1
|
Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol 2025; 7:e11755. [PMID: 39435687 PMCID: PMC11694140 DOI: 10.1002/acr2.11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common cause of chronic disability in joints among older individuals. The primary goal of OA treatment is pain relief to improve the quality of life. Inflammation and aging are involved in the pathogenesis of pain in OA. In this study, we evaluated the ability of metformin to regulate microRNAs, such as miR-451 and miR-15b, and their target proteins, CXCL16 and B cell leukemia/lymphoma 2 (BCL-2), involved in inflammation and apoptosis. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided into two groups: one receiving metformin and the other receiving a placebo for four months (starting at 0.5 g/day for the first week, increasing to 1 g/day for the second week, and increasing to 1.5 g/day for the remaining period). In addition to evaluating the clinical response using the Knee Injury and Osteoarthritis Outcome Score questionnaire, miR-451 and miR-15b expression levels were detected using real-time polymerase chain reaction. The serum levels of CXCL16 and BCL-2 were evaluated using enzyme-linked immunosorbent assay kits before (time zero) and after treatment (month four). RESULTS Metformin increased miR-451 expression levels simultaneously with pain reduction, whereas miR-15b expression did not change significantly after four months of treatment. Also, metformin decreased the serum levels of BCL-2 and CXCL16 in patients with OA. CONCLUSION The effects of metformin in reducing pain can be attributed to many factors, including its anti-inflammatory and antiaging effects. Our findings suggest that metformin may reduce pain and inflammation in patients with OA through the regulation of miR-451/CXCL16 and BCL-2.
Collapse
|
2
|
Riechmann M, Gellrich NC, Kress B, Schmidt C, Schröder C, Neff A. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:816-823. [PMID: 39417373 DOI: 10.3238/arztebl.m2024.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Condylar hyperplasia of the mandible is characterized by abnormal size and configuration of the condylar process. In Germany, the administrative prevalence of diagnosed and/or treated condylar hyperplasia is 2.4-9.6 cases per 100 000 persons. Misdiagnosis is common and can lead to severe esthetic and functional complications, including facial deformity that can progress into the patient's twenties, as well as dysfunctional speech and mastication. METHODS We conducted a systematic review of the literature and a structured consensus-finding process with the Delphi method. RESULTS The experts recommend timely diagnosis of condylar hyperplasia so that its progression can be prevented by appropriate treatment. The basic diagnostic evaluation consists of history taking, physical examination, and imaging with orthopantomography. If condylar hyperplasia is confirmed, three-dimensional imaging is performed, usually with SPECT. The treatment is mainly surgical: partial condylectomy techniques and orthognathic surgery are the most common methods. If left untreated, the disorder causes severe dysfunction of mastication as well as disfigurement. Most studies of treatments for condylar hyperplasia have been based on low case numbers and have yielded only level 4 or level 5 evidence. CONCLUSION Condylar hyperplasia is a common, but not widely known problem. Its early diagnosis and treatment can prevent severe jaw asymmetry and further complications such as craniomandibular dysfunction and arthrosis of the temporomandibular joints.
Collapse
Affiliation(s)
- Merle Riechmann
- Department of Oral- and Craniomaxillofacial Plastic Surgery, University Hospital of Marburg; Department of Otolaryngology at University Hospital Münster; Department for Oral and Maxillofacial Surgery, Hanover Medical School; Central Institute for Radiology and Neuroradiology, Nordwest Hospital, Frankfurt am Main; Department of Oral- and Craniomaxillofacial Plastic Surgery, University Hospital of Marburg; Institute for Radiology and Nuclear Medicine, GPR Hospital, Rüsselsheim am Main; Pediatric Radiology at the Open MRI in Kiel; Department of Oral- and Craniomaxillofacial Plastic Surgery, University Hospital of Marburg
| | | | | | | | | | | |
Collapse
|
3
|
Anastasi MR, Centofanti A, Favaloro A, Freni J, Nicita F, Vermiglio G, Anastasi GP, Cascone P. Unilateral "Inactive" Condylar Hyperplasia: New Histological Data. J Funct Morphol Kinesiol 2024; 9:217. [PMID: 39584870 PMCID: PMC11586970 DOI: 10.3390/jfmk9040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Unilateral condylar hyperplasia (UCH) is characterized by slow progression and enlargement of the condyle, accompanied by elongation of the mandibular body, resulting in facial asymmetry, occlusal disharmony, and joint dysfunction. This condition can be defined as "active" or "inactive": the active form is characterized by continuous growth and dynamic histologic changes, whereas the inactive form indicates that the growth process has stabilized. Since there are few microscopic studies on the inactive form, this study aims to investigate the histological features and expression of key proteins and bone markers in patients diagnosed with inactive UCH. Methods: A total of 15 biopsies from patients aged 28 to 36 years were examined by light microscopy and immunofluorescence for collagen I and II, metalloproteinases 2 (MMP-2) and 9 (MMP-9), receptor activator of nuclear factor- kappa B (RANK), and osteocalcin. Results: Our findings indicate that during inactive UCH, the ongoing process is not entirely stopped, with moderate expression of collagen, metalloproteinases, RANK, and osteocalcin, although no cartilage islands are detectable. Conclusions: The present study shows that even if these features are moderate when compared to active UCH and without cartilage islands, inactive UCH could be characterized by borderline features that could represent an important trigger-point to possible reactivation, or they could represent a long slow progression that is not "self-limited".
Collapse
Affiliation(s)
- Michele Runci Anastasi
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Antonio Centofanti
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Angelo Favaloro
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Josè Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Fabiana Nicita
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Giovanna Vermiglio
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Giuseppe Pio Anastasi
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.R.A.); (A.C.); (A.F.); (J.F.); (F.N.); (G.P.A.)
| | - Piero Cascone
- Maxillofacial Surgery, UniCamillus School of Medicine, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| |
Collapse
|
4
|
Mohammadinasr M, Montazersaheb S, Ayromlou H, Hosseini V, Molavi O, Hejazi MS. Exosome Content-Mediated Signaling Pathways in Multiple Sclerosis. Mol Neurobiol 2024; 61:5404-5417. [PMID: 38191693 DOI: 10.1007/s12035-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Exosomes are small extracellular vesicles with a complex lipid-bilayer surface and 30-150 nm diameter. These vesicles play a critical role in intercellular signaling networks during physiopathological processes through data trafficking and cell reprogramming. It has been demonstrated that exosomes are involved in a variety of central nervous system (CNS) disorders such as multiple sclerosis (MS). Exosome mediators' cell-to-cell communication is possibly by delivering their contents such as proteins, RNAs (coding and non-coding), DNAs (mitochondrial and genomic), and transposable elements to the target cells. Exosomal microRNAs (miRNAs) differ in their expression patterns in MS disease, thereby providing novel diagnostic and prognostic biomarkers and therapeutic options for better treatment of MS disease. Furthermore, these microvesicles are non-immunogenic and non-toxic therapeutic tools for transferring miRNAs across the blood-brain barrier (BBB). Collectively, exosomes could be used as novel drug delivery devices for the treatment of MS patients. This review summarized research regarding the exosomes from serum, plasma, PBMC, and other cells in MS patients and experimental models. We also provide a critical view of exosome content-mediated signaling pathways in MS, including TNF-α, TGF-β, NF-κB, and Wnt pathways. The use of exosomes as a therapeutic potential in MS has also been discussed.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hasaniani N, Nouri S, Shirzad M, Rostami-Mansoor S. Potential therapeutic and diagnostic approaches of exosomes in multiple sclerosis pathophysiology. Life Sci 2024; 347:122668. [PMID: 38670451 DOI: 10.1016/j.lfs.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.
Collapse
Affiliation(s)
- Nima Hasaniani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sina Nouri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
6
|
Bustamante-Marin X, Devlin KL, McDonell SB, Dave O, Merlino JL, Grindstaff EJ, Ho AN, Rezeli ET, Coleman MF, Hursting SD. Regulation of IGF1R by MicroRNA-15b Contributes to the Anticancer Effects of Calorie Restriction in a Murine C3-TAg Model of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:4320. [PMID: 37686596 PMCID: PMC10486801 DOI: 10.3390/cancers15174320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
Calorie restriction (CR) inhibits triple-negative breast cancer (TNBC) progression in several preclinical models in association with decreased insulin-like growth factor 1 (IGF1) signaling. To investigate the impact of CR on microRNAs (miRs) that target the IGF1/IGF1R pathway, we used the spontaneous murine model of TNBC, C3(1)/SV40 T-antigen (C3-TAg). In C3-TAg mice, CR reduced body weight, IGF1 levels, and TNBC progression. We evaluated the tumoral expression of 10 miRs. CR increased the expression of miR-199a-3p, miR-199a-5p, miR-486, and miR-15b. However, only miR-15b expression correlated with tumorigenicity in the M28, M6, and M6C C3-TAg cell lines of TNBC progression. Overexpressing miR-15b reduced the proliferation of mouse (M6) and human (MDA-MB-231) cell lines. Serum restriction alone or in combination with low levels of recombinant IGF1 significantly upregulated miR-15b expression and reduced Igf1r in M6 cells. These effects were reversed by the pharmacological inhibition of IGFR with BMS754807. In silico analysis using miR web tools predicted that miR-15b targets genes associated with IGF1/mTOR pathways and the cell cycle. Our findings suggest that CR in association with reduced IGF1 levels could upregulate miR-15b to downregulate Igf1r and contribute to the anticancer effects of CR. Thus, miR-15b may be a therapeutic target for mimicking the beneficial effects of CR against TNBC.
Collapse
Affiliation(s)
- Ximena Bustamante-Marin
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Kaylyn L. Devlin
- School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shannon B. McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Om Dave
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emma J. Grindstaff
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alyssa N. Ho
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
8
|
Shi Y, Shao J, Zhang Z, Zhang J, Lu H. Effect of condylar chondrocyte exosomes on condylar cartilage osteogenesis in rats under tensile stress. Front Bioeng Biotechnol 2022; 10:1061855. [PMID: 36561044 PMCID: PMC9766957 DOI: 10.3389/fbioe.2022.1061855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Functional orthoses are commonly used to treat skeletal Class II malocclusion, but the specific mechanism through which they do this has been a challenging topic in orthodontics. In the present study, we aimed to explore the effect of tensile stress on the osteogenic differentiation of condylar chondrocytes from an exosomal perspective. Methods: We cultured rat condylar chondrocytes under resting and tensile stress conditions and subsequently extracted cellular exosomes from them. We then screened miRNAs that were differentially expressed between the two exosome extracts by high-throughput sequencing and performed bioinformatics analysis and osteogenesis-related target gene prediction using the TargetScan and miRanda softwares. Exosomes cultured under resting and tensile stress conditions were co-cultured with condylar chondrocytes for 24 h to form the Control-Exo and Force-Exo exosome groups, respectively. Quantitative real time PCR(RT-qPCR) and western blotting were then used to determine the mRNA and protein expression levels of Runx2 and Sox9 in condylar chondrocytes. Results: The mRNA and protein expression levels of Runx2 and Sox9 in the Force-Exo group were significantly higher than those in the Control-Exo group (p < 0.05). The differential miRNA expression results were consistent with our sequencing results. Bioinformatics analysis and target gene prediction results showed that the main biological processes and molecular functions involved in differential miRNA expression in exosomes under tensile stress were biological processes and protein binding, respectively. Kyoto Gene and Genome Data Bank (KEGG) pathway enrichment analysis showed significant enrichment of differentially expressed miRNAs in the mTOR signaling pathway. The differentially expressed miRNAs were found to target osteogenesis-related genes. Conclusion: These results suggest that stimulation of rat condylar chondrocytes with tensile stress can alter the expression levels of certain miRNAs in their exosomes and promote their osteogenic differentiation. Exosomes under tensile stress culture conditions thus have potential applications in the treatment of Osteoarthritis (OA).
Collapse
Affiliation(s)
- Yuan Shi
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Shao
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zanzan Zhang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianan Zhang
- Department of Dentistry, Center of Orthodontics, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Haiping Lu
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Haiping Lu,
| |
Collapse
|
9
|
Wu F, An Y, Zhou L, Zhao Y, Chen L, Wang J, Wu G. Whole-transcriptome sequencing and ceRNA interaction network of temporomandibular joint osteoarthritis. Front Genet 2022; 13:962574. [PMID: 36276964 PMCID: PMC9581126 DOI: 10.3389/fgene.2022.962574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2023] Open
Abstract
Purpose: The aim of this study was to conduct a comprehensive transcriptomic analysis to explore the potential biological functions of noncoding RNA (ncRNAs) in temporomandibular joint osteoarthritis (TMJOA). Methods: Whole transcriptome sequencing was performed to identify differentially expressed genes (DEGs) profiles between the TMJOA and normal groups. The functions and pathways of the DEGs were analyzed using Metascape, and a competitive endogenous RNA (ceRNA) network was constructed using Cytoscape software. Results: A total of 137 DEmRNAs, 65 DEmiRNAs, 132 DElncRNAs, and 29 DEcircRNAs were identified between the TMJOA and normal groups. Functional annotation of the DEmRNAs revealed that immune response and apoptosis are closely related to TMJOA and also suggested key signaling pathways related to TMJOA, including chronic depression and PPAR signaling pathways. We identified vital mRNAs, including Klrk1, Adipoq, Cryab, and Hspa1b. Notably, Adipoq expression in cartilage was significantly upregulated in TMJOA compared with normal groups (10-fold, p < 0.001). According to the functional analysis of DEmRNAs regulated by the ceRNA network, we found that ncRNAs are involved in the regulation of autophagy and apoptosis. In addition, significantly DEncRNAs (lncRNA-COX7A1, lncRNA-CHTOP, lncRNA-UFM1, ciRNA166 and circRNA1531) were verified, and among these, circRNA1531 (14.5-fold, p < 0.001) and lncRNA-CHTOP (14.8-fold, p < 0.001) were the most significantly downregulated ncRNAs. Conclusion: This study showed the potential of lncRNAs, circRNAs, miRNAs, and mRNAs may as clinical biomarkers and provides transcriptomic insights into their functional roles in TMJOA. This study identified the transcriptomic signatures of mRNAs associated with immunity and apoptosis and the signatures of ncRNAs associated with autophagy and apoptosis and provides insight into ncRNAs in TMJOA.
Collapse
Affiliation(s)
- Fan Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yuqing Zhao
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, China
| | - Jing Wang
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Gaoyi Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
10
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 2021; 285:119926. [PMID: 34480932 DOI: 10.1016/j.lfs.2021.119926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Considering the expansion of human life-span over the past few decades; sarcopenia, a physiological consequence of aging process characterized with a diminution in mass and strength of skeletal muscle, has become more frequent. Thus, there is a growing need for expanding our knowledge on the molecular mechanisms of muscle atrophy in sarcopenia which are complex and involve many signaling pathways associated with protein degradation and synthesis. MicroRNAs (miRNAs) as evolutionary conserved small RNAs, could complementarily bind to their target mRNAs and post-transcriptionally inhibit their translation. Aberrant expression of miRNAs contributes to the development of sarcopenia by regulating the expression of critical genes involved in age-related skeletal muscle mass loss. Here we have a review on the signaling pathways along with the miRNAs controlling their components expression and subsequently we provide a brief overview on the effects of exercise on expression pattern of miRNAs in sarcopenia.
Collapse
|
12
|
Xiao P, Zhu X, Sun J, Zhang Y, Qiu W, Li J, Wu X. Cartilage tissue miR-214-3p regulates the TrkB/ShcB pathway paracrine VEGF to promote endothelial cell migration and angiogenesis. Bone 2021; 151:116034. [PMID: 34107348 DOI: 10.1016/j.bone.2021.116034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study was designed to explore the mechanisms through which chondrocytes regulated endothelial cell migration and angiogenesis in osteoarthritis (OA). METHODS The expressions of related genes of OA were detected by Western blot and real-time quantitative PCR. Chondrocytes were co-cultured with endothelial cells, and migration as well as angiogenesis rates, and vascular endothelial growth factor (VEGF) secretion of the cells were detected. The relationship between miRNA and TrkB were analyzed by bioinformatics analysis, RNA immunoprecipitation and dual-luciferase assays. The effects of miRNA on the histopathology of the OA mice were determined. RESULTS The expressions of NGF, TrkA, TrkB, and ShcB were increased significantly in OA patients. IL-1β promoted the expressions of TrkA, TrkB, and ShcB in chondrocytes and inhibited the expressions of chondrogenic differentiation markers, but shTrkB partially reversed IL-1β-mediated chondrogenic differentiation. Overexpression of TrkB promoted cell migration, angiogenesis, and VEGF levels, while silencing ShcB reversed the regulation of TrkB. Moreover, chondrocytes miR-214-3p regulated endothelial cell migration and angiogenesis by targeting TrkB paracrine VEGF to activate PI3K/Akt pathway proteins. In addition, overexpressed miR-214-3p improved collagenase-induced cartilage and synovial damage in OA mice. CONCLUSION The activation of TrkB/ShcB signaling pathway paracrine VEGF is mediated by miR-214-3p in chondrocytes and it regulates endothelial cell migration and angiogenesis in the development of OA.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Xu Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Jinpeng Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Yuhang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Weijian Qiu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Jianqiang Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
13
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
14
|
Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, Cao H, Lan X, Chen H. CircINSR Regulates Fetal Bovine Muscle and Fat Development. Front Cell Dev Biol 2021; 8:615638. [PMID: 33490079 PMCID: PMC7815687 DOI: 10.3389/fcell.2020.615638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
The level of muscle development in livestock directly affects the production efficiency of livestock, and the contents of intramuscular fat (IMF) is an important factor that affects meat quality. However, the molecular mechanisms through which circular RNA (circRNA) affects muscle and IMF development remains largely unknown. In this study, we isolated myoblasts and intramuscular preadipocytes from fetal bovine skeletal muscle. Oil Red O and BODIPY staining were used to identify lipid droplets in preadipocytes, and anti-myosin heavy chain (MyHC) immunofluorescence was used to identify myotubes differentiated from myoblasts. Bioinformatics, a dual-fluorescence reporter system, RNA pull-down, and RNA-binding protein immunoprecipitation were used to determine the interactions between circINSR and the micro RNA (miR)-15/16 family. Molecular and biochemical assays were used to confirm the roles played by circINSR in myoblasts and intramuscular preadipocytes. We found that isolated myoblasts and preadipocytes were able to differentiate normally. CircINSR was found to serve as a sponge for the miR-15/16 family, which targets CCND1 and Bcl-2. CircINSR overexpression significantly promoted myoblast and preadipocyte proliferation and inhibited cell apoptosis. In addition, circINSR inhibited preadipocyte adipogenesis by alleviating the inhibition of miR-15/16 against the target genes FOXO1 and EPT1. Taken together, our study demonstrated that circINSR serves as a regulator of embryonic muscle and IMF development.
Collapse
Affiliation(s)
- Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Cao
- Shaanxi Kingbull Livestock Co., Ltd., Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Guo H, Li H, Feng Y, Ke J, Fang W, Li C, Long X. Cross-talk between synovial fibroblasts and chondrocytes in condylar hyperplasia: an in vitro pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:558-564. [PMID: 33187941 DOI: 10.1016/j.oooo.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Increasing evidence indicates an interaction between the synovium and the cartilage in the temporomandibular joint (TMJ) and other joints. We recently demonstrated that the expression of proangiogenic factors was enhanced and that of factors promoting matrix degradation was decreased in synovial fibroblasts in condylar hyperplasia (CH). The aim of this study was to explore whether CH chondrocytes can affect the expression of these factors of synovial fibroblasts in a co-culture system. STUDY DESIGN The expressions of vascular endothelial growth factor (VEGF), cluster of differentiation 34 (CD34), fibroblast growth factor 2 (FGF-2), and tissue inhibitor of metalloproteinase 1 (TIMP1) from CH condylar tissues were observed by using immunohistochemical methods. Synovial fibroblasts of control tissues were co-cultured with the chondrocytes of CH, and protein expressions of VEGF, FGF-2, thrombospondin 1 (TSP1), matrix metalloproteinase 3 (MMP3), and TIMP1 were examined by using Western blotting. RESULTS Positive staining for VEGF, CD34, FGF-2, and TIMP1 was found in the hypertrophic cartilage layer of CH condylar tissues. Protein expressions of VEGF, FGF-2, and TIMP1 were significantly increased in co-cultured synovial fibroblasts, but TSP1 and MMP3 expressions were decreased. CONCLUSIONS The angiogenic factors and matrix degradation-related factors in synovial fibroblasts co-cultured with CH chondrocytes showed the same trends as those in synovial fibroblasts from CH tissue, suggesting potential cross-talk between synovial fibroblasts and chondrocytes during CH progression.
Collapse
Affiliation(s)
- Huilin Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cheng Li
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Xu L, Jiang H, Feng Y, Cao P, Ke J, Long X. Peripheral and central substance P expression in rat CFA-induced TMJ synovitis pain. Mol Pain 2020; 15:1744806919866340. [PMID: 31322474 PMCID: PMC6685108 DOI: 10.1177/1744806919866340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synovitis contributes to temporomandibular joint (TMJ) pain, nevertheless, the detailed nociceptive mechanism remains unclear. In this study, a rat model of TMJ synovitis was induced by intra-articular injection with complete Freund’s adjuvant (CFA). After CFA-induced synovitis, pain behaviors were observed. Then, TMJ, trigeminal ganglion, and trigeminal nucleus caudalis (TNC) tissues were collected, and immunohistochemistry was used to detect the expression of substance P (SP) and protein gene product 9.5 (PGP9.5) in the synovium tissue. Furthermore, the gene expression level of SP and PGP9.5 in synovium was detected by reverse transcription-polymerase chain reaction (RT-PCR). Afterwards, the expression of SP in the trigeminal ganglion and TNC and c-fos in the TNC was detected by immunohistochemistry. Compared with the control group, the expression of SP and PGP9.5 nerve fibers density and gene levels of them in the synovium tissue were significantly increased in CFA-induced TMJ synovitis rats. Similarly, SP expression in the trigeminal ganglion and TNC, and c-fos expression in the TNC were also obviously increased in CFA-induced TMJ synovitis rats. Collectively, CFA-induced rat TMJ synovitis resulted in obvious pain. This nociceptive reaction could be attributed to the augmented quantity of SP and PGP9.5 positive-stained nerve fibers distributed in the inflammatory synovium as well as enhanced SP expression in the trigeminal ganglion and TNC tissue. c-fos expression in the rat TNC illustrates CFA-induced TMJ synovitis can evoke the acute pain.
Collapse
Affiliation(s)
- Liqin Xu
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pinyin Cao
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- 2 Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Wang J, Yao S, Diao Y, Geng Y, Bi Y, Liu G. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 2020; 11:1396-1405. [PMID: 32220063 PMCID: PMC7262900 DOI: 10.1111/1759-7714.13382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a subtype of lung cancer (LC), which is the most common tumor worldwide. Accumulating evidence has elucidated an important role of microRNAs (miRNAs) in mediating the development and progression of several tumors. The purpose of this study was to explore the role and underlying mechanism of miR‐15b in LUAD. Methods CCK‐8 and Transwell assays were conducted to measure the capacities of cell viability and migration in SPC‐A1 cells. Luciferase assay was utilized to verifymiR‐15b direct binding to BCL2 mRNA 3′‐UTR. Results We determined that miR‐15b was overexpressed in LUAD and miR‐15b overexpression predicted a significantly worse outcome in patients with LUAD. miR‐15b improved LUAD growth in vitro and vivo. miR‐15b enhanced cell migration and epithelial–mesenchymal transition (EMT) in LUAD. miR‐15b promoted cell viability, migration and EMT through inhibiting BCL2 expression by targeting to its mRNA 3′‐UTR. BCL2 reversed functions of miR‐15b on promoting cell proliferation, migration and EMT in SPC‐A1 cells. Conclusions miR‐15b promoted cell viability, migration and EMT by targeting BCL2 in LUAD. The newly identified miR‐15b/BCL2 axis provides a novel insight into the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Thoracic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shupeng Yao
- Department of Respiratory Medicine, Liaocheng Dongchangfu People's Hospital, Liaocheng, China
| | - Yanping Diao
- Department of Gastrointestinal Surgery, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Yan Geng
- Department of Gastrointestinal Surgery, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Yanling Bi
- Operation Room, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Guangyue Liu
- Department of Outpatient, Weifang People's Hospital, Weifang, China
| |
Collapse
|
19
|
Lu M, Zhou E. Long noncoding RNA LINC00662-miR-15b-5p mediated GPR120 dysregulation contributes to osteoarthritis. Pathol Int 2020; 70:155-165. [PMID: 32037689 DOI: 10.1111/pin.12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Previous studies demonstrated that dysregulation of G protein-coupled receptor 120 (GPR120) plays a protective role in osteoarthritis (OA). However, the mechanism underlying how GPR120 is downregulated remains largely unknown. In the present study, we evaluated whether GPR120 is regulated by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Our results show that GPR120 was negatively regulated by miR-15b-5p through targeting 3' untranslated region (3'UTR), and that miR-15b-5p was negatively regulated by LINC00662. Further luciferase assay shows that LINC00662-miR-15b-5p signaling pathway contributed the regulation of GPR120 expression. Functionally, the decreased of LINC00662 caused increased miR-15b-5p, thereby leading to decreased GPR120. The decreased GPR120 then contributes to increased expression of inflammatory factors including tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-8, cell apoptosis, and decreased apoptosis-related protein levels including cleaved caspase-3, cleaved caspase-9, and Bax in cultured rat chondrocytes. In summary, the present study shows that LINC00662-miR-15b-5p signaling pathway is involved in the regulation of GPR120, thereby contributing to arthritis.
Collapse
Affiliation(s)
- Ming Lu
- Department of Orthopedics, Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, The Fourth Comprehensive Service and Support Center of the PLA Beijing Administration of Veterans Service Affairs, Beijing, China
| | - Enliang Zhou
- Department of Orthopedics, Shandong Lanling County People's Hospital, Linyi City, Shandong, China
| |
Collapse
|
20
|
Wang X, Gong S, Pu D, Hu N, Wang Y, Fan P, Zhang J, Lu X. Up-regulation of miR-365 promotes the apoptosis and restrains proliferation of synoviocytes through downregulation of IGF1 and the inactivation of the PI3K/AKT/mTOR pathway in mice with rheumatoid arthritis. Int Immunopharmacol 2020; 79:106067. [DOI: 10.1016/j.intimp.2019.106067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023]
|
21
|
miR-142-5p as a CXCR4-Targeted MicroRNA Attenuates SDF-1-Induced Chondrocyte Apoptosis and Cartilage Degradation via Inactivating MAPK Signaling Pathway. Biochem Res Int 2020; 2020:4508108. [PMID: 32047668 PMCID: PMC7003277 DOI: 10.1155/2020/4508108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint function disorder with characteristics of chondrocytes reduction and extracellular matrix (ECM) components destruction. MicroRNAs (miRNAs) and the SDF-1/CXCR4 axis are essential factors of chondrocyte apoptosis and ECM degeneration. However, very few studies have investigated the correlation between miRNAs and the SDF-1/CXCR4 axis in osteoarthritis so far. Here, through miRNAs microarray and bioinformatics analyses, we identified miR-142-5p as a CXCR4-targeted and dramatically downregulated miRNA in cartilage from OA patients, as well as in SDF-1-induced OA chondrocytes in vitro. In SDF-1-treated primary human OA chondrocytes that were transfected with a miR-142-5p mimic or inhibitor, the expression of CXCR4 was found to be inversely correlated with the expression of miR-142-5p. The dual luciferase reporter assay further verified the target relationship between miR-142-5p and CXCR4. Overexpression of miR-142-5p alleviated OA pathology by suppressing chondrocyte apoptosis, even in CXCR4 overexpressed OA chondrocytes. This was associated with decreased cartilage matrix degradation, reduced cartilage inflammation, and inactivated MAPK signaling pathway. Our study suggests that upregulated expression of CXCR4-targeted miR-142-5p can inhibit apoptosis, inflammation, and matrix catabolism and inactivate the MAPK signaling pathway in OA chondrocytes. Our work provides important insight into targeting miR-142-5p and the SDF-1/CXCR4 axis in OA therapy.
Collapse
|