1
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
2
|
van Gemert Y, Blom AB, Di Ceglie I, Walgreen B, Helsen M, Sloetjes A, Vogl T, Roth J, Kruisbergen NNL, Pieterman EJ, Princen HMG, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. Intensive cholesterol-lowering treatment reduces synovial inflammation during early collagenase-induced osteoarthritis, but not pathology at end-stage disease in female dyslipidemic E3L.CETP mice. Osteoarthritis Cartilage 2023:S1063-4584(23)00703-3. [PMID: 36898656 DOI: 10.1016/j.joca.2023.01.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION The association between metabolic syndrome (MetS) and osteoarthritis (OA) development has become increasingly recognized. In this context, the exact role of cholesterol and cholesterol-lowering therapies in OA development has remained elusive. Recently, we did not observe beneficial effects of intensive cholesterol-lowering treatments on spontaneous OA development in E3L.CETP mice. We postulated that in the presence of local inflammation caused by a joint lesion, cholesterol-lowering therapies may ameliorate OA pathology. MATERIALS AND METHODS Female ApoE3∗Leiden.CETP mice were fed a cholesterol-supplemented Western type diet. After 3 weeks, half of the mice received intensive cholesterol-lowering treatment consisting of atorvastatin and the anti-PCSK9 antibody alirocumab. Three weeks after the start of the treatment, OA was induced via intra-articular injections of collagenase. Serum levels of cholesterol and triglycerides were monitored throughout the study. Knee joints were analyzed for synovial inflammation, cartilage degeneration, subchondral bone sclerosis and ectopic bone formation using histology. Inflammatory cytokines were determined in serum and synovial washouts. RESULTS Cholesterol-lowering treatment strongly reduced serum cholesterol and triglyceride levels. Mice receiving cholesterol-lowering treatment showed a significant reduction in synovial inflammation (P = 0.008, WTD: 95% CI: 1.4- 2.3; WTD + AA: 95% CI: 0.8- 1.5) and synovial lining thickness (WTD: 95% CI: 3.0-4.6, WTD + AA: 95% CI: 2.1-3.2) during early-stage collagenase-induced OA. Serum levels of S100A8/A9, MCP-1 and KC were significantly reduced after cholesterol-lowering treatment (P = 0.0005, 95% CI: -46.0 to -12.0; P = 2.8 × 10-10, 95% CI: -398.3 to -152.1; P = 2.1 × 10-9, -66.8 to -30.4, respectively). However, this reduction did not reduce OA pathology, determined by ectopic bone formation, subchondral bone sclerosis and cartilage damage at end-stage disease. CONCLUSION This study shows that intensive cholesterol-lowering treatment reduces joint inflammation after induction of collagenase-induced OA, but this did not reduce end stage pathology in female mice.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B Walgreen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M Helsen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Sloetjes
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Vogl
- Institute of Immunology, University of Münster, Germany
| | - J Roth
- Institute of Immunology, University of Münster, Germany
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
van Gemert Y, Kruisbergen NNL, Blom AB, van den Bosch MHJ, van der Kraan PM, Pieterman EJ, Princen HMG, van Lent PLEM. IL-1β inhibition combined with cholesterol-lowering therapies decreases synovial lining thickness and spontaneous cartilage degeneration in a humanized dyslipidemia mouse model. Osteoarthritis Cartilage 2023; 31:340-350. [PMID: 36442605 DOI: 10.1016/j.joca.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Both systemic inflammation and dyslipidemia contribute to osteoarthritis (OA) development and have been suggested as a possible link between metabolic disease and OA development. Recently, the CANTOS trial showed a reduction in knee and hip replacements after inhibition of IL-1β in patients with a history of cardiovascular disease and high inflammatory risk. In this light, we investigated whether inhibition of IL-1β combined with cholesterol-lowering therapies can reduce OA development in dyslipidemic APOE∗3Leiden mice under pro-inflammatory dietary conditions. MATERIALS AND METHODS Female ApoE3∗Leiden mice were fed a cholesterol-supplemented Western-Type diet (WTD) for 38 weeks. After 14 weeks, cholesterol-lowering and anti-inflammatory treatments were started. Treatments included atorvastatin alone or with an anti-IL1β antibody, and atorvastatin combined with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitor alirocumab without or with the anti-IL1β antibody. Knee joints were analyzed for cartilage degradation, synovial inflammation and ectopic bone formation using histology at end point. RESULTS Cholesterol-lowering treatment successfully decreased systemic inflammation in dyslipidemic mice, which was not further affected by inhibition of IL-1β. Synovial thickening and cartilage degeneration were significantly decreased in mice that received cholesterol-lowering treatment combined with inhibition of IL-1β (P < 0.01, P < 0.05, respectively) compared to mice fed a WTD alone. Ectopic bone formation was comparable between all groups. CONCLUSION These results indicate that inhibition of IL-1β combined with cholesterol-lowering therapy diminishes synovial thickening and cartilage degeneration in mice and may imply that this combination therapy could be beneficial in patients with metabolic inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Saberianpour S, Abolbashari S, Modaghegh MHS, Karimian MS, Eid AH, Sathyapalan T, Sahebkar A. Therapeutic effects of statins on osteoarthritis: A review. J Cell Biochem 2022; 123:1285-1297. [PMID: 35894149 DOI: 10.1002/jcb.30309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease. The etiology of OA is considered to be multifactorial. Currently, there is no definitive treatment for OA, and the existing treatments are not very effective. Hypercholesterolemia is considered a novel risk factor for the development of OA. Statins act as a competitive inhibitor of the β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase and are widely used to manage hypercholesterolemia. Inhibition of HMG-CoA reductase results in reduced synthesis of a metabolite named mevalonate, thereby reducing cholesterol biosynthesis in subsequent steps. By this mechanism, statins such as atorvastatin and simvastatin could potentially have a preventive impact on joint cartilage experiencing osteoarthritic deterioration by reducing serum cholesterol levels. Atorvastatin can protect cartilage degradation following interleukin-1β-stimulation. Atorvastatin stimulates the STAT1-caspase-3 signaling pathway that was shown to be responsible for its anti-inflammatory effects on the knee joint. Simvastatin had chondroprotective effects on OA in vitro by reducing matrix metalloproteinases expression patterns. In this study, we tried to review the therapeutic effects of statins on OA.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Abolbashari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad H S Modaghegh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam S Karimian
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Smith AE, Sigurbjörnsdóttir ES, Steingrímsson E, Sigurbjörnsdóttir S. Hedgehog signalling in bone and osteoarthritis: the role of Smoothened and cholesterol. FEBS J 2022. [PMID: 35305060 DOI: 10.1111/febs.16440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Hedgehog signalling is essential for development, crucial for normal anatomical arrangement and activated during tissue damage repair. Dysregulation of hedgehog signalling is associated with cancer, developmental disorders and other diseases including osteoarthritis (OA). The hedgehog gene was first discovered in Drosophila melanogaster, and the pathway is evolutionarily conserved in most animals. Although there are several hedgehog ligands with different protein expression patterns, they share a common plasma membrane receptor, Patched1 and hedgehog signalling pathway activation is transduced through the G-protein-coupled receptor-like protein Smoothened (SMO) and downstream effectors. Functional assays revealed that activation of SMO is dependent on sterol binding, and cholesterol was observed bound to SMO in crystallography experiments. In vertebrates, hedgehog signalling coordinates endochondral ossification and balances osteoblast and osteoclast activation to maintain homeostasis. A recently discovered mutation of SMO in humans (SMOR173C ) is predicted to alter cholesterol binding and is associated with a higher risk of hip OA. Functional studies in mice and human tissue analysis provide evidence that hedgehog signalling is pathologically activated in chondrocytes of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Abbi Elise Smith
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Elín Sóley Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland
| | - Sara Sigurbjörnsdóttir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, School of Engineering and Natural Sciences, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
6
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|