1
|
Lu X, Wang X, Wang P, Zhu Y, Liu J, Liu G, Liu R. Identification of candidate genes and chemicals associated with osteonecrosis of femoral head by multiomics studies and chemical-gene interaction analysis. Front Endocrinol (Lausanne) 2024; 15:1419742. [PMID: 39253583 PMCID: PMC11382631 DOI: 10.3389/fendo.2024.1419742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Objectives In-depth understanding of osteonecrosis of femoral head (ONFH) has revealed that degeneration of the hip cartilage plays a crucial role in ONFH progression. However, the underlying molecular mechanisms and susceptibility to environmental factors in hip cartilage that contribute to ONFH progression remain elusive. Methods We conducted a multiomics study and chemical-gene interaction analysis of hip cartilage in ONFH. The differentially expressed genes (DEGs) involved in ONFH progression were identified in paired hip cartilage samples from 36 patients by combining genome-wide DNA methylation profiling, gene expression profiling, and quantitative proteomics. Gene functional enrichment and pathway analyses were performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Functional links between proteins were discovered through protein-protein interaction (PPI) networks. The ONFH-associated chemicals were identified by integrating the DEGs with the chemical-gene interaction sets in the Comparative Toxicogenomics Database (CTD). Finally, the DEGs, including MMP13 and CHI3L1, were validated via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results Twenty-two DEGs were identified across all three omics levels in ONFH cartilage, 16 of which were upregulated and six of which were downregulated. The collagen-containing extracellular matrix (ECM), ECM structural constituents, response to amino acids, the relaxin signaling pathway, and protein digestion and absorption were found to be primarily involved in cartilage degeneration in ONFH. Moreover, ten major ONFH-associated chemicals were identified, including, benzo(a)pyrene, valproic acid, and bisphenol A. Conclusion Overall, our study identified several candidate genes, pathways, and chemicals associated with cartilage degeneration in ONFH, providing novel clues into the etiology and biological processes of ONFH progression.
Collapse
Affiliation(s)
- Xueliang Lu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Orthopedics, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xu Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengbo Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingkang Zhu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Liu
- Department of Orthopedics, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Ruiyu Liu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Khanchandani P, Narayanan A, Naik AA, Kannan V, Pradhan SS, Srimadh Bhagavatham SK, Pulukool SK, Sivaramakrishnan V. Clinical Characteristics, Current Treatment Options, Potential Mechanisms, Biomarkers, and Therapeutic Targets in Avascular Necrosis of Femoral Head. Med Princ Pract 2024:1-18. [PMID: 39168116 DOI: 10.1159/000541044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Avascular necrosis of femoral head (AVNFH) is a debilitating disease of the young, affecting the quality of life significantly and eventually leading to total hip replacement surgery. The disease is diagnosed clinico-radiologically and MRI is the investigation of choice to diagnose the early stages of the disease. There is neither an early biomarker for detection nor is there a permanent cure for the disease and most of the patients are managed with various combinations of surgical and medical management protocols. In this review, we comprehensively address the etiopathogenesis, clinical characteristics, therapeutic procedures, bone characteristics, histopathology, multi-omic studies, finite element modeling, and systems analysis that has been performed in AVNFH. The etiology includes various factors that compromise the blood supply to the femoral head which also includes contributions by environmental and genetic factors. Multi-omic analysis has shown an association of deregulated pathways with the disease. The cell types involved include mesenchymal stem cells, osteoblasts, osteoclasts, endothelial and immune cells. Biochemical, hematological, histopathology, IHC, and other bone remodeling and degradation marker studies have been performed. A systems analysis using multi-omic data sets from published literature was carried out, the relevance of which is discussed to delineate potential mechanisms in etiopathogenesis, diagnosis, and effective management of this debilitating disease.
Collapse
Affiliation(s)
- Prakash Khanchandani
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | - Aswath Narayanan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Ashwin A Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Vishnu Kannan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | | | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| |
Collapse
|
3
|
Veselá B, Bzdúšková J, Ramešová A, Švandová E, Grässel S, Matalová E. Inhibition of caspase-11 under inflammatory conditions suppresses chondrogenic differentiation. Tissue Cell 2024; 89:102425. [PMID: 38875922 DOI: 10.1016/j.tice.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment. The presence of caspase-11 during mouse limb development and in chondrogenic cell cultures was investigated by immunofluorescence detection. Subsequently, the function of caspase-11 was downregulated and the affected molecules investigated. The expression analysis applied for osteo/chondrogenesis associated factors and inflammatory cytokines. Simultaneously, morphological appearance of the micromass cultures was evaluated. The results revealed that caspase-11 is physiologically present during cartilage development, but its inhibition under physiological conditions has no significant effect on chondrogenic differentiation. However, in an inflammatory environment, inhibition and downregulation of caspase-11 leads to reduced differentiation of cartilage nodules. Additionally, reduced expression of several genes including Col2a1 and Sp7 and conversely increased expression of Mmp9 were observed. In the cytokine expression panel, a significant decrease was found in molecules that, along with the inflammatory function, may also be involved in cartilage differentiation. The findings bring new information about caspase-11 in chondrogenesis and show that its downregulation under inflammatory conditions reduces cartilage formation.
Collapse
Affiliation(s)
- Barbora Veselá
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Bzdúšková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramešová
- University of Veterinary Medicine, Vienna Department of Biological Sciences and Pathobiology Centre of Biological Sciences
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Biopark 1, Germany
| | - Eva Matalová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Arruda AL, Katsoula G, Chen S, Reimann E, Kreitmaier P, Zeggini E. The Genetics and Functional Genomics of Osteoarthritis. Annu Rev Genomics Hum Genet 2024; 25:239-257. [PMID: 39190913 DOI: 10.1146/annurev-genom-010423-095636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Georgia Katsoula
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
| | - Ene Reimann
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Kreitmaier
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
5
|
Akcaalan S, Akcan G, Tufan AC, Caglar C, Akcaalan Y, Akkaya M, Dogan M. Is tranexamic acid safe for the hip joint? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1197-1207. [PMID: 37644283 DOI: 10.1007/s00210-023-02693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
To show the effects of tranexamic acid, which is a drug frequently used to control bleeding, on the hip joint and sciatic nerve in animal experiments. There were 15 rats in each of the 3 groups, with a total of 45 rats. Topical saline injections were applied to the first group, topical TXA injections to the second group, and intravenous (IV) TXA injections to the third group. In the samples taken from the hip joint 3 weeks later, femoral head cartilage, sciatic nerve, and joint capsule thicknesses were analyzed histologically. Statistically significantly more cartilage degradation was detected in the femoral head cartilage in both the IV and intraarticular TXA group when compared to the control group. The groups were also compared in terms of acetabular cartilage; however, no histological difference was found between the groups. It was seen that when the femoral head cartilage thickness (the average of the measurements made from 3 different points were used) was examined, the cartilage thickness in the topical TXA group was less when compared to the other 2 groups. However, this difference was determined to not be statistically significant. The data of the hip joint capsule thickness measurement, it was found that the capsule thickness in the topical TXA applied group was less when compared to the other 2 groups. However, this difference was not statistically significant. When the sciatic nerves in all 3 groups were compared, no different staining characteristics were found in the immunofluorescence examination. TXA, which is frequently used in orthopedic practice, shows negative effects on hip joint cartilage in both topical and intravenous application.
Collapse
Affiliation(s)
- Serhat Akcaalan
- Department of Orthopedics and Traumatology, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey.
| | - Gulben Akcan
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Ahmet Cevik Tufan
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Ceyhun Caglar
- Department of Orthopedics and Traumatology, Ankara City Hospital, 06800, Ankara, Turkey
| | | | - Mustafa Akkaya
- Department of Orthopedics and Traumatology, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Metin Dogan
- Department of Orthopedics and Traumatology, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| |
Collapse
|
6
|
Zhao G, Liu Y, Zheng Y, An M, Zhang J, Zhang J, Li Z, Chunbao L. Exploring molecular mechanisms of intra-articular changes in osteonecrosis of femoral head using DIA proteomics and bioinformatics. J Orthop Surg Res 2024; 19:13. [PMID: 38169408 PMCID: PMC10763026 DOI: 10.1186/s13018-023-04464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE This study is aimed to delve into the crucial proteins associated with hormonal osteonecrosis of the femoral head (ONFH) and its intra-articular lesions through data-independent acquisition (DIA) proteomics and bioinformatics analysis. METHODS We randomly selected samples from eligible ONFH patients and collected samples from the necrotic area of the femoral head and load-bearing cartilage. The control group comprised specimens from the same location in patients with femoral neck fractures. With DIA proteomics, we quantitatively and qualitatively tested both groups and analyzed the differentially expressed proteins (DEPs) between groups. Additionally, we enriched the analysis of DEP functions using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways and verified the key proteins in ONFH through Western blot. RESULTS Proteomics experiment uncovered 937 common DEPs (422 upregulated and 515 downregulated) between the two groups. These DEPs mainly participate in biological processes such as hidden attributes, catalytic activity, molecular function regulators, and structural molecule activity, and in pathways such as starch and sucrose metabolism, ECM-receptor interaction, PI3K-Akt signaling, complement and coagulation cascades, IL-17 signaling, phagosome, transcriptional misregulation in cancers, and focal adhesion. Through protein-protein interaction network target gene analysis and Western blot validation, we identified C3, MMP9, APOE, MPO, LCN2, ELANE, HPX, LTF, and THBS1 as key proteins in ONFH. CONCLUSIONS With DIA proteomics and bioinformatics analysis, this study reveals the molecular mechanisms of intra-articular lesions in ONFH. A correlation in the necrotic area and load-bearing cartilage of ONFH at ARCO stages IIIB-IV as well as potential key regulatory proteins was identified. These findings will help more deeply understand the pathogenesis of ONFH and may provide important clues for seeking more effective treatment strategies.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
- Department of Orthopaedics, Chinese PLA 984 Hospital, Beijing, 100029, China
- Medical school of Chinese PLA, Beijing, 100853, China
| | - Yujie Liu
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yongjun Zheng
- Department of Orthopaedics, Chinese PLA 984 Hospital, Beijing, 100029, China
| | - Mingyang An
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jia Zhang
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jing Zhang
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhongli Li
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Li Chunbao
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
7
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Hsu SL, Jhan SW, Hsu CC, Wu YN, Wu KLH, Kuo CEA, Chiu HW, Cheng JH. Effect of three clinical therapies on cytokines modulation in the hip articular cartilage and bone improvement in rat early osteonecrosis of the femoral head. Biomed J 2023; 46:100571. [PMID: 36442793 PMCID: PMC10749886 DOI: 10.1016/j.bj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) and adipose-derived mesenchymal stem cells (ADSCs) have been used clinically for the treatment of osteonecrosis of the femoral head (ONFH). The study elucidated that ESWT, ADSCs, and combination therapy modulated pro-inflammatory cytokines in the articular cartilage and subchondral bone of early rat ONFH. METHODS ESWT and ADSCs were prepared and isolated for treatment. Micro-CT, pathological analysis, and immunohistochemistry were performed and analysed. RESULTS After treatments, subchondral bone of ONFH was improved in trabecular bone volume (BV/TV) (p < 0.001), thickness (Tb.Th) (p < 0.01 and 0.001), and separation (Tb.Sp) (p < 0.001) and bone mineral density (BMD) (p < 0.001) using micro-CT analysis. The articular cartilage was protected and decreased apoptosis markers after all the treatments. The expression of IL33 (p < 0.001), IL5 (p < 0.001), IL6 (p < 0.001), and IL17A (p < 0.01) was significantly decreased in the ESWT, ADSCs, and Combination groups as compared with ONFH group. The IL33 receptor ST2 was significantly increased after treatment (p < 0.001) as compared with ONFH group. The Combination group (p < 0.01) decreased the expression of IL6 better than the ESWT and ADSCs groups. CONCLUSION ESWT, ADSCs and combination therapy significantly protected articular cartilage and subchondral bone of early rat ONFH by modulating the expression of pro-inflammatory cytokines including, IL33 and its receptor ST2, IL5, IL6, and IL17A.
Collapse
Affiliation(s)
- Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Wun Jhan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Cheng Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-En Aurea Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hung-Wen Chiu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Jacobs CA, Keller LE, Zhang S, Fu Q, Hunt ER, Stone AV, Conley CEW, Lattermann C, Fortier LA. Periostin regulation and cartilage degradation early after anterior cruciate ligament reconstruction. Inflamm Res 2023; 72:387-394. [PMID: 36562795 DOI: 10.1007/s00011-022-01678-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to explore pathological processes during the first 4 weeks after anterior cruciate ligament reconstruction (ACLR). SUBJECTS Sixteen ACL-injured patients (8 females/8 males, mean age = 19.1, mean BMI = 28.6). METHODS Arthrocentesis was performed 1 and 4 weeks after ACLR. Proteins in the synovial fluid were identified using nanoLC-ESI-MS/MS. Differentially up- or down-regulated proteins were identified and quantified, and a pathway analysis was performed. All identified proteins were mapped into a protein-protein interaction (PPI) network, and networks of PPIs with a combined score > 0.9 were then visualized. RESULTS Seven pathways were upregulated after ACLR: PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, focal adhesion, protein digestion and absorption, ameobiasis, and platelet activation. Network analyses identified 8 proteins that were differentially upregulated with strong PPI interactions (periostin and 7 collagen-related proteins). Increases in periostin moderately correlated with increases in a synovial fluid biomarker of type II cartilage degradation (ρ = 0.51, p = 0.06). CONCLUSION Pro-inflammatory pathways and periostin were upregulated after ACLR. Periostin demonstrated strong network connections with markers of collagen breakdown, and future work is needed to determine whether periostin may offer a biomarker of early cartilage degradation after ACLR and/or play an active role in early post-traumatic osteoarthritis (PTOA) progression.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA.
- Brigham and Women's Hospital, MA, Boston, USA.
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA.
| | | | | | - Qin Fu
- Cornell University, Ithaca, NY, USA
| | | | - Austin V Stone
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Caitlin E W Conley
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Christian Lattermann
- Brigham and Women's Hospital, MA, Boston, USA
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
10
|
Tan Z, Wang Y, Chen Y, Liu Y, Ma M, Ma Z, Wang C, Zeng H, Xue L, Yue C, Wang D. The Dynamic Feature of Macrophage M1/M2 Imbalance Facilitates the Progression of Non-Traumatic Osteonecrosis of the Femoral Head. Front Bioeng Biotechnol 2022; 10:912133. [PMID: 35573242 PMCID: PMC9094367 DOI: 10.3389/fbioe.2022.912133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Non-traumatic osteonecrosis of the femoral head (NONFH) remains a common refractory disease with poorly understood pathogenesis. Macrophage M1/M2 imbalance and chronic inflammatory microenvironment have been suggested to be closely related to osteonecrosis. Here we describe direct visual evidence for the involvement of dynamic changes in macrophages and the chronic inflammatory microenvironment in human NONFH. Osteonecrosis induces inflammatory responses and macrophage enrichment in the reparative area, and the number of inflammatory cells and macrophages falls during progressive-to end-stage NONFH. Multiplex immunohistochemistry demonstrated that macrophage M1/M2 ratio increased from 3 to 10 during progressive-to end-stage. During the progressive-stage, new blood vessels formed in the reparative area, M2 macrophages accumulated in perivascular (M1/M2 ratio ∼0.05), while M1 macrophages were enriched in avascular areas (M1/M2 ratio ∼12). Furthermore, inflammatory cytokines were detected in synovial fluid and plasma using cytometric bead arrays. Interleukin (IL)-6 and IL-1β were persistently enriched in synovial fluid compared to plasma in patients with NONFH, and this difference was confirmed by immunohistochemistry staining. However, only IL-6 levels in plasma were higher in patients with progressive-stage NONFH than in osteoarthritis. Moreover, fibrosis tissues were observed in the necrotic area in progressive-stage and end-stage NONFH based on Sirius Red staining. Together, these findings indicate that macrophage M1/M2 imbalance facilitates the progression of NONFH, a chronic inflammatory disease characterized by chronic inflammation, osteonecrosis and tissue fibrosis in the local lesion. Inhibiting inflammation, promoting the resolution of inflammation, switching macrophages to an M2 phenotype, or inhibiting their adoption of an M1 phenotype may be useful therapeutic strategies against NONFH.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yingqi Chen
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Youwen Liu
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Maoxiao Ma
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chao Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| | - Chen Yue
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| |
Collapse
|
11
|
Peng X, Ma Y, Wang Q, Gao Y, Li G, Jiang C, Gao Y, Feng Y. Serum Amyloid A Correlates With the Osteonecrosis of Femoral Head by Affecting Bone Metabolism. Front Pharmacol 2021; 12:767243. [PMID: 34733165 PMCID: PMC8559508 DOI: 10.3389/fphar.2021.767243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a progressive hip joint disease without disease-modifying treatment. Lacking understanding of the pathophysiological process of ONFH has become the humper to develop therapeutic approach. Serum amyloid A (SAA) is an acute phase lipophilic protein during inflammation and we found that SAA is increased for the first time in the serum of ONFH patients through proteomic studies and quantitatively verified by ELISA. Treating rBMSCs with SAA inhibited the osteogenic differentiation via Wnt/β-catenin signaling pathway deactivation and enhanced the adipogenic differentiation via MAPK/PPARγ signaling pathway activation. Finally, bilateral critical-sized calvarial-defect rat model which received SAA treated rBMSCs demonstrated reduction of bone formation when compared to untreated rBMSCs implantation control. Hence, SAA is a vital protein in the physiological process of ONFH and can act as a potential therapeutic target to treat ONFH.
Collapse
Affiliation(s)
- Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Lu X, Wu J, Qin Y, Liang J, Qian H, Song J, Qu C, Liu R. Identification of N-glycoproteins of hip cartilage in patients with osteonecrosis of femoral head using quantitative glycoproteomics. Int J Biol Macromol 2021; 187:892-902. [PMID: 34331982 DOI: 10.1016/j.ijbiomac.2021.07.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
N-glycosylation is a major post-translational modification of proteins and involved in many diseases, however, the state and role of N-glycosylation in cartilage degeneration of osteonecrosis of femoral head (ONFH) remain unclear. The aim of this study is to identify the glycoproteins of ONFH hip cartilage. Cartilage tissues were collected from nine patients with ONFH and nine individuals with traumatic femoral neck fracture. Cartilage glycoproteins were identified by glycoproteomics based on LC-MS/MS. The differentially N-glycoproteins including glycosites were identified in ONFH and controls. A total of 408 N-glycoproteins with 444 N-glycosites were identified in ONFH and control cartilage. Among them, 104 N-glycoproteins with 130 N-glycosites were significantly differential in ONFH and control cartilage, which including matrix-remodeling-associated protein 5, prolow-density lipoprotein receptor-related protein 1, clusterin and lysosome-associated membrane glycoprotein 2. Gene Ontology analysis revealed the significantly differential glycoproteins mainly belonged to protein metabolic process, single-multicellular organism process, proteolysis, biological adhesion and cell adhesion. KEGG pathway and protein-protein interaction analysis suggested that the significantly differential glycoproteins were associated with PI3K-Akt signalling pathway, ECM-receptor interaction, protein processing in the endoplasmic reticulum and N-glycan biosynthesis. This information provides substantial insight into the role of protein glycosylation in the development of cartilage degeneration of ONFH patients.
Collapse
Affiliation(s)
- Xueliang Lu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China; Department of Orthopedics, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Junlong Wu
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jialin Liang
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Hang Qian
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Jidong Song
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå 90185, Sweden
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, China.
| |
Collapse
|