1
|
Mathew S, Ashraf S, Shorter S, Tozzi G, Koutsikou S, Ovsepian SV. Neurobiological Correlates of Rheumatoid Arthritis and Osteoarthritis: Remodelling and Plasticity of Nociceptive and Autonomic Innervations in Synovial Joints. Neuroscientist 2024:10738584241293049. [PMID: 39668598 DOI: 10.1177/10738584241293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain. Sprouting and reorganization of sensory and autonomic fibers with the invasion of ectopic branches into surrounding inflamed tissues are associated with the upregulation of pain markers. These changes are frequently complemented by a phenotypic switch of sensory and autonomic profiles and activation of silent axons, inferring homeostatic adjustments and reprogramming of innervations. Identifying critical molecular players and neurobiological mechanisms underpinning the rewiring and sensitization of joints is likely to elucidate causatives of neuroinflammation and chronic pain, assisting in finding new therapeutic targets and opportunities for interventions.
Collapse
Affiliation(s)
- Sharon Mathew
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Sadaf Ashraf
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Gianluca Tozzi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Stella Koutsikou
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi, Republic of Georgia
| |
Collapse
|
2
|
Ko FC, Fullam S, Lee H, Chan K, Ishihara S, Adamczyk NS, Obeidat AM, Soorya S, Miller RJ, Malfait AM, Miller RE. Clearing-enabled light sheet microscopy as a novel method for three-dimensional mapping of the sensory innervation of the mouse knee. J Orthop Res 2024. [PMID: 39547819 DOI: 10.1002/jor.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the optimal transparency for light sheet microscopy imaging. We then modified the DISCO protocol to enhance binding and penetration of antibodies used for labeling nerves. Using the pan-neuronal PGP9.5 antibody, our protocol allowed 3D visualization of innervation in and around the mouse knee joint. We then implemented the workflow in mice intra-articularly injected with nerve growth factor (NGF) to determine whether changes in the nerve density can be observed. Both 3D and 2D analytical approaches of the light sheet microscopy images demonstrated quantifiable changes in midjoint nerve density following 4 weeks of NGF injection in the medial but not in the lateral joint compartment. We provide, for the first time, a comprehensive workflow that allows detailed and quantifiable examination of mouse knee joint innervation in 3D.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
| | - Spencer Fullam
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
| | - Kelly Chan
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Shingo Ishihara
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Natalie S Adamczyk
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Alia M Obeidat
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Sarah Soorya
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard J Miller
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Chicago, Chicago, Illinois, USA
| | - Anne-Marie Malfait
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Rachel E Miller
- Chicago Center on Musculoskeletal Pain, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Rutter-Locher Z, Kirkham BW, Bannister K, Bennett DL, Buckley CD, Taams LS, Denk F. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:671-682. [PMID: 39242949 DOI: 10.1038/s41584-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.
Collapse
Affiliation(s)
- Zoe Rutter-Locher
- Department of Rheumatology, Guy's Hospital, London, UK
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Kirsty Bannister
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Leonie S Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK.
| |
Collapse
|
4
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. A standardized approach to evaluation and reporting of synovial histopathology in two surgically induced murine models of osteoarthritis. Osteoarthritis Cartilage 2024; 32:1273-1282. [PMID: 38823432 PMCID: PMC11408105 DOI: 10.1016/j.joca.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA 19104, United States.
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW 2065, Australia.
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
5
|
Bergman RF, Lammlin L, Junginger L, Farrell E, Goldman S, Darcy R, Rasner C, Obeidat AM, Malfait AM, Miller RE, Maerz T. Sexual dimorphism of the synovial transcriptome underpins greater PTOA disease severity in male mice following joint injury. Osteoarthritis Cartilage 2024; 32:1060-1073. [PMID: 37716404 DOI: 10.1016/j.joca.2023.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease with sex-dependent prevalence and severity in both human and animal models. We sought to elucidate sex differences in synovitis, mechanical sensitization, structural damage, bone remodeling, and the synovial transcriptome in the anterior cruciate ligament rupture (ACLR) mouse model of post-traumatic OA (PTOA). DESIGN Male and female 12-week-old C57/BL6J mice were randomized to Sham or noninvasive ACLR with harvests at 7d or 28d post-ACLR (n = 9 per sex in each group - Sham, 7d ACLR, 28d ACLR). Knee hyperalgesia, mechanical allodynia, and intra-articular matrix metalloproteinase (MMP) activity (via intravital imaging) were measured longitudinally. Trabecular and subchondral bone (SCB) remodeling and osteophyte formation were assessed by µCT. Histological scoring of PTOA, synovitis, and anti-MMP13 immunostaining were performed. NaV1.8-Cre;tdTomato mice were used to document localization and sprouting of nociceptors. Bulk RNA-seq of synovium in Sham, 7d, and 28d post-ACLR, and contralateral joints (n = 6 per group per sex) assessed injury-induced and sex-dependent gene expression. RESULTS Male mice exhibited more severe joint damage at 7d and 28d and more severe synovitis at 28d, accompanied by 19% greater MMP activity, 8% lower knee hyperalgesia threshold, and 43% lower hindpaw withdrawal threshold in injured limbs compared to female injured limbs. Females had injury-induced catabolic responses in trabecular and SCB, whereas males exhibited 133% greater normalized osteophyte volume relative to females and sclerotic remodeling of trabecular and SCB. NaV1.8+ nociceptor sprouting in SCB and medial synovium was induced by injury and comparable between sexes. RNA-seq of synovium demonstrated similar injury-induced transcriptomic programs between the sexes at 7d, but only female mice exhibited a transcriptomic signature indicative of synovial inflammatory resolution by 28d, whereas males had persistent pro-inflammatory, pro-fibrotic, pro-neurogenic, and pro-angiogenic gene expression. CONCLUSION Male mice exhibited more severe overall joint damage and pain behavior after ACLR, which was associated with persistent activation of synovial inflammatory, fibrotic, and neuroangiogenic processes, implicating persistent synovitis in driving sex differences in murine PTOA.
Collapse
Affiliation(s)
- Rachel F Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lucas Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Easton Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Sam Goldman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rose Darcy
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Cody Rasner
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Tristan Maerz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
6
|
de Oliveira MLR, Ferezin AN, Gomes BC, Mattos VS, Mazzi-Chaves JF, Sousa-Neto MD, de Queiroz AM, de Paula-Silva FWG, de Carvalho FK. Optical coherence tomography and gray scale digital analysis as noninvasive techniques for evaluating molar-incisor hypomineralization severity: A comparative study with microcomputed tomography. Microsc Res Tech 2024; 87:1810-1821. [PMID: 38530150 DOI: 10.1002/jemt.24558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Molar-incisor hypomineralization (MIH) is a qualitative defect of dental enamel characterized by demarcated opacities present in permanent first molars and other teeth. It is considered a major clinical challenge in dentistry because it makes affected teeth more susceptible to fractures and dental caries. Its diagnosis is mainly clinical and there are few technological resources that allow for a more accurate diagnosis, especially with respect to the depth of the defect in the dental enamel. In this context, optical coherence tomography (OCT), which is routinely used in ophthalmology, can produce images of the depth of the dental enamel, making it a promising method. In this study, 33 teeth with different MIH severities were evaluated using OCT and microcomputed tomography (microCT). Semi-quantitative methods of grayscale pattern analysis were used to compare images obtained from different severities of MIH with the mineral density obtained through microCT. MicroCT evaluation revealed that hypomineralized enamel had a significantly lower mineral density than intact enamel. However, this difference was not observed between the mild and severe MIH lesions. In the OCT evaluation, significant differences were observed between the intact and hypomineralized enamel, and the gray value comparison provided a method for quantitative differentiation between the two. This study suggests that OCT could be a useful adjunct to traditional diagnostic methods for MIH, offering a noninvasive approach to evaluate enamel defects. RESEARCH HIGHLIGHTS: Combining optical coherence tomography with grayscale digital analysis shows potential as a promising method for diagnosing molar-incisor hypomineralization and assessing its level of severity.
Collapse
Affiliation(s)
| | - Ayla Natalia Ferezin
- Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Obeidat AM, Ishihara S, Li J, Adamczyk NS, Lammlin L, Junginger L, Maerz T, Miller RJ, Miller RE, Malfait AM. Intra-articular sprouting of nociceptors accompanies progressive osteoarthritis: comparative evidence in four murine models. Front Neuroanat 2024; 18:1429124. [PMID: 39076825 PMCID: PMC11284167 DOI: 10.3389/fnana.2024.1429124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Knee joints are densely innervated by nociceptors. In human knees and rodent models, sprouting of nociceptors has been reported in late-stage osteoarthritis (OA). Here, we sought to describe progressive nociceptor remodeling in early and late-stage OA, using four distinct experimental mouse models. Methods Sham surgery, destabilization of the medial meniscus (DMM), partial meniscectomy (PMX), or non-invasive anterior cruciate ligament rupture (ACLR) was performed in the right knee of 10-12-week old male C57BL/6 NaV1.8-tdTomato mice. Mice were euthanized (1) 4, 8 or 16 weeks after DMM or sham surgery; (2) 4 or 12 weeks after PMX or sham; (3) 1 or 4 weeks after ACLR injury or sham. Additionally, a cohort of naïve male wildtype mice was evaluated at age 6 and 24 months. Mid-joint cryosections were assessed qualitatively and quantitatively for NaV1.8+ or PGP9.5+ innervation. Cartilage damage, synovitis, and osteophytes were assessed. Results Progressive OA developed in the medial compartment after DMM, PMX, and ACLR. Synovitis and associated neo-innervation of the synovium by nociceptors peaked in early-stage OA. In the subchondral bone, channels containing sprouting nociceptors appeared early, and progressed with worsening joint damage. Two-year old mice developed primary OA in the medial and the lateral compartment, accompanied by nociceptor sprouting in the synovium and the subchondral bone. All four models showed increased nerve signal in osteophytes. Conclusion These findings suggest that anatomical neuroplasticity of nociceptors is intrinsic to OA pathology. The detailed description of innervation of the OA joint and its relationship to joint damage might help in understanding OA pain.
Collapse
Affiliation(s)
- Alia M. Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Natalie S. Adamczyk
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Lindsey Lammlin
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard J. Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
9
|
Ko FC, Fullam S, Lee H, Ishihara S, Adamczyk NS, Obeidat AM, Soorya S, Miller RJ, Malfait AM, Miller RE. Clearing-enabled light sheet microscopy as a novel method for three-dimensional mapping of the sensory innervation of the mouse knee. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596316. [PMID: 38853939 PMCID: PMC11160612 DOI: 10.1101/2024.05.28.596316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the most optimal transparency for light sheet microscopy imaging. We then modified the DISCO protocol to enhance binding and penetration of antibodies used for labeling nerves. Using the pan-neuronal PGP9.5 antibody, our protocol allowed 3D visualization of innervation in and around the mouse knee joint. We then implemented the workflow in mice intra-articularly injected with nerve growth factor (NGF) to determine whether changes in the nerve density can be observed. Both 3D and 2D analytical approaches of the light sheet microscopy images demonstrated quantifiable changes in midjoint nerve density following 4 weeks of NGF injection in the medial but not in the lateral joint compartment. We provide, for the first time, a comprehensive workflow that allows detailed and quantifiable examination of mouse knee joint innervation in 3D.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Spencer Fullam
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Natalie S. Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alia M. Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sarah Soorya
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Richard J. Miller
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Lee FS, Nguyen UN, Munns EJ, Wachs RA. Identification of compounds that cause axonal dieback without cytotoxicity in dorsal root ganglia explants and intervertebral disc cells with potential to treat pain via denervation. PLoS One 2024; 19:e0300254. [PMID: 38696450 PMCID: PMC11065314 DOI: 10.1371/journal.pone.0300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024] Open
Abstract
Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Uyen N. Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Eliza J. Munns
- Department of Electrical, Computer, and Biomedical Engineering, Union College, Schenectady, New York, United States of America
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| |
Collapse
|
11
|
Bai Z, Bartelo N, Aslam M, Murphy EA, Hale CR, Blachere NE, Parveen S, Spolaore E, DiCarlo E, Gravallese EM, Smith MH, Frank MO, Jiang CS, Zhang H, Pyrgaki C, Lewis MJ, Sikandar S, Pitzalis C, Lesnak JB, Mazhar K, Price TJ, Malfait AM, Miller RE, Zhang F, Goodman S, Darnell RB, Wang F, Orange DE. Synovial fibroblast gene expression is associated with sensory nerve growth and pain in rheumatoid arthritis. Sci Transl Med 2024; 16:eadk3506. [PMID: 38598614 DOI: 10.1126/scitranslmed.adk3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.
Collapse
Affiliation(s)
- Zilong Bai
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | - Caryn R Hale
- Rockefeller University, New York, NY 10065, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathalie E Blachere
- Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | - Myles J Lewis
- Queen Mary University of London & NIHR BRC Barts Health NHS Trust, London E1 4NS, UK
| | - Shafaq Sikandar
- Queen Mary University of London & NIHR BRC Barts Health NHS Trust, London E1 4NS, UK
| | - Costantino Pitzalis
- Queen Mary University of London & NIHR BRC Barts Health NHS Trust, London E1 4NS, UK
- Department of Biomedical Sciences, Humanitas University & IRCC Humanitas Research Hospital, Milan 20072, Italy
| | | | | | | | | | | | - Fan Zhang
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert B Darnell
- Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA
| | - Fei Wang
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Dana E Orange
- Rockefeller University, New York, NY 10065, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
12
|
Vincent TL, Miller RE. Molecular pathogenesis of OA pain: Past, present, and future. Osteoarthritis Cartilage 2024; 32:398-405. [PMID: 38244717 PMCID: PMC10984780 DOI: 10.1016/j.joca.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE To provide a historical perspective and narrative review on research into the molecular pathogenesis of osteoarthritis pain. DESIGN PubMed databases were searched for combinations of "osteoarthritis", "pain" and "animal models" for papers that represented key phases in the history of osteoarthritis pain discovery research including epidemiology, pathology, imaging, preclinical modeling and clinical trials. RESULTS The possible anatomical sources of osteoarthritis pain were identified over 50 years ago, but relatively slow progress has been made in understanding the apparent disconnect between structural changes captured by radiography and symptom severity. Translationally relevant animal models of osteoarthritis have aided in our understanding of the structural and molecular drivers of osteoarthritis pain, including molecules such as nerve growth factor and C-C motif chemokine ligand 2. Events leading to persistent osteoarthritis pain appear to involve a two-step process involving changes in joint innervation, including neo-innervation of the articular cartilage, as well as sensitization at the level of the joint, dorsal root ganglion and central nervous system. CONCLUSIONS There remains a great need for the development of treatments to reduce osteoarthritis pain in patients. Harnessing all that we have learned over the past several decades is helping us to appreciate the important interaction between structural disease and pain, and this is likely to facilitate development of new disease modifying therapies in the future.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, OX3 7FY Oxford, UK.
| | - Rachel E Miller
- Division of Rheumatology and Chicago Center on Musculoskeletal Pain, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
13
|
Li X, Martinez-Ramos S, Heedge FT, Pitsillides A, Bou-Gharios G, Poulet B, Chenu C. Expression of semaphorin-3A in the joint and role in osteoarthritis. Cell Biochem Funct 2024; 42:e4012. [PMID: 38584583 DOI: 10.1002/cbf.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Sara Martinez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Freija T Heedge
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - George Bou-Gharios
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Blandine Poulet
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Chantal Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
14
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562259. [PMID: 37904981 PMCID: PMC10614774 DOI: 10.1101/2023.10.14.562259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia PA 19104
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
15
|
Obeidat AM, Wood MJ, Adamczyk NS, Ishihara S, Li J, Wang L, Ren D, Bennett DA, Miller RJ, Malfait AM, Miller RE. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat Commun 2023; 14:2479. [PMID: 37120427 PMCID: PMC10148822 DOI: 10.1038/s41467-023-38241-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.
Collapse
Affiliation(s)
- Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Matthew J Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Natalie S Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA.
| |
Collapse
|
16
|
Wang L, Ishihara S, Li J, Miller RE, Malfait AM. Notch signaling is activated in knee-innervating dorsal root ganglia in experimental models of osteoarthritis joint pain. Arthritis Res Ther 2023; 25:63. [PMID: 37061736 PMCID: PMC10105425 DOI: 10.1186/s13075-023-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND We aimed to explore activation of the Notch signaling pathway in knee-innervating lumbar dorsal root ganglia (DRG) in the course of experimental osteoarthritis (OA) in mice, and its role in knee hyperalgesia. METHODS Cultured DRG cells were stimulated with the TLR4 agonist, lipopolysaccharide (LPS). Notch signaling in the cells was either inhibited with the γ-secretase inhibitor, DAPT, or with soluble Jagged1, or activated through immobilized Jagged1. CCL2 production was analyzed at mRNA and protein levels. In in vivo experiments, knee hyperalgesia was induced in naïve mice through intra-articular (IA) injection of LPS. The effect of inhibiting Notch signaling was examined by pre-injecting DAPT one hour before LPS. OA was induced through surgical destabilization of the medial meniscus (DMM) in male C57BL/6 mice. Gene expression in DRG was analyzed by qRT-PCR and RNAscope in situ hybridization. Activated Notch protein (NICD) expression in DRG was evaluated by ELISA and immunofluorescence staining. DAPT was injected IA 12 weeks post DMM to inhibit Notch signaling, followed by assessing knee hyperalgesia and CCL2 expression in the DRG. RESULTS In DRG cell cultures, LPS increased NICD in neuronal cells. Inhibition of Notch signaling with either DAPT or soluble Jagged1 attenuated LPS-induced increases of Ccl2 mRNA and CCL2 protein. Conversely, activating Notch signaling with immobilized Jagged1 enhanced these LPS effects. In vivo, IA injection of LPS increased expression of Notch genes and NICD in the DRG. Pre-injection of DAPT prior to LPS alleviated LPS-induced knee hyperalgesia, and decreased LPS-induced CCL2 expression in the DRG. Notch signaling genes were differentially expressed in the DRG from late-stage experimental OA. Notch1, Hes1, and NICD were increased in the neuronal cell bodies in DRG after DMM surgery. IA administration of DAPT alleviated knee hyperalgesia post DMM, and decreased CCL2 expression in the DRG. CONCLUSIONS These findings suggest a synergistic effect of Notch signaling with TLR4 in promoting CCL2 production and mediating knee hyperalgesia. Notch signaling is activated in knee-innervating lumbar DRG in mice with experimental OA, and is involved in mediating knee hyperalgesia. The pathway may therefore be explored as a target for alleviating OA pain.
Collapse
Affiliation(s)
- Lai Wang
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 West Harrison Street, Suite 510, Chicago, IL, 60612, USA.
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 West Harrison Street, Suite 510, Chicago, IL, 60612, USA
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 West Harrison Street, Suite 510, Chicago, IL, 60612, USA
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 West Harrison Street, Suite 510, Chicago, IL, 60612, USA
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 West Harrison Street, Suite 510, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Nees TA, Wang N, Adamek P, Zeitzschel N, Verkest C, La Porta C, Schaefer I, Virnich J, Balkaya S, Prato V, Morelli C, Begay V, Lee YJ, Tappe-Theodor A, Lewin GR, Heppenstall PA, Taberner FJ, Lechner SG. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat Commun 2023; 14:1899. [PMID: 37019973 PMCID: PMC10076432 DOI: 10.1038/s41467-023-37602-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Timo A Nees
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department for Orthopeadics, Heidelberg University Hospital, Heidelberg, Germany
| | - Na Wang
- Institute of Pathophysiology, Yan'an University, Yan'an, China
| | - Pavel Adamek
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clement Verkest
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carmen La Porta
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Irina Schaefer
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Julie Virnich
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Selin Balkaya
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincenzo Prato
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Chiara Morelli
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Valerie Begay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | | | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Paul A Heppenstall
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Francisco J Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernández - CSIC, Alicante, Spain
| | - Stefan G Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Riewruja K, Makarczyk M, Alexander PG, Gao Q, Goodman SB, Bunnell BA, Gold MS, Lin H. Experimental models to study osteoarthritis pain and develop therapeutics. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100306. [PMID: 36474784 PMCID: PMC9718172 DOI: 10.1016/j.ocarto.2022.100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Pain is the predominant symptom of osteoarthritis (OA) that drives patients to seek medical care. Currently, there are no pharmacological treatments that can reverse or halt the progression of OA. Safe and efficacious medications for long-term management of OA pain are also unavailable. Understanding the mechanisms behind OA pain generation at onset and over time is critical for developing effective treatments. In this narrative review, we first summarize our current knowledge on the innervation of the knee joint, and then discuss the molecular mechanism(s) currently thought to underlie OA pain. In particular, we focus on the contribution of each joint component to the generation of pain. Next, the current experimental models for studying OA pain are summarized, and the methods to assess pain in rodents are presented. The potential application of emerging microphysiological systems in OA pain research is especially highlighted. Lastly, we discuss the current challenge in standardizing models and the selection of appropriate systems to address specific questions.
Collapse
Affiliation(s)
- Kanyakorn Riewruja
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Meagan Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford, CA, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
20
|
Aso K, Walsh DA, Wada H, Izumi M, Tomitori H, Fujii K, Ikeuchi M. Time course and localization of nerve growth factor expression and sensory nerve growth during progression of knee osteoarthritis in rats. Osteoarthritis Cartilage 2022; 30:1344-1355. [PMID: 35843479 DOI: 10.1016/j.joca.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Nerve growth factor (NGF) and sensory nerves are key factors in established osteoarthritis (OA) knee pain. We investigated the time course of NGF expression and sensory nerve growth across early and late stages of OA progression in rat knees. DESIGN Knee OA was induced by medial meniscectomy in rats. OA histopathology, NGF expression, and calcitonin gene-related peptide immunoreactive (CGRP-IR) nerves were quantified pre-surgery and post-surgery at weeks 1, 2, 4 and 6. Pain-related behavior was evaluated using dynamic weight distribution and mechanical sensitivity of the hind paw. RESULTS NGF expression in chondrocytes increased from week 1 and remained elevated until the advanced stage. In synovium, NGF expression increased only in early stages, whereas in osteochondral channels and bone marrow, NGF expression increased in the later stages of OA progression. CGRP-IR nerve density in suprapatellar pouch peaked at week 4 and decreased at week 6, whereas in osteochondral channels and bone marrow, CGRP-IR innervation increased through week 6. Percent ipsilateral weight-bearing decreased throughout the OA time course, whereas reduced paw withdrawal thresholds were observed only in later stages. CONCLUSION During progression of knee OA, time-dependent alterations of NGF expression and CGRP-IR sensory innervation are knee tissue specific. NGF expression increased in early stages and decreased in advanced stage in the synovium but continued to increase in osteochondral channels and bone marrow. Increases in CGRP- IR sensory innervation followed increases in NGF expression, implicating that NGF is a key driver of articular nerve growth associated with OA pain.
Collapse
Affiliation(s)
- K Aso
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan.
| | - D A Walsh
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG5 1PB, UK
| | - H Wada
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - M Izumi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| | - H Tomitori
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - K Fujii
- Pfizer Japan Inc., 7-22-3 Yoyogi Shibuya-ku Tokyo, Japan
| | - M Ikeuchi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku 783-8505, Japan
| |
Collapse
|
21
|
McCollum MM, Larmore M, Ishihara S, Ng LCT, Kimura LF, Guadarrama E, Ta MC, Vien TN, Frost GB, Scheidt KA, Miller RE, DeCaen PG. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep 2022; 40:111248. [PMID: 36001977 PMCID: PMC9523973 DOI: 10.1016/j.celrep.2022.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.
Collapse
Affiliation(s)
- Megan M McCollum
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shingo Ishihara
- Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Louise F Kimura
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eduardo Guadarrama
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - My C Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Rachel E Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Alves-Simões M. Rodent models of knee osteoarthritis for pain research. Osteoarthritis Cartilage 2022; 30:802-814. [PMID: 35139423 DOI: 10.1016/j.joca.2022.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability worldwide. Pain is the main symptom, yet no current treatment can halt disease progression or effectively provide symptomatic relief. Numerous animal models have been described for studying OA and some for the associated OA pain. This review aims to update on current models used for studying OA pain, focusing on mice and rats. These models include surgical, chemical, mechanical, and spontaneous OA models. The impact of sex and age will also be addressed in the context of OA modelling. Although no single animal model has been shown ideal for studying OA pain, increased efforts to phenotype OA will likely impact the choice of models for pre-clinical and basic research studies.
Collapse
Affiliation(s)
- M Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
23
|
Wood MJ, Miller RE, Malfait AM. The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clin Geriatr Med 2022; 38:221-238. [PMID: 35410677 PMCID: PMC9053380 DOI: 10.1016/j.cger.2021.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic pain is a substantial personal and societal burden worldwide. Osteoarthritis (OA) is one of the leading causes of chronic pain and is increasing in prevalence in accordance with a global aging population. In addition to affecting patients' physical lives, chronic pain also adversely affects patients' mental wellbeing. However, there remain no pharmacologic interventions to slow down the progression of OA and pain-alleviating therapies are largely unsuccessful. The presence of low-level inflammation in OA has been recognized for many years as a major pathogenic driver of joint damage. Inflammatory mechanisms can occur locally in joint tissues, such as the synovium, within the sensory nervous system, as well as systemically, caused by modifiable and unmodifiable factors. Understanding how inflammation may contribute to, and modify pain in OA will be instrumental in identifying new druggable targets for analgesic therapies. In this narrative review, we discuss recent insights into inflammatory mechanisms in OA pain. We discuss how local inflammation in the joint can contribute to mechanical sensitization and to the structural neuroplasticity of joint nociceptors, through pro-inflammatory factors such as nerve growth factor, cytokines, and chemokines. We consider the role of synovitis, and the amplifying mechanisms of neuroimmune interactions. We then explore emerging evidence around the role of neuroinflammation in the dorsal root ganglia and dorsal horn. Finally, we discuss how systemic inflammation associated with obesity may modify OA pain and suggest future research directions.
Collapse
Affiliation(s)
- Matthew J Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 340, 1735 W Harrison Street, Chicago, IL 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 714, 1735 W Harrison Street, Chicago, IL 60612, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Morgan M, Thai J, Nazemian V, Song R, Ivanusic JJ. Changes to the activity and sensitivity of nerves innervating subchondral bone contribute to pain in late-stage osteoarthritis. Pain 2022; 163:390-402. [PMID: 34108432 PMCID: PMC8756348 DOI: 10.1097/j.pain.0000000000002355] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
ABSTRACT Although it is clear that osteoarthritis (OA) pain involves activation and/or sensitization of nociceptors that innervate knee joint articular tissues, much less is known about the role of the innervation of surrounding bone. In this study, we used monoiodoacetate (MIA)-induced OA in male rats to test the idea that pain in OA is driven by differential contributions from nerves that innervate knee joint articular tissues vs the surrounding bone. The time-course of pain behavior was assayed using the advanced dynamic weight-bearing device, and histopathology was examined using haematoxylin and eosin histology. Extracellular electrophysiological recordings of knee joint and bone afferent neurons were made early (day 3) and late (day 28) in the pathogenesis of MIA-induced OA. We observed significant changes in the function of knee joint afferent neurons, but not bone afferent neurons, at day 3 when there was histological evidence of inflammation in the joint capsule, but no damage to the articular cartilage or subchondral bone. Changes in the function of bone afferent neurons were only observed at day 28, when there was histological evidence of damage to the articular cartilage and subchondral bone. Our findings suggest that pain early in MIA-induced OA involves activation and sensitization of nerves that innervate the joint capsule but not the underlying subchondral bone, and that pain in late MIA-induced OA involves the additional recruitment of nerves that innervate the subchondral bone. Thus, nerves that innervate bone should be considered important targets for development of mechanism-based therapies to treat pain in late OA.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Vida Nazemian
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Richard Song
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Jason J. Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. J Adv Res 2022; 35:141-151. [PMID: 35003798 PMCID: PMC8721247 DOI: 10.1016/j.jare.2021.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial fibrosis was positively correlated with pain sensitivity in KOA rats. Synovial fibrosis was most prominent in DMM group 14 days after modeling. ACLT replaced DMM to be the most typical at 28 days after modeling. Increased synovial sensory innervation followed the same trend as fibrosis. ACLT is more applicable for KOA pain research.
Introduction Knee osteoarthritis (KOA) showed synovial fibrosis and hyperalgesia, although the correlation between the two is unclear. Besides, the specific changes of sensory innervation in animal models are still controversial, which makes it difficult to choose the modeling methods for KOA pain research. Objectives Study the characteristics of sensory innervation within three commonly used KOA rat models and the correlation between synovial fibrosis and hyperalgesia. Methods KOA models were induced by destabilization of medial meniscus (DMM), anterior cruciate ligament transection (ACLT), and monoiodoacetate (MIA), respectively. Mechanical, cold and thermal withdrawal threshold (MWT, CWT and TWT) were measured. The harvested tissues were used for pathological sections, immunofluorescence and quantitative analysis. Results KOA synovium showed more type I collagen deposition, increased expression of CD31, VEGF and TGF-β. These changes were most pronounced in surgical models, with DMM presenting the most prominent at Day 14 and ACLT at Day 28. Day 14, changes in mechanical hyperalgesia and cold hyperalgesia were most typical in DMM model and statistically different from MIA. There was a negative correlation between the percentage of type I collagen and MWT value (r = −0.88), as well as CWT value (r = −0.95). DMM synovium showed more axonal staining, upregulated CGRP, TRPV1, NGF and Netrin1 compared with MIA. Above changes were also observed at Day 28, but ACLT replaced DMM as the most typical. In DRG, only the levels of CGRP and NGF were different among KOA models at Day 14, and the highest in DMM, which was statistically different compared with MIA. Conclusions This study described the details of sensory innervation in different KOA model of rats, and the degree of synovial fibrosis was positively correlated with the pain sensitivity of KOA model rats. Additionally, surgical modeling especially ACLT method is more recommended for KOA pain research.
Collapse
Key Words
- ACLT, anterior cruciate ligament transection
- Animal models
- CGRP, calcitonin gene-related peptide
- CWT, cold withdrawal threshold
- DMM, destabilization of the medial meniscus
- ECM, extracellular matrix
- KOA, knee osteoarthritis
- Knee osteoarthritis
- MIA, monoiodoacetate
- MWT, mechanical withdrawal threshold
- NGF, nerve growth factor
- Pain
- Sensory innervation
- Synovial fibrosis
- TGF-β, transforming growth factor-β
- TRPV1, transient receptor potential vanilloid type 1
- TWT, thermal withdrawal threshold
- VEGF, vascular endothelial growth factor
Collapse
|
27
|
Morgan M, Nazemian V, Harrington K, Ivanusic JJ. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne) 2022; 13:1047943. [PMID: 36605943 PMCID: PMC9808033 DOI: 10.3389/fendo.2022.1047943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis pain is often thought of as a pain driven by nerves that innervate the soft tissues of the joint, but there is emerging evidence for a role for nerves that innervate the underlying bone. In this mini review we cite evidence that subchondral bone lesions are associated with pain in osteoarthritis. We explore recent studies that provide evidence that sensory neurons that innervate bone are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally, we describe neuronal remodeling of sensory and sympathetic nerves in bone and discuss how these processes can contribute to osteoarthritis pain.
Collapse
|
28
|
Zhou F, Han X, Wang L, Zhang W, Cui J, He Z, Xie K, Jiang X, Du J, Ai S, Sun Q, Wu H, Yu Z, Yan M. Associations of osteoclastogenesis and nerve growth in subchondral bone marrow lesions with clinical symptoms in knee osteoarthritis. J Orthop Translat 2022; 32:69-76. [PMID: 34934628 PMCID: PMC8645426 DOI: 10.1016/j.jot.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background/objective Subchondral bone marrow lesions (BMLs) are common magnetic resonance imaging (MRI) features in joints affected by osteoarthritis (OA), however, their clinical impacts and mechanisms remain controversial. Thus, we aimed to investigate subchondral BMLs in knee OA patients who underwent total knee arthroplasty (TKA), then evaluate the associations of osteoclastogenesis and nerve growth in subchondral BMLs with clinical symptoms. Methods Total 70 patients with primary symptomatic knee OA were involved, then separated into three groups based on MRI (without BMLs group, n = 14; BMLs without cyst group, n = 37; BMLs with cyst group, n = 19). Volume of BMLs and cyst-like lesions was calculated via the OsiriX system. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire was used to assess clinical symptoms. Histology and immunohistochemistry were deployed to assess subchondral osteoclastogenesis and nerve distribution. Pearson's correlation coefficient was used to evaluate the associations between volume of BMLs and joint symptoms, and to assess the associations of osteoclastogenesis and nerve growth in subchondral BMLs with joint symptoms. Results In BMLs combined with cyst group, patients exhibited increased osteoclastogenesis and nerve distribution in subchondral bone, as shown by increased expression of tartrate resistant acid phosphatase (TRAP) and protein gene product 9.5 (PGP9.5). Volume of subchondral cyst-like component was associated with joint pain (p < 0.05). Subchondral osteoclastogenesis and nerve distribution were positively associated with joint pain in BMLs with cyst group (p < 0.05). Conclusion The subchondral cyst-like lesion was an independent factor for inducing pain in OA patients; osteoclastogenesis and nerve growth in subchondral cyst-like lesions could account for this joint pain. The translational potential of this article Our results indicated that the increased osteoclastogenesis and nerve growth in subchondral cyst-like lesions could account for the pain of OA joints. These findings may provide valuable basis for the treatment of OA.
Collapse
|
29
|
Malfait F, Colman M, Vroman R, De Wandele I, Rombaut L, Miller RE, Malfait AM, Syx D. Pain in the Ehlers-Danlos syndromes: Mechanisms, models, and challenges. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2021; 187:429-445. [PMID: 34797601 DOI: 10.1002/ajmg.c.31950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022]
Abstract
Chronic pain is one of the most common, yet poorly studied, complaints in people suffering from Ehlers-Danlos syndromes (EDS). This heterogeneous group of heritable connective tissue disorders is typically characterized by skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Most EDS types are caused by genetic defects that affect connective tissue biosynthesis, thereby compromising collagen biosynthesis or fibrillogenesis and resulting in a disorganized extracellular matrix. Even though chronic pain is a major source of disability, functional impairment, and psychosocial suffering in EDS, currently used analgesics and other treatment strategies provide inadequate pain relief and thus represents an important unmet medical need. An important contributor to this is the lack of knowledge about the underlying mechanisms. In this narrative review, we summarize the current understanding of pain and the associated mechanisms in EDS based on clinical studies focusing on questionnaires and experimental pain testing as well as studies in animal models of EDS. In addition, we highlight the challenges, gaps, and opportunities in EDS-pain research.
Collapse
Affiliation(s)
- Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Marlies Colman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Robin Vroman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Inge De Wandele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Rombaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Rachel E Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, Illinois, USA
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Lohmander LS. Understanding when and how joint injury leads to osteoarthritis. THE LANCET. RHEUMATOLOGY 2021; 3:e611-e612. [PMID: 38287610 DOI: 10.1016/s2665-9913(21)00183-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/31/2024]
Affiliation(s)
- L Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, 22100 Lund, Sweden.
| |
Collapse
|
31
|
Apkarian AV. The Necessity of Methodological Advances in Pain Research: Challenges and Opportunities. FRONTIERS IN PAIN RESEARCH 2021; 2:634041. [PMID: 35295518 PMCID: PMC8915640 DOI: 10.3389/fpain.2021.634041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Apkar Vania Apkarian
- Department of Physiology, Anesthesiology, Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
32
|
Zhang L, Xing R, Huang Z, Ding L, Zhang L, Li M, Li X, Wang P, Mao J. Synovial Fibrosis Involvement in Osteoarthritis. Front Med (Lausanne) 2021; 8:684389. [PMID: 34124114 PMCID: PMC8187615 DOI: 10.3389/fmed.2021.684389] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Bone changes have always been the focus of research on osteoarthritis, but the number of studies on synovitis has increased only over the last 10 years. Our current understanding is that the mechanism of osteoarthritis involves all the tissues that make up the joints, including nerve sprouting, pannus formation, and extracellular matrix environmental changes in the synovium. These factors together determine synovial fibrosis and may be closely associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis. In this review, we summarize the consensus of clinical work, the potential pathological mechanisms, the possible therapeutic targets, and the available therapeutic strategies for synovial fibrosis in osteoarthritis to gain insight and provide a foundation for further study.
Collapse
Affiliation(s)
- Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengquan Huang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liang Ding
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Mingchao Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Abstract
There is a well-established historical observation that structural joint damage by plain X-ray correlates poorly with symptomatic disease in osteoarthritis (OA). This is often attributed to the inability to visualise soft-tissue pathology within the joint and the recognition of heterogeneous patient factors that drive central pain sensitisation. A major issue is the relative paucity of mechanistic studies in which molecular pathogenesis of pain is interrogated in relation to tissue pathology. Nonetheless, in recent years, three broad approaches have been deployed to attempt to address this: correlative clinical studies of peripheral and central pain outcomes using magnetic resonance imaging, where soft-tissue processes can be visualised; molecular studies on tissue from patients with OA; and careful molecular interrogation of preclinical models of OA across the disease time course. Studies have taken advantage of established clinical molecular targets such as nerve growth factor. Not only is the regulation of nerve growth factor within the joint being used to explore the relationship between tissue pathology and the origins of pain in OA, but it also provides a core model on which other molecules present within the joint can modulate the pain response. In this narrative review, how molecular and pathological tissue change relates to joint pain in OA will be discussed. Finally, a model for how tissue damage may lead to pain over the disease course will be proposed.
Collapse
|
34
|
Ishihara S, Obeidat AM, Wokosin DL, Ren D, Miller RJ, Malfait AM, Miller RE. The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice. Arthritis Res Ther 2021; 23:103. [PMID: 33827672 PMCID: PMC8025346 DOI: 10.1186/s13075-021-02486-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background C–C chemokine receptor 2 (CCR2) signaling plays a key role in pain associated with experimental murine osteoarthritis (OA) after destabilization of the medial meniscus (DMM). Here, we aimed to assess if CCR2 expressed by intra-articular sensory neurons contributes to knee hyperalgesia in the early stages of the model. Methods DMM surgery was performed in the right knee of 10-week-old male wild-type (WT), Ccr2 null, or Ccr2RFP C57BL/6 mice. Knee hyperalgesia was measured using a Pressure Application Measurement device. CCR2 receptor antagonist (CCR2RA) was injected systemically (i.p.) or intra-articularly (i.a.) at different times after DMM to test its ability to reverse knee hyperalgesia. In vivo Ca2+ imaging of the dorsal root ganglion (DRG) was performed to assess sensory neuron responses to CCL2 injected into the knee joint cavity. CCL2 protein in the knee was measured by ELISA. Ccr2RFP mice and immunohistochemical staining for the pan-neuronal marker, protein gene product 9.5 (PGP9.5), or the sensory neuron marker, calcitonin gene-related peptide (CGRP), were used to visualize the location of CCR2 on intra-articular afferents. Results WT, but not Ccr2 null, mice displayed knee hyperalgesia 2–16 weeks after DMM. CCR2RA administered i.p. alleviated established hyperalgesia in WT mice 4 and 8 weeks after surgery. Intra-articular injection of CCL2 excited sensory neurons in the L4-DRG, as determined by in vivo calcium imaging; responses to CCL2 increased in mice 20 weeks after DMM. CCL2, but not vehicle, injected i.a. rapidly caused transient knee hyperalgesia in naïve WT, but not Ccr2 null, mice. Intra-articular CCR2RA injection also alleviated established hyperalgesia in WT mice 4 and 7 weeks after surgery. CCL2 protein was elevated in the knees of both WT and Ccr2 null mice 4 weeks after surgery. Co-expression of CCR2 and PGP9.5 as well as CCR2 and CGRP was observed in the lateral synovium of naïve mice; co-expression was also observed in the medial compartment of knees 8 weeks after DMM. Conclusions The findings suggest that CCL2-CCR2 signaling locally in the joint contributes to knee hyperalgesia in experimental OA, and it is in part mediated through direct stimulation of CCR2 expressed by intra-articular sensory afferents. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02486-y.
Collapse
Affiliation(s)
- Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1735 W Harrison St, Room 714, Chicago, IL, 60612, USA
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1735 W Harrison St, Room 714, Chicago, IL, 60612, USA
| | - David L Wokosin
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1735 W Harrison St, Room 714, Chicago, IL, 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1735 W Harrison St, Room 714, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Malfait AM, Miller RE, Miller RJ. Basic Mechanisms of Pain in Osteoarthritis: Experimental Observations and New Perspectives. Rheum Dis Clin North Am 2021; 47:165-180. [PMID: 33781488 DOI: 10.1016/j.rdc.2020.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The specific changes in the peripheral neuronal pathways underlying joint pain in osteoarthritis are the focus of this review. The plasticity of the nociceptive system in osteoarthritis and how this involves changes in the structural, physiologic, and genetic properties of neurons in pain pathways are discussed. The role of the neurotrophin, nerve growth factor, in these pathogenic processes is discussed. Finally, how neuronal pathways are modified by interaction with the degenerating joint tissues they innervate and with the innate immune system is considered. These extensive cellular interactions provide a substrate for identification of targets for osteoarthritis pain.
Collapse
Affiliation(s)
- Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 714, 1735 W Harrison Street, Chicago, IL 60612, USA.
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 714, 1735 W Harrison Street, Chicago, IL 60612, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University, Searle Building Room 8-510, 320 E Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Pain-related behaviors and abnormal cutaneous innervation in a murine model of classical Ehlers-Danlos syndrome. Pain 2021; 161:2274-2283. [PMID: 32483055 DOI: 10.1097/j.pain.0000000000001935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classical Ehlers-Danlos syndrome (cEDS) is a connective tissue disorder caused by heterozygous mutations in one of the type V collagen-encoding genes, COL5A1 or COL5A2. cEDS is characterized by generalized joint hypermobility and instability, hyperextensible, fragile skin, and delayed wound healing. Chronic pain is a major problem in cEDS patients, but the underlying mechanisms are largely unknown, and studies in animal models are lacking. Therefore, we assessed pain-related behaviors in haploinsufficient Col5a1 mice, which clinically mimic human cEDS. Compared to wild-type (WT) littermates, 15 to 20-week-old Col5a1 mice of both sexes showed significant hypersensitivity to mechanical stimuli in the hind paws and the abdominal area, but responses to thermal stimuli were unaltered. Spontaneous behaviors, including distance travelled and rearing, were grossly normal in male Col5a1 mice, whereas female Col5a1 mice showed altered climbing behavior. Finally, male and female Col5a1 mice vocalized more than WT littermates when scruffed. Decreased grip strength was also noted. In view of the observed pain phenotype, Col5a1 mice were crossed with NaV1.8-tdTomato reporter mice, enabling visualization of nociceptors in the glabrous skin of the footpad. We observed a significant decrease in intraepidermal nerve fiber density, with fewer nerves crossing the epidermis, and a decreased total nerve length of Col5a1 mice compared to WT. In summary, male and female Col5a1 mice show hypersensitivity to mechanical stimuli, indicative of generalized sensitization of the nervous system, in conjunction with an aberrant organization of cutaneous nociceptors. Therefore, Col5a1 mice will provide a useful tool to study mechanisms of pain associated with cEDS.
Collapse
|
37
|
Blaker CL, Zaki S, Little CB, Clarke EC. Long-term Effect of a Single Subcritical Knee Injury: Increasing the Risk of Anterior Cruciate Ligament Rupture and Osteoarthritis. Am J Sports Med 2021; 49:391-403. [PMID: 33378213 DOI: 10.1177/0363546520977505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rupture of the anterior cruciate ligament (ACL) is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA), but patients with the "same injury" can have vastly different trajectories for the onset and progression of disease. Minor subcritical injuries preceding the critical injury event may drive this disparity through preexisting tissue pathologies and sensory changes. PURPOSE To investigate the role of subcritical injury on ACL rupture risk and PTOA through the evaluation of pain behaviors, joint mechanics, and tissue structural change in a mouse model of knee injury. STUDY DESIGN Controlled laboratory study. METHODS Ten-week-old male C57BL/6J mice were allocated to naïve control and subcritical knee injury groups. Injury was induced by a single mechanical compression to the right hindlimb, and mice were evaluated using joint histopathology, anteroposterior joint biomechanics, pain behaviors (mechanical allodynia and hindlimb weightbearing), and isolated ACL tensile testing to failure at 1, 2, 4, or 8 weeks after injury. RESULTS Subcritical knee injury produced focal osteochondral lesions in the patellofemoral and lateral tibiofemoral compartments with no resolution for the duration of the study (8 weeks). These lesions were characterized by focal loss of proteoglycan staining, cartilage structural change, chondrocyte pathology, microcracks, and osteocyte cell loss. Injury also resulted in the rapid onset of allodynia (at 1 week), which persisted over time and reduced ACL failure load (P = .006; mean ± SD, 7.91 ± 2.01 N vs 9.37 ± 1.01 N in naïve controls at 8 weeks after injury), accompanied by evidence of ACL remodeling at the femoral enthesis. CONCLUSION The present study in mice establishes a direct effect of a single subcritical knee injury on the development of specific joint tissue pathologies (osteochondral lesions and progressive weakening of the ACL) and allodynic sensitization. These findings demonstrate a predisposition for secondary critical injuries (eg, ACL rupture) and an increased risk of PTOA onset and progression (structurally and symptomatically). CLINICAL RELEVANCE Subcritical knee injuries are a common occurrence and, based on this study, can cause persistent sensory and structural change. These findings have important implications for the understanding of risk factors of ACL injury and subsequent PTOA, particularly with regard to prevention and management strategies following an often underreported event.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| |
Collapse
|
38
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
39
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Gowler PRW, Mapp PI, Burston JJ, Shahtaheri M, Walsh DA, Chapman V. Refining surgical models of osteoarthritis in mice and rats alters pain phenotype but not joint pathology. PLoS One 2020; 15:e0239663. [PMID: 32991618 PMCID: PMC7523978 DOI: 10.1371/journal.pone.0239663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
The relationship between osteoarthritis (OA) structural change and pain is complex. Surgical models of OA in rodents are often rapid in onset, limiting mechanistic utility and translational validity. We aimed to investigate the effect of refining surgical small rodent models of OA on both joint pathology and pain behaviour. Adult male C57BL/6 mice (n = 76, 10-11 weeks of age at time of surgery) underwent either traditional (transection of the medial meniscotibial ligament [MMTL]) or modified (MMTL left intact, transection of the coronary ligaments) DMM surgery, or sham surgery. Adult male Sprague Dawley rats (n = 76, weight 175-199g) underwent either modified meniscal transection (MMNX) surgery (transection of the medial meniscus whilst the medial collateral ligament is left intact) or sham surgery. Pain behaviours (weight bearing asymmetry [in mice and rats] and paw withdrawal thresholds [in rats]) were measured pre-surgery and weekly up to 16 weeks post-surgery. Post-mortem knee joints were scored for cartilage damage, synovitis, and osteophyte size. There was a significant increase in weight bearing asymmetry from 13 weeks following traditional, but not modified, DMM surgery when compared to sham operated mice. Both traditional and modified DMM surgery led to similar joint pathology. There was significant pain behaviour from 6 weeks following MMNX model compared to sham operated control rats. Synovitis was significant 4 weeks after MMNX surgery, whereas significant chondropathy was first evident 8 weeks post-surgery, compared to sham controls. Pain behaviour is not always present despite significant changes in medial tibial plateau cartilage damage and synovitis, reflecting the heterogeneity seen in human OA. The development of a slowly progressing surgical model of OA pain in the rat suggests that synovitis precedes pain behaviour and that chondropathy is evident later, providing the foundations for future mechanistic studies into the disease.
Collapse
Affiliation(s)
- Peter R. W. Gowler
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Paul I. Mapp
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - James J. Burston
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Mohsen Shahtaheri
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - David A. Walsh
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Nwosu LN, Chapman V, Walsh DA. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 2020; 28:1245-1254. [PMID: 32470596 DOI: 10.1016/j.joca.2020.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Subchondral bone may contribute to knee osteoarthritis (OA) pain. Nerve growth factor (NGF) can stimulate nerve growth through TrkA. We aimed to identify how sensory nerve growth at the osteochondral junction in human and rat knees associates with OA pain. METHODS Eleven symptomatic chondropathy cases were selected from people undergoing total knee replacement for OA. Twelve asymptomatic chondropathy cases who had not presented with knee pain were selected post-mortem. OA was induced in rat knees by meniscal transection (MNX) and sham-operated rats were used as controls. Twice-daily oral doses (30 mg/kg) of TrkA inhibitor (AR786) or vehicle were administered from before and up to 28 days after OA induction. Joints were analysed for macroscopic appearances of articular surfaces, OA histopathology and calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerves in medial tibial plateaux, and rats were assessed for pain behaviors. RESULTS The percentage of osteochondral channels containing CGRP-IR nerves in symptomatic chondropathy was higher than in asymptomatic chondropathy (difference: 2.5% [95% CI: 1.1-3.7]), and in MNX-than in sham-operated rat knees (difference: 7.8% [95%CI: 1.7-15.0]). Osteochondral CGRP-IR innervation was significantly associated with pain behavior in rats. Treatment with AR786 prevented the increase in CGRP-IR nerves in osteochondral channels and reduced pain behavior in MNX-operated rats. Structural OA was not significantly affected by AR786 treatment. CONCLUSIONS CGRP-IR sensory nerves within osteochondral channels are associated with pain in human and rat knee OA. Reduced pathological innervation of the osteochondral junction might contribute to analgesic effects of reduced NGF activity achieved by blocking TrkA.
Collapse
Affiliation(s)
- K Aso
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505, Japan.
| | - S M Shahtaheri
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - R Hill
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D Wilson
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D F McWilliams
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - L N Nwosu
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, NG7 2UH, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| |
Collapse
|
42
|
Pain-related behavior is associated with increased joint innervation, ipsilateral dorsal horn gliosis, and dorsal root ganglia activating transcription factor 3 expression in a rat ankle joint model of osteoarthritis. Pain Rep 2020; 5:e846. [PMID: 33490841 PMCID: PMC7808682 DOI: 10.1097/pr9.0000000000000846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 12/02/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. In a rat model of osteoarthritis, we found increased joint sensory and sympathetic innervation and glia changes in dorsal horn, accompanying pain-related behavior onset. Introduction: Osteoarthritis (OA)-associated pain is often poorly managed, as our understanding of the underlying pain mechanisms remains limited. The known variability from patient to patient in pain control could be a consequence of a neuropathic component in OA. Methods: We used a rat monoiodoacetate model of the ankle joint to study the time-course of the development of pain-related behavior and pathological changes in the joint, dorsal root ganglia (DRG), and spinal cord, and to investigate drug treatments effects. Results: Mechanical hypersensitivity and loss of mobility (as assessed by treadmill) were detected from 4 weeks after monoiodoacetate. Cold allodynia was detected from 5 weeks. Using histology and x-ray microtomography, we confirmed significant cartilage and bone degeneration at 5 and 10 weeks. We detected increased nociceptive peptidergic and sympathetic fiber innervation in the subchondral bone and synovium at 5 and 10 weeks. Sympathetic blockade at 5 weeks reduced pain-related behavior. At 5 weeks, we observed, ipsilaterally only, DRG neurons expressing anti-activating transcription factor 3, a neuronal stress marker. In the spinal cord, there was microgliosis at 5 and 10 weeks, and astrocytosis at 10 weeks only. Inhibition of glia at 5 weeks with minocycline and fluorocitrate alleviated mechanical allodynia. Conclusion: Besides a detailed time-course of pathology in this OA model, we show evidence of contributions of the sympathetic nervous system and dorsal horn glia to pain mechanisms. In addition, late activating transcription factor 3 expression in the DRG that coincides with these changes provides evidence in support of a neuropathic component in OA pain.
Collapse
|
43
|
Miller RE, Tran PB, Ishihara S, Syx D, Ren D, Miller RJ, Valdes AM, Malfait AM. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis Cartilage 2020; 28:581-592. [PMID: 31982564 PMCID: PMC7214125 DOI: 10.1016/j.joca.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain". DESIGN We performed DMM or sham surgery in 10-week old male C57BL/6 mice and harvested L3-L5 DRG 4, 8, and 16 weeks after surgery or from age-matched naïve mice (n = 3/group). RNA was extracted and an Affymetrix Mouse Transcriptome Array 1.0 was performed. Three pain phenotypes were defined: "post-surgical pain" (sham and DMM 4-week vs 14-week old naïve), "early OA pain" (DMM 4-week vs sham 4-week), and "persistent OA pain" (DMM 8- and 16-week vs naïve and sham 8- and 16-week). 'Top hit' genes were defined as P < 0.001. Pathway analysis (Ingenuity Pathway Analysis) was conducted using differentially expressed genes defined as P < 0.05. In addition, we performed qPCR for Ngf and immunohistochemistry for F4/80+ macrophages in the DRG. RESULTS For each phenotype, top hit genes identified a small number of differentially expressed genes, some of which have been previously associated with pain (7/67 for "post-surgical pain"; 2/14 for "early OA pain"; 8/37 for "persistent OA pain"). Overlap between groups was limited, with 8 genes differentially regulated (P < 0.05) in all three phenotypes. Pathway analysis showed that in the persistent OA pain phase many of the functions of differentially regulated genes are related to immune cell recruitment and activation. Genes previously linked to OA pain (CX3CL1, CCL2, TLR1, and NGF) were upregulated in this phenotype and contributed to activation of the neuroinflammation canonical pathway. In separate sets of mice, we confirmed that Ngf was elevated in the DRG 8 weeks after DMM (P = 0.03), and numbers of F4/80+ macrophages were increased 16 weeks after DMM (P = 0.002 vs Sham). CONCLUSION These transcriptomics findings support the idea that distinct molecular pathways discriminate early from persistent OA pain. Pathway analysis suggests neuroimmune interactions in the DRG contribute to initiation and maintenance of pain in OA.
Collapse
Affiliation(s)
- Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Phuong B. Tran
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Delfien Syx
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago IL
| | | | - Ana M. Valdes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham UK
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| |
Collapse
|
44
|
Ter Heegde F, Luiz AP, Santana-Varela S, Magnúsdóttir R, Hopkinson M, Chang Y, Poulet B, Fowkes RC, Wood JN, Chenu C. Osteoarthritis-related nociceptive behaviour following mechanical joint loading correlates with cartilage damage. Osteoarthritis Cartilage 2020; 28:383-395. [PMID: 31911151 DOI: 10.1016/j.joca.2019.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), the pain-structure relationship remains complex and poorly understood. Here, we used the mechanical joint loading (MJL) model of OA to investigate both knee pathology and nociceptive behaviour. DESIGN MJL was used to induce OA in the right knees of 12-week-old male C57BL/6 mice (40 cycles, 9N, 3x/week for 2 weeks). Mechanical sensitivity thresholds and weight-bearing ratios were measured before loading and at weeks one, three and six post-loading. At these time points, separate groups of loaded and non-loaded mice (n = 12/group) were sacrificed, joints collected, and fur corticosterone levels measured. μCT analyses of subchondral bone integrity was performed before joint sections were prepared for nerve quantification, cartilage or synovium grading (scoring system from 0 to 6). RESULTS Loaded mice showed increased mechanical hypersensitivity paired with altered weight-bearing. Initial ipsilateral cartilage lesions 1-week post-loading (1.8 ± 0.4) had worsened at weeks three (3.0 ± 0.6, CI = -1.8-0.6) and six (2.8 ± 0.4, CI = -1.6-0.4). This increase in lesion severity correlated with mechanical hypersensitivity development (correlation; 0.729, P = 0.0071). Loaded mice displayed increased synovitis (3.6 ± 0.5) compared to non-loaded mice (1.5 ± 0.5, CI = -2.2-0.3) 1-week post-loading which returned to normal by weeks three and six. Similarly, corticosterone levels were only increased at week one post-loading (0.21 ± 0.04 ng/mg) compared to non-loaded controls (0.14 ± 0.01 ng/mg, CI = -1.8-0.1). Subchondral bone integrity and nerve volume remained unchanged. CONCLUSIONS Our data indicates that although the loading induces an initial stress reaction and local inflammation, these processes are not directly responsible for the nociceptive phenotype observed. Instead, MJL-induced allodynia is mainly associated with OA-like progression of cartilage lesions.
Collapse
Affiliation(s)
- F Ter Heegde
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK; Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - A P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - S Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - R Magnúsdóttir
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - M Hopkinson
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Y Chang
- Research Office, Royal Veterinary College, London NW1 0TU, UK.
| | - B Poulet
- Muscoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, UK.
| | - R C Fowkes
- Endocrine Signalling Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - J N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - C Chenu
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|