frequently seen in the knees. However, there is no effective therapy to relieve the progression of knee OA. Metformin is a safe, well-tolerated oral medication that is extensively used as first-line therapy for type 2 diabetes. Previous observational studies and basic researches suggested that metformin may have protective effects on knee OA, which needs to be verified by clinical trials. This study, therefore, aims to examine the effects of metformin versus placebo on knee cartilage volume loss and knee symptoms in overweight knee OA patients by a randomized controlled trial over 24 months. Methods This protocol describes a multicenter, randomized, double-blind, and placebo-controlled clinical trial aiming to recruit 262 overweight knee OA patients. Participants will be randomly allocated to the two arms of the study, receiving metformin hydrochloride sustained-release tablets or identical inert placebo for 24 months (start from 0.5 g/day for the first 2 weeks, and increase to 1 g/day for the second 2 weeks, and further increase to 2 g/day for the remaining period if tolerated). Primary outcomes will be changes in tibiofemoral cartilage volume and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score over 24 months. Secondary outcomes will be changes in visual analogue scale (VAS) knee pain, tibiofemoral cartilage defects, effusion-synovitis volume, and tibiofemoral bone marrow lesions maximum size over 24 months. The primary analyses will be intention-to-treat analyses of primary and secondary outcomes. Per-protocol analyses will be performed as the secondary analyses. Discussion If metformin is proved to slow knee cartilage volume loss and to relieve knee symptoms among overweight knee OA patients, it will have the potential to become a disease modifying drug for knee OA. Metformin is a convenient intervention with low cost, and its potential effects on slowing down the structural progression and relieving the symptoms of knee OA would effectively reduce the disease burden worldwide. Trial registration ClinicalTrials. gov NCT05034029. Registered on 30 Sept 2021.
Collapse
Affiliation(s)
- Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Aiju Lou
- Department of Rheumatology and Immunology, Liwan Central Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Yingqian Mo
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan Qu
- Rheumatology and Clinical Immunology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongmei Guo
- Department of Rheumatology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Shangqi Guan
- Department of Rheumatology, Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyong Lan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Luo
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifang Mei
- Department of Rheumatology, Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongwei Zhang
- Department of Rheumatology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Weirong Wu
- Department of Rheumatology and Immunology, Liwan Central Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Rheumatology and Clinical Immunology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China. .,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18:258-275. [PMID: 35165404 PMCID: PMC9050956 DOI: 10.1038/s41584-022-00749-9] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alyssa Torres
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- San Diego VA Healthcare Service, San Diego, CA, USA.
| |
Collapse
|
10
|
Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 2022; 30:184-195. [PMID: 34534661 PMCID: PMC10735233 DOI: 10.1016/j.joca.2021.04.020] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To summarize the current state of the evidence regarding osteoarthritis (OA) prevalence, incidence and risk factors at the person-level and joint-level. DESIGN This was a narrative review that took a comprehensive approach regarding inclusion of potential risk factors. The review complements prior reviews of OA epidemiology, with a focus on new research and emerging topics since 2017, as well as seminal studies. RESULTS Studies continue to illustrate the high prevalence of OA worldwide, with a greater burden among older individuals, women, some racial and ethnic groups, and individuals with lower socioeconomic status. Modifiable risk factors for OA with the strongest evidence are obesity and joint injury. Topics of high interest or emerging evidence for a potential association with OA risk or progression include specific vitamins and diets, high blood pressure, genetic factors, metformin use, bone mineral density, abnormal joint shape and malalignment, and lower muscle strength/quality. Studies also continue to highlight the heterogenous nature of OA, with strong interest in understanding and defining OA phenotypes. CONCLUSIONS OA is an increasingly prevalent condition with worldwide impacts on many health outcomes. The strong evidence for obesity and joint injury as OA risk factors calls for heightened efforts to mitigate these risks at clinical and public health levels. There is also a need for continued research regarding how potential person- and joint-level risk factors may interact to influence the development and progression of OA.
Collapse
Affiliation(s)
- K D Allen
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Health Services Research in Primary Care, Department of Veterans Affairs Medical Center, Durham, NC, USA.
| | - L M Thoma
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y M Golightly
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Injury Prevention Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Associations between diet quality and knee joint structures, symptoms and systemic abnormalities in people with symptomatic knee osteoarthritis. Clin Nutr 2021; 40:2483-2490. [PMID: 33932790 DOI: 10.1016/j.clnu.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The evidence of benefiting from a high-quality diet for knee osteoarthritis (OA) joint structures, symptoms, and systemic abnormalities is limited. Clarifying the relationship between diet quality and knee OA could provide useful information for knee OA management. To investigate the associations between diet quality and knee joint structures, symptoms, lower limb muscle strength, depressive symptoms, and quality of life in people with knee OA. METHODS This study was a post-hoc, exploratory analysis using data from a randomized controlled trial in symptomatic knee OA participants with a follow-up time of 24 months. In brief, eligible participants of the original study were aged 50-79 years, had symptomatic knee OA, and had a pain of 20-80 mm on a 100-mm visual analog scale. After excluding the patients without information on diet quality, 392 participants were included in this post-hoc analysis. Diet quality was assessed at baseline using the Australian Recommended Food Score (ARFS) which includes subscores of vegetable, fruit, grain, dairy products, fat, and alcohol. Knee joint structures (including cartilage volume, cartilage defect, bone marrow lesions, and effusion-synovitis volume assessed by magnetic resonance imaging), OA symptoms, lower limb muscle strength, depressive symptoms, and quality of life were assessed at baseline and follow up. Mixed-effects models were used to assess the associations of diet quality with those outcomes. RESULTS Diet quality mainly reflect diet variety within the core food was not associated with knee structures and OA symptoms, but was associated with greater lower limb muscle strength (β = 0.66, P = 0.001), lower depressive symptom (β = -0.08, P = 0.001), and better quality of life (β = -0.06, P = 0.002). In further analyses of food group-based sub-scores, only the vegetable sub-score had the similar associations with lower limb muscle strength (β = 1.03, P = 0.004), depressive symptom (β = -0.17, P < 0.001), and quality of life (β = -0.14, P < 0.001). CONCLUSIONS Higher diet quality, mainly vegetable diet quality, is associated with greater lower limb muscle strength, less depressive symptoms, and higher quality of life in knee OA patients, suggesting higher diet quality may have protective effects on knee OA.
Collapse
|
12
|
Bernotiene E, Bagdonas E, Kirdaite G, Bernotas P, Kalvaityte U, Uzieliene I, Thudium CS, Hannula H, Lorite GS, Dvir-Ginzberg M, Guermazi A, Mobasheri A. Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Front Med (Lausanne) 2020; 7:572977. [PMID: 33195320 PMCID: PMC7609858 DOI: 10.3389/fmed.2020.572977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Biomarkers, especially biochemical markers, are important in osteoarthritis (OA) research, clinical trials, and drug development and have potential for more extensive use in therapeutic monitoring. However, they have not yet had any significant impact on disease diagnosis and follow-up in a clinical context. Nevertheless, the development of immunoassays for the detection and measurement of biochemical markers in OA research and therapy is an active area of research and development. The evaluation of biochemical markers representing low-grade inflammation or extracellular matrix turnover may permit OA prognosis and expedite the development of personalized treatment tailored to fit particular disease severities. However, currently detection methods have failed to overcome specific hurdles such as low biochemical marker concentrations, patient-specific variation, and limited utility of single biochemical markers for definitive characterization of disease status. These challenges require new and innovative approaches for development of detection and quantification systems that incorporate clinically relevant biochemical marker panels. Emerging platforms and technologies that are already on the way to implementation in routine diagnostics and monitoring of other diseases could potentially serve as good technological and strategic examples for better assessment of OA. State-of-the-art technologies such as advanced multiplex assays, enhanced immunoassays, and biosensors ensure simultaneous screening of a range of biochemical marker targets, the expansion of detection limits, low costs, and rapid analysis. This paper explores the implementation of such technologies in OA research and therapy. Application of novel immunoassay-based technologies may shed light on poorly understood mechanisms in disease pathogenesis and lead to the development of clinically relevant biochemical marker panels. More sensitive and specific biochemical marker immunodetection will complement imaging biomarkers and ensure evidence-based comparisons of intervention efficacy. We discuss the challenges hindering the development, testing, and implementation of new OA biochemical marker assays utilizing emerging multiplexing technologies and biosensors.
Collapse
Affiliation(s)
- Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Heidi Hannula
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Gabriela S. Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali Guermazi
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston, MA, United States
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
13
|
Bai Q, Cao J, Dong T, Tao F. <p>Transcriptome Analysis of Dorsal Root Ganglion in Rats with Knee Joint Inflammation</p>. J Pain Res 2020; 13:2709-2720. [PMID: 33149663 PMCID: PMC7604464 DOI: 10.2147/jpr.s278474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, People’s Republic of China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
- Correspondence: Tieli Dong The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China Email
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
- Feng Tao Texas A&M University College of Dentistry, Dallas, Texas, USA Email
| |
Collapse
|
14
|
Association Between Serum S100A8/S100A9 Heterodimer and Pulmonary Function in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2020; 198:645-652. [PMID: 32661658 DOI: 10.1007/s00408-020-00376-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Many studies have indicated that S100A8 and S100A9 may be involved in the development and progression of chronic obstructive pulmonary disease (COPD). However, there has been no clinical study analyzing the role of the serum S100A8/S100A9 heterodimer in COPD patients. The aim of this study was to analyze the correlation of the serum S100A8/S100A9 heterodimer with pulmonary function in COPD patients during acute exacerbation (AE-COPD) based on a cross-sectional study. METHODS A total of 131 AE-COPD patients and matched healthy subjects were recruited. Pulmonary function, arterial blood gas values, and serum inflammatory cytokines were measured. RESULTS Serum S100A8/S100A9 was increased in AE-COPD patients. AE-COPD patients were ranked into different grades based on FEV1%. Serum S100A8/S100A9 was higher in Grade 4 than in Grade 1-2 and Grade 3 patients with AE-COPD. Univariate regression analysis found that serum S100A8/S100A9 was negatively correlated with FEV1% in AE-COPD patients. Furthermore, serum S100A8/S100A9 was positively associated with MCP-1 in AE-COPD patients. Further stratified analysis revealed that serum S100A8/S100A9 was negatively associated with FEV1/FVC in Grade 3 (OR 0.629, P < 0.05) and in Grade 4 (OR 0.347, P < 0.05). In addition, there was a positive relationship between serum S100A8/S100A9 and PaCO2 in Grade 3 (OR 1.532, P < 0.05) and Grade 4 (OR 1.925, P < 0.01). CONCLUSION S100A8/S100A9 was negatively associated with pulmonary function in AE-COPD patients, indicating that the serum S100A8/S100A9 heterodimer may be involved in the progression of AE-COPD, and may be a relevant serum biomarker in the diagnosis for AE-COPD.
Collapse
|
15
|
Correction to: Associations between serumIL-8 and knee symptoms, joint structures, and cartilage or bone biomarkers in patients with knee osteoarthritis. Clin Rheumatol 2020; 39:2249. [PMID: 32468319 DOI: 10.1007/s10067-020-05182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
There were overlaps between the article recently published in this journal [1] and the previous publications from the authors' group [2-4] that they did not cite.].
Collapse
|
16
|
Kijowski R, Demehri S, Roemer F, Guermazi A. Osteoarthritis year in review 2019: imaging. Osteoarthritis Cartilage 2020; 28:285-295. [PMID: 31877380 DOI: 10.1016/j.joca.2019.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide a narrative review of original articles on osteoarthritis (OA) imaging published between April 1, 2018 and March 30, 2019. METHODS All original research articles on OA imaging published in English between April 1, 2018 and March 30, 2019 were identified using a PubMed database search. The search terms of "Osteoarthritis" or "OA" were combined with the search terms "Radiography", "X-Rays", "Magnetic Resonance Imaging", "MRI", "Ultrasound", "US", "Computed Tomography", "Dual Energy X-Ray Absorptiometry", "DXA", "DEXA", "CT", "Nuclear Medicine", "Scintigraphy", "Single-Photon Emission Computed Tomography", "SPECT", "Positron Emission Tomography", "PET", "PET-CT", or "PET-MRI". Articles were reviewed to determine relevance based upon the following criteria: 1) study involved human subjects with OA or risk factors for OA and 2) study involved imaging to evaluate OA disease status or OA treatment response. Relevant articles were ranked according to scientific merit, with the best publications selected for inclusion in the narrative report. RESULTS The PubMed search revealed a total of 1257 articles, of which 256 (20.4%) were considered relevant to OA imaging. Two-hundred twenty-six (87.1%) articles involved the knee joint, while 195 (76.2%) articles involved the use of magnetic resonance imaging (MRI). The proportion of published studies involving the use of MRI was higher than previous years. An increasing number of articles were also published on imaging of subjects with joint injury and on deep learning application in OA imaging. CONCLUSION MRI and other imaging modalities continue to play an important role in research studies designed to better understand the pathogenesis, progression, and treatment of OA.
Collapse
Affiliation(s)
- R Kijowski
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - S Demehri
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.
| | - F Roemer
- Department of Radiology, Boston University, Boston, MA, USA; Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.
| | - A Guermazi
- Department of Radiology, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Zhang X, Deng XH, Song Z, Croen B, Carballo CB, Album Z, Zhang Y, Bhandari R, Rodeo SA. Matrix Metalloproteinase Inhibition With Doxycycline Affects the Progression of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Rupture: Evaluation in a New Nonsurgical Murine ACL Rupture Model. Am J Sports Med 2020; 48:143-152. [PMID: 31756130 DOI: 10.1177/0363546519887158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Doxycycline has broad-spectrum activity as a matrix metalloproteinase (MMP) inhibitor and thus could reduce the progression of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) rupture. HYPOTHESIS Doxycycline would inhibit progression of PTOA in a murine ACL rupture model. STUDY DESIGN Controlled laboratory study. METHODS For the in vitro study, cadaveric C57BL/6 male mice knees (N = 108) were used for the development of a nonsurgical ACL rupture model. For the in vivo study, 24 C57BL/6 male mice then underwent ACL rupture with our manual procedure and were divided into 4 groups: untreated control; doxycycline, 10 mg/kg/d; doxycycline, 50 mg/kg/d; and doxycycline, 100 mg/kg/d. Doxycycline was administered in drinking water beginning immediately after ACL rupture. Radiographic imaging and paw prints were evaluated at 3, 7, 14, and 28 days. The foot length and toe spread were analyzed as measures of function. Histology and MMP-13 immunohistochemistry were done at 4 weeks. RESULTS Radiographs demonstrated anterior tibial subluxation and meniscal extrusion after ACL rupture, confirming knee joint instability without fractures. Statistically significant differences in gait were found between the intact and experimental groups. Histologic examination demonstrated cartilage damage, meniscal tears, and mild osteoarthritis after ACL rupture, similar to what occurs in human patients. Hypertrophy of the posterior horn of the medial and lateral meniscus was found, and tears of the posterior horn of the menisci were common. All doxycycline groups had a lower score than the untreated control group, indicating less cartilage damage. The posterior tibia of the untreated group had the most cartilage damage as compared with the 3 doxycycline groups, with a significant difference between the untreated and 50-mg/kg/d doxycycline groups, suggesting that the latter dose may protect against proteoglycan loss and decrease the progression of osteoarthritis. The nondoxycycline group had the highest synovial inflammation score among all groups, indicating that doxycycline has an inhibitory effect on synovitis. There was significantly lower MMP-13 expression on the tibia in the doxycycline-treated groups, with a positive correlation between doxycycline concentration and MMP-13 inhibition. CONCLUSION Modulation of MMP-13 activity by doxycycline treatment may offer a novel biological pathway to decrease the progression of PTOA after ACL rupture. CLINICAL RELEVANCE Doxycycline is an approved, readily available drug with infrequent side effects of photosensitivity and gastrointestinal symptoms. Future clinical trials could evaluate doxycycline to reduce or prevent progressive cartilage damage after ACL rupture.
Collapse
Affiliation(s)
- Xueying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zhe Song
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zoe Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Reyna Bhandari
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|