1
|
Sensory-motor not length-dependent multineuropathy followed by the syringomyelia-like phenotype: a novel presentation of Tangier disease. Neurol Sci 2022; 43:6975-6978. [PMID: 35960386 DOI: 10.1007/s10072-022-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/06/2022] [Indexed: 02/03/2023]
|
2
|
HDL, cholesterol efflux, and ABCA1: Free from good and evil dualism. J Pharmacol Sci 2022; 150:81-89. [DOI: 10.1016/j.jphs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
|
3
|
Zhou Y, Miles JR, Tavori H, Lin M, Khoshbouei H, Borchelt DR, Bazick H, Landreth GE, Lee S, Fazio S, Notterpek L. PMP22 Regulates Cholesterol Trafficking and ABCA1-Mediated Cholesterol Efflux. J Neurosci 2019; 39:5404-5418. [PMID: 31061090 PMCID: PMC6607759 DOI: 10.1523/jneurosci.2942-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The absence of functional peripheral myelin protein 22 (PMP22) is associated with shortened lifespan in rodents and severe peripheral nerve myelin abnormalities in several species including humans. Schwann cells and nerves from PMP22 knock-out (KO) mice show deranged cholesterol distribution and aberrant lipid raft morphology, supporting an unrecognized role for PMP22 in cellular lipid metabolism. To examine the mechanisms underlying these abnormalities, we studied Schwann cells and nerves from male and female PMP22 KO mice. Whole-cell current-clamp recordings in cultured Schwann cells revealed increased membrane capacitance and decreased membrane resistance in the absence of PMP22, which was consistent with a reduction in membrane cholesterol. Nerves from PMP22-deficient mice contained abnormal lipid droplets, with both mRNA and protein levels of apolipoprotein E (apoE) and ATP-binding cassette transporter A1 (ABCA1) being highly upregulated. Despite the upregulation of ABCA1 and apoE, the absence of PMP22 resulted in reduced localization of the transporter to the cell membrane and diminished secretion of apoE. The absence of PMP22 also impaired ABCA1-mediated cholesterol efflux capacity. In nerves from ABCA1 KO mice, the expression of PMP22 was significantly elevated and the subcellular processing of the overproduced protein was aberrant. In wild-type samples, double immunolabeling identified overlapping distribution of PMP22 and ABCA1 at the Schwann cell plasma membrane and the two proteins were coimmunoprecipitated from Schwann cell and nerve lysates. Together, these results reveal a novel role for PMP22 in regulating lipid metabolism and cholesterol trafficking through functional interaction with the cholesterol efflux regulatory protein ABCA1.SIGNIFICANCE STATEMENT Understanding the subcellular events that underlie abnormal myelin formation in hereditary neuropathies is critical for advancing therapy development. Peripheral myelin protein 22 (PMP22) is an essential peripheral myelin protein because its genetic abnormalities account for ∼80% of hereditary neuropathies. Here, we demonstrate that in the absence of PMP22, the cellular and electrophysiological properties of the Schwann cells' plasma membrane are altered and cholesterol trafficking and lipid homeostasis are perturbed. The molecular mechanisms for these abnormalities involve a functional interplay among PMP22, cholesterol, apolipoprotein E, and the major cholesterol-efflux transporter protein ATP-binding cassette transporter A1 (ABCA1). These findings establish a critical role for PMP22 in the maintenance of cholesterol homeostasis in Schwann cells.
Collapse
Affiliation(s)
| | - Joshua R Miles
- Department of Medicine
- Department of Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, Oregon 27332, and
| | - Hagai Tavori
- Department of Medicine
- Department of Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, Oregon 27332, and
| | | | | | | | | | - Gary E Landreth
- Department of Neurosciences, Indiana University, Indianapolis, Indiana 46202
| | | | - Sergio Fazio
- Department of Medicine
- Department of Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, Oregon 27332, and
| | - Lucia Notterpek
- Department of Neuroscience,
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
4
|
Nerve high‐resolution ultrasonography in tangier disease. Muscle Nerve 2019; 59:587-590. [DOI: 10.1002/mus.26427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 11/07/2022]
|
5
|
Mercan M, Yayla V, Altinay S, Seyhan S. Peripheral neuropathy in Tangier disease: A literature review and assessment. J Peripher Nerv Syst 2018; 23:88-98. [PMID: 29582519 DOI: 10.1111/jns.12265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Tangier disease (TD) (OMIM#205400) is a rare cause of inherited metabolic neuropathies characterized by marked deficiency of high-density lipoproteins and accumulation of cholesterol esters in various tissue resulting from reverse cholesterol transport deficiency. We report a case of a patient with TD with multifocal demyelinating neuropathy with conduction block who presents with winging scapula, tongue, and asymmetric extremity weakness. We also present a review of all studies published from 1960 to 2017 regarding peripheral neuropathy in TD. Our search identified 54 patients with TD with peripheral neuropathy. Syringomyelia-like neuropathy subtype (52.4%) was more frequent than multifocal sensorial and motor neuropathy subtype (26.2%), focal neuropathy subtype (19.1%), and distal symmetric polyneuropathy subtype (2.4%). Splenomegaly was the most common (40.7%) clinical manifestation in these patients. The pattern of electrodiagnostic abnormalities are: (1) demyelinating abnormalities were more predominant in the upper extremities than in the lower extremities and (2) slowing of motor nerve conduction was more prominent in the intermediate segment than in distal nerve segments. The sural-sparing pattern was present in 34.6% and conduction block was present in 11.5% of the patients. Our literature review and our case showed the clinical spectrum of TD neuropathy is quite wide and that it should be considered in the differential diagnosis of non-uniform demyelinating neuropathies.
Collapse
Affiliation(s)
- Metin Mercan
- Department of Neurology, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Vildan Yayla
- Department of Neurology, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Serdar Altinay
- Department of Pathology, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Serhat Seyhan
- Department of Molecular Medicine, Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Ceccanti M, Cambieri C, Frasca V, Onesti E, Biasiotta A, Giordano C, Bruno SM, Testino G, Lucarelli M, Arca M, Inghilleri M. A Novel Mutation in ABCA1 Gene Causing Tangier Disease in an Italian Family with Uncommon Neurological Presentation. Front Neurol 2016; 7:185. [PMID: 27853448 PMCID: PMC5089975 DOI: 10.3389/fneur.2016.00185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/11/2016] [Indexed: 02/02/2023] Open
Abstract
Tangier disease is an autosomal recessive disorder characterized by severe reduction in high-density lipoprotein cholesterol and peripheral lipid storage. We describe a family with c.5094C > A p.Tyr1698* mutation in the ABCA1 gene, clinically characterized by syringomyelic-like anesthesia, demyelinating multineuropathy, and reduction in intraepidermal small fibers innervation. In the proband patient, cardiac involvement determined a myocardial infarction; lipid storage was demonstrated in gut, cornea, and aortic wall. The reported ABCA1 mutation has never been described before in a Tangier family.
Collapse
Affiliation(s)
- Marco Ceccanti
- Department of Neurology and Psychiatry, Sapienza University , Rome , Italy
| | - Chiara Cambieri
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University , Rome , Italy
| | - Vittorio Frasca
- Department of Neurology and Psychiatry, Sapienza University , Rome , Italy
| | - Emanuela Onesti
- Department of Neurology and Psychiatry, Sapienza University , Rome , Italy
| | - Antonella Biasiotta
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University , Rome , Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University , Rome , Italy
| | - Sabina M Bruno
- Department of Cellular Biotechnologies and Hematology, Sapienza University , Rome , Italy
| | - Giancarlo Testino
- Department of Cellular Biotechnologies and Hematology, Sapienza University , Rome , Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Rome, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University , Rome , Italy
| | | |
Collapse
|
7
|
Nagappa M, Taly AB, Mahadevan A, Pooja M, Bindu PS, Chickabasaviah YT, Gayathri N, Sinha S. Tangier's disease: An uncommon cause of facial weakness and non-length dependent demyelinating neuropathy. Ann Indian Acad Neurol 2016; 19:137-9. [PMID: 27011649 PMCID: PMC4782534 DOI: 10.4103/0972-2327.175436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tangier disease is an autosomal recessive disorder characterized by an abnormal accumulation of cholesterol esters in various organs secondary to adenotriphosphate binding cassette transporter A-1 (ABCA-1) transporter deficiency and disrupted reverse cholesterol transport. It causes neuropathy in half of the affected individuals. We present the clinical, electrophysiological, and histopathological findings in a middle aged gentleman of Tangier disease who was initially misdiagnosed leprosy and treated with antileprosy drugs. The presence of a demyelinating neuropathy on electrophysiology in a patient with predominant upper limb involvement and facial diplegia should raise the suspicion of Tangier disease. The characteristic lipid profile of Tangier disease was noted in this patient viz. extremely low high density lipoprotein (HDL), elevated triglyceride (TG), and reduced apolipoprotein A1. Estimation of serum lipids should form a part of routine evaluation in order to avoid misdiagnosis.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - M Pooja
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - P S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Y T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Nagappa M, Taly AB, Mahadevan A, Pooja M, Bindu PS, Chickabasaviah YT, Gayathri N, Sinha S. An uncommon cause of bifacial weakness and non-length-dependent demyelinating neuropathy. Ann Indian Acad Neurol 2015; 18:445-8. [PMID: 26713019 PMCID: PMC4683886 DOI: 10.4103/0972-2327.169641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tangier disease is a rare metabolic disorder that causes neuropathy in half of the affected individuals. We present the clinical, electrophysiological, and histopathological findings in a middle-aged gentleman of Tangier disease who was initially diagnosed as leprosy and treated with antileprosy drugs. The presence of a demyelinating electrophysiology in a patient with predominant upper limb involvement and facial diplegia should raise the suspicion of Tangier disease. Estimation of serum lipids should form a part of routine evaluation in order to avoid misdiagnosis.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Mailankody Pooja
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Brunham LR, Hayden MR. Human genetics of HDL: Insight into particle metabolism and function. Prog Lipid Res 2015; 58:14-25. [DOI: 10.1016/j.plipres.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
10
|
Sechi A, Dardis A, Zampieri S, Rabacchi C, Zanoni P, Calandra S, De Maglio G, Pizzolitto S, Maruotti V, Di Muzio A, Platt F, Bembi B. Effects of miglustat treatment in a patient affected by an atypical form of Tangier disease. Orphanet J Rare Dis 2014; 9:143. [PMID: 25227739 PMCID: PMC4172812 DOI: 10.1186/s13023-014-0143-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tangier disease (TD) is a rare autosomal recessive disorder, resulting from mutations in the ATP binding cassette transporter (ABCA1) gene. The deficiency of ABCA1 protein impairs high density lipoprotein (HDL) synthesis and cholesterol esters trafficking. CASE REPORT A 58 year-old female, presenting with complex clinical signs (splenomegaly, dysarthria, dysphagia, ataxia, tongue enlargement, prurigo nodularis, legs lymphedema, pancytopenia and bone marrow foam cells), was misdiagnosed as Niemann-Pick C (NPC) and treated with miglustat (300 mg/day), normalizing neurological symptoms and improving skin lesions and legs lymphedema. Subsequently filipin-staining and molecular analysis for NPC genes were negative. Lipid profiling showed severe deficiency of HDL, 2 mg/dl (n.v. 45-65) and apoAI, 5.19 mg/dl (n.v. 110-170), suggesting TD as a probable diagnosis. Molecular analysis of ABCA1 gene showed the presence of a novel homozygous deletion (c.4464-486_4698 + 382 Del). Miglustat treatment was then interrupted with worsening of some neurological signs (memory defects, slowing of thought processes) and skin lesions. Treatment was restarted after 7 months with neurological normalization and improvement of skin involvement. CONCLUSIONS These results suggest miglustat as a possible therapeutic approach in this untreatable disease. The mechanisms by which miglustat ameliorates at least some clinical manifestations of TD needs to be further investigated.
Collapse
|
11
|
Li J, Parker B, Martyn C, Natarajan C, Guo J. The PMP22 gene and its related diseases. Mol Neurobiol 2012; 47:673-98. [PMID: 23224996 DOI: 10.1007/s12035-012-8370-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50 % of all patients with inherited peripheral neuropathies, including Charcot-Marie-Tooth type-1A (CMT1A) with trisomy of PMP22, hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of PMP22, and CMT1E with point mutations of PMP22. While overexpression and point-mutations of the PMP22 gene may produce gain-of-function phenotypes, deletion of PMP22 results in a loss-of-function phenotype that reveals the normal physiological functions of the PMP22 protein. In this article, we will review the basic genetics, biochemistry and molecular structure of PMP22, followed by discussion of the current understanding of pathogenic mechanisms involving in the inherited neuropathies with mutations in PMP22 gene.
Collapse
Affiliation(s)
- Jun Li
- VA Tennessee Valley Healthcare System, 1310 24th Avenue South, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
12
|
A novel mutation in the ABCA1 gene causing an atypical phenotype of Tangier disease. J Clin Lipidol 2012; 7:82-7. [PMID: 23351586 DOI: 10.1016/j.jacl.2012.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/09/2012] [Accepted: 09/16/2012] [Indexed: 11/23/2022]
Abstract
Tangier disease is a rare autosomal-recessive disorder caused by mutation in the ATP binding cassette transporter 1 (ABCA1) gene. Typically, Tangier disease manifests with symptoms and signs resulting from the deposition of cholesteryl esters in nonadipose tissues; chiefly, in peripheral nerves leading to neuropathy and in reticulo-endothelial organs, such as liver, spleen, lymph nodes, and tonsils, causing their enlargement and discoloration. An association with early cardiovascular disease can be variable. We describe a patient with a unique phenotype of Tangier disease from a novel splice site mutation in the ABCA1 gene that is associated with a central nervous system presentation resembling multiple sclerosis, and the presence of premature atherosclerosis.
Collapse
|
13
|
Zyss J, Béhin A, Couvert P, Bouhour F, Sassolas A, Kolev I, Denys V, Vial C, Lacour A, Carrié A, Stojkovic T. Clinical and electrophysiological characteristics of neuropathy associated with Tangier disease. J Neurol 2011; 259:1222-6. [DOI: 10.1007/s00415-011-6340-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 01/23/2023]
|
14
|
Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010; 51:2032-57. [PMID: 20421590 DOI: 10.1194/jlr.r004739] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.
Collapse
|
15
|
Abstract
Patients with PMP22 deficiency present with focal sensory and motor deficits when peripheral nerves are stressed by mechanical force. It has been hypothesized that these focal deficits are due to mechanically induced conduction block (CB). To test this hypothesis, we induced 60-70% CB (defined by electrophysiological criteria) by nerve compression in an authentic mouse model of hereditary neuropathy with liability to pressure palsies (HNPP) with an inactivation of one of the two pmp22 alleles (pmp22(+/-)). Induction time for the CB was significantly shorter in pmp22(+/-) mice than that in pmp22(+/+) mice. This shortened induction was also found in myelin-associated glycoprotein knock-out mice, but not in the mice with deficiency of myelin protein zero, a major structural protein of compact myelin. Pmp22(+/-) nerves showed intact tomacula with no segmental demyelination in both noncompressed and compressed conditions, normal molecular architecture, and normal concentration of voltage-gated sodium channels by [(3)H]-saxitoxin binding assay. However, focal constrictions were observed in the axonal segments enclosed by tomacula, a pathological hallmark of HNPP. The constricted axons increase axial resistance to action potential propagation, which may hasten the induction of CB in Pmp22 deficiency. Together, these results demonstrate that a function of Pmp22 is to protect the nerve from mechanical injury.
Collapse
|
16
|
Vanhaesebrouck AE, Couturier J, Cauzinille L, Mizisin AP, Shelton GD, Granger N. Demyelinating polyneuropathy with focally folded myelin sheaths in a family of Miniature Schnauzer dogs. J Neurol Sci 2008; 275:100-5. [PMID: 18809183 DOI: 10.1016/j.jns.2008.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/27/2008] [Accepted: 07/31/2008] [Indexed: 01/08/2023]
Abstract
A spontaneous demyelinating polyneuropathy in two young Miniature Schnauzer dogs was characterized clinically, electrophysiologically and histopathologically. Both dogs were related and a third dog, belonging to the same family, had similar clinical signs. On presentation, clinical signs were restricted to respiratory dysfunction. Electrophysiological tests showed a dramatic decrease in both motor and sensory nerve conduction velocities. Microscopic examination of peripheral nerve biopsies (light and electron microscopy, teased nerve fibers), showed that this neuropathy was characterized by segmental demyelination and focally folded myelin sheaths. Various clinical syndromes associated with tomacula or focal thickening of the myelin sheath of the peripheral nerves have been described in humans and shown to be caused by gene mutations affecting the myelin proteins, such as the hereditary neuropathy with liability to pressure palsies or the demyelinating forms of Charcot-Marie-Tooth disease. In animals, a tomaculous neuropathy has been reported in cattle and chickens but not in carnivores. Here we report a demyelinating peripheral neuropathy with tomacula in two Miniature Schnauzer dogs.
Collapse
|
17
|
Cai Z, Finnie JW, Blumbergs PC, Manavis J, Ghabriel MN, Thompson PD. Early paranodal myelin swellings (tomacula) in an avian riboflavin deficiency model of demyelinating neuropathy. Exp Neurol 2006; 198:65-71. [PMID: 16336963 DOI: 10.1016/j.expneurol.2005.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/17/2005] [Accepted: 10/25/2005] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Disruption of the complex architectural and molecular organization of the paranodal region of myelinated peripheral nerve fiber may initiate the evolving time dependent process of segmental demyelination. In support of this notion was the finding of focal paranodal myelin swellings (tomacula) due to redundant folding of myelin sheaths, early in the time course of an avian riboflavin deficiency model of demyelinating neuropathy. METHODS Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin (control group) or a riboflavin-deficient diet containing 1.8 mg/kg riboflavin. Riboflavin concentrations in the liver were measured at postnatal day 11. Peripheral nerves were morphologically examined at days 6, 11, 16 and 21 using light and electron microscopy and teased nerve fiber techniques. RESULTS Riboflavin-deficient chickens showed signs of a neuropathy from days 8 and pathological examination of peripheral nerves revealed a demyelinating neuropathy with paranodal tomacula formation starting on day 11. Paranodal tomacula consisted of redundant myelin infoldings or outfoldings, increased in size and frequency after day 11. After day 16, the paranodal swellings showed prominent degenerative changes accompanied by an increased frequency of myelinated fibers showing demyelination. CONCLUSION Tomacula due to redundant myelin folds are generally considered a remyelination phenomenon, yet in this avian riboflavin deficiency model of demyelination, the paranodal tomacula occurred early in the course of demyelination.
Collapse
Affiliation(s)
- Z Cai
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|