1
|
Dincer A, Jalal MI, Gupte TP, Vetsa S, Vasandani S, Yalcin K, Marianayagam N, Blondin N, Corbin Z, McGuone D, Fulbright RK, Erson-Omay Z, Günel M, Moliterno J. The clinical and genomic features of seizures in meningiomas. Neurooncol Adv 2023; 5:i49-i57. [PMID: 37287582 PMCID: PMC10243847 DOI: 10.1093/noajnl/vdac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Meningiomas are the most common central nervous system tumors. Although these tumors are extra-axial, a relatively high proportion (10%-50%) of meningioma patients have seizures that can substantially impact the quality of life. Meningiomas are believed to cause seizures by inducing cortical hyperexcitability that results from mass effect and cortical irritation, brain invasion, or peritumoral brain edema. In general, meningiomas that are associated with seizures have aggressive features, with risk factors including atypical histology, brain invasion, and higher tumor grade. Somatic NF2 mutated meningiomas are associated with preoperative seizures, but the effect of the driver mutation is mediated through atypical features. While surgical resection is effective in controlling seizures in most patients with meningioma-related epilepsy, a history of seizures and uncontrolled seizures prior to surgery is the most significant predisposing factor for persistent postoperative seizures. Subtotal resection (STR) and relatively larger residual tumor volume are positive predictors of postoperative seizures. Other factors, including higher WHO grade, peritumoral brain edema, and brain invasion, are inconsistently associated with postoperative seizures, suggesting they might be crucial in the development of an epileptogenic focus, but do not appear to play a substantial role after seizure activity has been established. Herein, we review and summarize the current literature surrounding meningioma-related epilepsy and underscore the interaction of multiple factors that relate to seizures in patients with meningioma.
Collapse
Affiliation(s)
- Alper Dincer
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Muhammad I Jalal
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Trisha P Gupte
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Shaurey Vetsa
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Sagar Vasandani
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Kanat Yalcin
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Neelan Marianayagam
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Nicholas Blondin
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zachary Corbin
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Declan McGuone
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert K Fulbright
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jennifer Moliterno
- Chenevert Family Brain Tumor Center, Yale Cancer Center, Smilow Cancer Hospital, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Pereira BJA, Oba-Shinjo SM, Aguiar PHPD, Almeida AND, Paiva WDS, Marie SKN. Aquaporin-4 Expression in Meningioma Malignancy Progression. ARQUIVOS BRASILEIROS DE NEUROCIRURGIA: BRAZILIAN NEUROSURGERY 2022. [DOI: 10.1055/s-0041-1731065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Objectives The aim of the present study is to analyze if aquaporin-4 (AQP4) may also be a tumor progression marker for meningiomas.
Methods This is an immunohistochemistry study realized at the Universidade de São Paulo, São Paulo, state of São Paulo, Brazil: frozen meningioma samples from 81 patients (57 females and 24 males, age range from 22 to 81 years old, average 56.5 ± 14.1 years old), including 57 meningiomas World Health Organization (WHO) grade I (GI); 19 grade II (GII), and 5 grade III (GIII) were analyzed. The relative expression level of AQP4 was analyzed by quantitative polymerase chain reaction (qPCR), using the SYBR Green approach and for staining detection. Tissue sections were routinely processed and subjected to antigen retrieval.
Results The expression of AQP4 in meningioma samples ranged from 0 to 10.26, with a median of 0.001 in GI cases, of 0.008 in GII cases, and of 0.006 in GIII cases. Although not statistically significant (p = 0.942), GI meningiomas have a lower median AQP4 expression level than higher malignant grade cases.
Conclusion The AQP4 gene and protein expressions presented no association with meningioma malignant progression.
Collapse
Affiliation(s)
| | - Sueli M. Oba-Shinjo
- Department of Neurology, Laboratório de Biologia Celular e Molecular LIM15, Escola de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Henrique Pires de Aguiar
- Centro Universitário Faculdade de Medicina do ABC, Santo André, Brazil
- Pontifícia Universidade Católica de São Paulo, Sorocaba, Brazil
| | - Antonio Nogueira de Almeida
- Department of Neurology, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
- IPQ Functional Neurosurgery Division, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Suely Kazue Nagahashi Marie
- Department of Neurology, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Neurology, Laboratório de Biologia Celular e Molecular LIM15, Escola de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Center for the Study of Cellular and Molecular Therapy, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Giammalva GR, Brunasso L, Paolini F, Costanzo R, Bonosi L, Benigno UE, Ferini G, Sava S, Colarossi C, Umana GE, Gerardi RM, Sturiale CL, Albanese A, Iacopino DG, Maugeri R. The Long and Winding Road: An Overview of the Immunological Landscape of Intracranial Meningiomas. Cancers (Basel) 2022; 14:cancers14153639. [PMID: 35892898 PMCID: PMC9367534 DOI: 10.3390/cancers14153639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The tumor microenvironment represents the essential basis for characterizing oncological cells and supporting their growth. Along with genomic sequencing, the study of the tumor microenvironment represents a big step forward in oncological research and in the customization of treatments. Compared to gliomas, for which research has discovered greater results, the correlation between the microenvironment and tumor phenotype, and consequent prognostic implications, are still incompletely understood for intracranial meningioma. Recently, studies about the immunogenetic landscape of meningiomas have been promoted, and it is now clear that understanding the multifactorial pathogenesis of meningioma and its correlation with other specific signs (i.e., PTBE) could lead to the development of new targeted therapies, and significantly affect meningioma patients’ prognosis. Abstract The role of immunotherapy is gaining ever-increasing interest in the neuro-oncological field, and this is also expanding to the management of intracranial meningioma. Meningiomas are still the most common primary adult tumor of the CNS, and even though surgery and/or radiotherapy still represent cornerstones of their treatment, recent findings strongly support the potential role of specific immune infiltrate cells, their features and genomics, for the application of personalized treatments and prognostic implications. According to the PRISMA guidelines, systematic research in the most updated platform was performed in order to provide a descriptive and complete overview about the characteristics, role and potential implications of immunology in meningioma tumors. Seventy articles were included and analyzed in the present paper. The meningioma microenvironment reveals complex immune tumor-immune cells interactions that may definitely influence tumor progression, as well as offering unexpected opportunities for treatment.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
- Correspondence: (G.R.G.); (L.B.); Tel.: +39-0916554656 (G.R.G.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
- Correspondence: (G.R.G.); (L.B.); Tel.: +39-0916554656 (G.R.G.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia Srl, 95125 Catania, Italy;
| | - Serena Sava
- Department of Medical Oncology, Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy;
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, 95125 Catania, Italy;
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.L.S.); (A.A.)
| | - Alessio Albanese
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.L.S.); (A.A.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (F.P.); (R.C.); (L.B.); (U.E.B.); (R.M.G.); (D.G.I.); (R.M.)
| |
Collapse
|
4
|
Behnam M, Motamedzadeh A, Aalinezhad M, Dadgostar E, Rashidi Noshabad FZ, Pourfridoni M, Raei M, Mirzaei H, Aschner M, Tamtaji OR. The role of aquaporin 4 in brain tumors: implications for pathophysiology, diagnosis and therapy. Mol Biol Rep 2022; 49:10609-10615. [PMID: 35715607 DOI: 10.1007/s11033-022-07656-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Primary brain tumors are a heterogeneous group of tumors that arise from cells intrinsic to the central nervous system (CNS). Aquaporin-4 (AQP4) has been implicated in the pathogenesis of brain tumors. Previous reports have documented a relationship between AQP4 and several molecular pathways associated with the etiology of brain tumors, such as apoptosis, invasion and cell migration. AQP4 affects apoptosis via cytochrome C, Bad and Bcl-2, as well as invasion and migration via IDO1/TDO-Kyn-AhR axis, lncRNA LINC00461, miR-216a, miRNA-320a and MMPs. In addition, inhibition of AQP4 mitigates the progression of brain tumors. This review summarizes current knowledge and evidence regarding the relationship between AQP4 and brain tumors, and the mechanisms involved.
Collapse
Affiliation(s)
- Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Marzieh Aalinezhad
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | | | - Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, I.R. of Iran
| | - Maedeh Raei
- Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, I.R. of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
5
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Kitisin T, Ampawong S, Muangkaew W, Sukphopetch P. Phenomic profiling of a novel sibling species within the Scedosporium complex in Thailand. BMC Microbiol 2021; 21:42. [PMID: 33563219 PMCID: PMC7874643 DOI: 10.1186/s12866-021-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Scedosporium species are a group of pathogenic fungi, which can be found worldwide around high human-impacted areas. Infections of Scedosporium have been reported in several immunocompromised and immunocompetent patients with a high mortality rate. Recently, we have isolated and identified several Scedosporium strains during an environmental survey in Thailand. Results We describe the isolate, TMMI-012, possibly a new species isolated from soils in the Chatuchak public park, Bangkok, Thailand. TMMI-012 is phylogenetically related to the Scedosporium genus and is a sibling to S. boydii but shows distinct morphological and pathological characteristics. It is fast growing and highly resistant to antifungal drugs and abiotic stresses. Pathological studies of in vitro and in vivo models confirm its high virulence and pathogenicity. Conclusion TMMI-012 is considered a putative novel Scedosporium species. The high antifungal resistance of TMMI-012 compared with its sibling, Scedosporium species is likely related to its clinical impact on human health.
Collapse
Affiliation(s)
- T Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - W Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Evaluation of AQP4/TRPV4 Channel Co-expression, Microvessel Density, and its Association with Peritumoral Brain Edema in Intracranial Meningiomas. J Mol Neurosci 2021; 71:1786-1795. [PMID: 33538957 PMCID: PMC8799549 DOI: 10.1007/s12031-021-01801-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Apart from VEGF-A pathway activation, the existence of peritumoral edema (PTBE) in meningiomas has been correlated with the expression levels of water transporter aquaporin 4 (AQP4). A novel cooperation of AQP4 with the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel, has been proposed for regulating cell volume in glial cells. We investigated AQP4/TRPV4 channel co-expression in meningiomas along with the neovascularization of tumors and associate with PTBE. Immunohistochemical staining for AQP4 and TRPV4 expression was quantitatively analyzed in semi-serial sections of archival tissue from 174 patients. Microvessel density was expressed as microvessel count (MVC). PTBE was measured and edema index (EI) was assessed in 23 patients, based on magnetic resonance images (MRI) whereas mRNA levels of AQP4 and TRPV4 were evaluated in these patients using quantitative real-time PCR. High AQP4 was associated with lower-tumor grade (p < 0.05). AQP4 and TRPV4 were correlated in benign (WHO, grade I) (p < 0.0001) but not in high-grade (WHO, grades II and III) meningiomas (p > 0.05). AQP4/TRPV4 levels were independent of EI and MVC (p > 0.05). In contrast, EI was correlated to MVC (p = 0.02). AQP4/TRPV4 co-expression was detected in both edematous and non-edematous meningiomas. However, most of tumors with larger edema (EI ≥ 2) demonstrated increased levels of AQP4 and TRPV4. Importantly, peri-meningioma tissue of edematous meningiomas demonstrated significantly increased expression for AQP4 (p = 0.007) but not for TRPV4 (p > 0.05) compared with the main tumor. AQP4 and TRPV4 expression is rather associated with a response to vasogenic edema of meningiomas than with edema formation.
Collapse
|
8
|
Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells 2020; 9:cells9102187. [PMID: 32998402 PMCID: PMC7601078 DOI: 10.3390/cells9102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) is required for a normal rate of water exchange across the blood–brain interface. Following the discovery that AQP4 is a possible autoantigen in neuromyelitis optica, the function of AQP4 in health and disease has become a research focus. While several studies have addressed the expression and function of AQP4 during inflammatory demyelination, relatively little is known about its expression during non-autoimmune-mediated myelin damage. In this study, we used the toxin-induced demyelination model cuprizone as well as a combination of metabolic and autoimmune myelin injury (i.e., Cup/EAE) to investigate AQP4 pathology. We show that during toxin-induced demyelination, diffuse AQP4 expression increases, while polarized AQP4 expression at the astrocyte endfeet decreases. The diffuse increased expression of AQP4 was verified in chronic-active multiple sclerosis lesions. Around inflammatory brain lesions, AQP4 expression dramatically decreased, especially at sites where peripheral immune cells penetrate the brain parenchyma. Humoral immune responses appear not to be involved in this process since no anti-AQP4 antibodies were detected in the serum of the experimental mice. We provide strong evidence that the diffuse increase in anti-AQP4 staining intensity is due to a metabolic injury to the brain, whereas the focal, perivascular loss of anti-AQP4 immunoreactivity is mediated by peripheral immune cells.
Collapse
|
9
|
Sacco S, Ballati F, Gaetani C, Lomoro P, Farina LM, Bacila A, Imparato S, Paganelli C, Buizza G, Iannalfi A, Baroni G, Valvo F, Bastianello S, Preda L. Multi-parametric qualitative and quantitative MRI assessment as predictor of histological grading in previously treated meningiomas. Neuroradiology 2020; 62:1441-1449. [PMID: 32583368 DOI: 10.1007/s00234-020-02476-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Meningiomas are mainly benign tumors, though a considerable proportion shows aggressive behaviors histologically consistent with atypia/anaplasia. Histopathological grading is usually assessed through invasive procedures, which is not always feasible due to the inaccessibility of the lesion or to treatment contraindications. Therefore, we propose a multi-parametric MRI assessment as a predictor of meningioma histopathological grading. METHODS Seventy-three patients with 74 histologically proven and previously treated meningiomas were retrospectively enrolled (42 WHO I, 24 WHO II, 8 WHO III) and studied with MRI including T2 TSE, FLAIR, Gradient Echo, DWI, and pre- and post-contrast T1 sequences. Lesion masks were segmented on post-contrast T1 sequences and rigidly registered to ADC maps to extract quantitative parameters from conventional DWI and intravoxel incoherent motion model assessing tumor perfusion. Two expert neuroradiologists assessed morphological features of meningiomas with semi-quantitative scores. RESULTS Univariate analysis showed different distributions (p < 0.05) of quantitative diffusion parameters (Wilcoxon rank-sum test) and morphological features (Pearson's chi-square; Fisher's exact test) among meningiomas grouped in low-grade (WHO I) and higher grade forms (WHO II/III); the only exception consisted of the tumor-brain interface. A multivariate logistic regression, combining all parameters showing statistical significance in the univariate analysis, allowed discrimination between the groups of meningiomas with high sensitivity (0.968) and specificity (0.925). Heterogeneous contrast enhancement and low ADC were the best independent predictors of atypia and anaplasia. CONCLUSION Our multi-parametric MRI assessment showed high sensitivity and specificity in predicting histological grading of meningiomas. Such an assessment may be clinically useful in characterizing lesions without histological diagnosis. Key points • When surgery and biopsy are not feasible, parameters obtained from both conventional and diffusion-weighted MRI can predict atypia and anaplasia in meningiomas with high sensitivity and specificity. • Low ADC values and heterogeneous contrast enhancement are the best predictors of higher grade meningioma.
Collapse
Affiliation(s)
- Simone Sacco
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Francesco Ballati
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Clara Gaetani
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Pascal Lomoro
- Department of Radiology, Valduce Hospital, Como, Italy
| | | | - Ana Bacila
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Imparato
- Diagnostic Imaging Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100, Pavia, PV, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alberto Iannalfi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Valvo
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Preda
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Diagnostic Imaging Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100, Pavia, PV, Italy.
| |
Collapse
|
10
|
Dasdelen D, Mogulkoc R, Baltaci AK. Aquaporins and Roles in Brain Health and Brain Injury. Mini Rev Med Chem 2020; 20:498-512. [PMID: 31656150 DOI: 10.2174/1389557519666191018142007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023]
Abstract
In the literature screening, aquaporins were found in the cerebral structures including the pia mater, choroid plexus, ependyma, piriform cortex, hippocampus, dorsal thalamus, supraoptic and suprachiasmatic nuclei, white matter and subcortical organ. Among these, the most common are AQP1, AQP4, and AQP9. The roles of aquaporins have been demonstrated in several diseases such as cerebral edema, various central nervous system tumors, Alzheimer’s Disease and epilepsy. In this review, the relationship between brain/brain-injury and aquaporin, has been reviewed.
Collapse
Affiliation(s)
- Dervis Dasdelen
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
11
|
Abstract
More than one-third of patients with meningiomas will experience seizures at some point in their disease. Despite this, meningioma-associated epilepsy remains significantly understudied, as most investigations focus on tumor progression, extent of resection, and survival. Due to the impact of epilepsy on the patient's quality of life, identifying predictors of preoperative seizures and postoperative seizure freedom is critical. In this chapter, we review previously reported rates and predictors of seizures in meningioma and discuss surgical and medical treatment options. Preoperative epilepsy occurs in approximately 30% of meningioma patients with peritumoral edema on neuroimaging being one of the most significant predictor of seizures. Other associated factors include age <18, male gender, the absence of headache, and non-skull base tumor location. Following tumor resection, approximately 70% of individuals with preoperative epilepsy achieve seizure freedom. Variables associated with persistent seizures include a history of preoperative epilepsy, peritumoral edema, skull base tumor location, tumor progression, and epileptiform discharges on postoperative electroencephalogram. In addition, after surgery, approximately 10% of meningioma patients without preoperative epilepsy experience new seizures. Variables associated with new postoperative seizures include tumor progression, prior radiation exposure, and gross total tumor resection. Both pre- and postoperative meningioma-related seizures are often responsive to antiepileptic drugs (AEDs), although AED prophylaxis in the absence of seizures is not recommended. AED selection is based on current guidelines for treating focal seizures with additional considerations including efficacy in tumor-related epilepsy, toxicities, and potential drug-drug interactions. Continued investigation into medical and surgical strategies for preventing and alleviating epilepsy in meningioma is warranted.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
12
|
Abstract
The tumor microenvironment consists of noncancerous cells, such as immune cells and fibroblasts, and the proteins produced by these cells as well as the extracellular matrix components in the environment around a tumor. Tumor influences the behavior of the cells present in the surrounding environment, while the cells in the tumor microenvironment modulate the evolution of the tumor. Little is known about the microenvironment of meningioma, the most common benign intracranial tumor. Here, we review the current knowledge of the tumor microenvironment of meningioma and discusses its importance in meningioma tumorigenesis as well as in the designation of novel therapeutic approaches.
Collapse
|
13
|
Zhang S, Chiang GCY, Knapp JM, Zecca CM, He D, Ramakrishna R, Magge RS, Pisapia DJ, Fine HA, Tsiouris AJ, Zhao Y, Heier LA, Wang Y, Kovanlikaya I. Grading meningiomas utilizing multiparametric MRI with inclusion of susceptibility weighted imaging and quantitative susceptibility mapping. J Neuroradiol 2019; 47:272-277. [PMID: 31136748 DOI: 10.1016/j.neurad.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The ability to predict high-grade meningioma preoperatively is important for clinical surgical planning. The purpose of this study is to evaluate the performance of comprehensive multiparametric MRI, including susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in predicting high-grade meningioma both qualitatively and quantitatively. METHODS Ninety-two low-grade and 37 higher grade meningiomas in 129 patients were included in this study. Morphological characteristics, quantitative histogram analysis of QSM and ADC images, and tumor size were evaluated to predict high-grade meningioma using univariate and multivariate analyses. Receiver operating characteristic (ROC) analyses were performed on the morphological characteristics. Associations between Ki-67 proliferative index (PI) and quantitative parameters were calculated using Pearson correlation analyses. RESULTS For predicting high-grade meningiomas, the best predictive model in multivariate logistic regression analyses included calcification (β=0.874, P=0.110), peritumoral edema (β=0.554, P=0.042), tumor border (β=0.862, P=0.024), tumor location (β=0.545, P=0.039) for morphological characteristics, and tumor size (β=4×10-5, P=0.004), QSM kurtosis (β=-5×10-3, P=0.058), QSM entropy (β=-0.067, P=0.054), maximum ADC (β=-1.6×10-3, P=0.003), ADC kurtosis (β=-0.013, P=0.014) for quantitative characteristics. ROC analyses on morphological characteristics resulted in an area under the curve (AUC) of 0.71 (0.61-0.81) for a combination of them. There were significant correlations between Ki-67 PI and mean ADC (r=-0.277, P=0.031), 25th percentile of ADC (r=-0.275, P=0.032), and 50th percentile of ADC (r=-0.268, P=0.037). CONCLUSIONS Although SWI and QSM did not improve differentiation between low and high-grade meningiomas, combining morphological characteristics and quantitative metrics can help predict high-grade meningioma.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | - Gloria Chia-Yi Chiang
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | | | - Christina M Zecca
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | - Diana He
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Rajiv S Magge
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Howard Alan Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Apostolos John Tsiouris
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | - Yize Zhao
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA
| | - Linda A Heier
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, 407, E61st, Suite 117, 10065 New York, NY, USA.
| |
Collapse
|
14
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Correlation Between Aquaporin 4 Expression and Different DWI Parameters in Grade I Meningioma. Mol Imaging Biol 2017; 19:138-142. [PMID: 27357591 DOI: 10.1007/s11307-016-0978-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) measures water diffusion in biological tissues. Cellular water transport depends on aquaporins (AQPs). The expression of aquaporins might differ in several pathologic disorders. Therefore, the aim of this study was to evaluate the associations between AQP4 expression and different DWI parameters in meningioma. PROCEDURES Twenty-three patients with meningioma grade I were included in this retrospective study. DWI was obtained with three b values (0; 500; 1000) using a 1.5-T device. ADCmean, ADCmin, ADCmax, and true diffusion coefficients (D) were obtained in every patient. Aquaporin 4 expression was quantified immunohistochemically in four immunoreactivity levels. RESULTS The estimated DWI parameters (mean value ± standard deviation, 10-3 mm2 s-1) of the tumors were as follows: ADCmin 0.67 ± 0.16, ADCmean 0.94 ± 0.23, ADCmax 1.29 ± 0.50, and D 0.65 ± 0.23. The mean level of the AQP4 expression was 2.02 ± 0.75 points. A statistically significant correlation between AQP4 expression and ADCmax was identified (r = 0.508, p = 0.013). No significant correlations between AQP4 and other DWI parameters were found. CONCLUSIONS A clear correlation between AQP4 expression and ADCmax values in grade I meningioma was identified. There were no significant correlations between AQP4 expression and other DWI parameters, such as ADCmin, ADCmean, and D.
Collapse
|
16
|
Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg Rev 2017; 42:59-71. [DOI: 10.1007/s10143-017-0897-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
|
17
|
Gawlitza M, Fiedler E, Schob S, Hoffmann KT, Surov A. Peritumoral Brain Edema in Meningiomas Depends on Aquaporin-4 Expression and Not on Tumor Grade, Tumor Volume, Cell Count, or Ki-67 Labeling Index. Mol Imaging Biol 2016; 19:298-304. [DOI: 10.1007/s11307-016-1000-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Toward understanding the selective anticancer capacity of cold atmospheric plasma--a model based on aquaporins (Review). Biointerphases 2015; 10:040801. [PMID: 26700469 DOI: 10.1116/1.4938020] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selectively treating tumor cells is the ongoing challenge of modern cancer therapy. Recently, cold atmospheric plasma (CAP), a near room-temperature ionized gas, has been demonstrated to exhibit selective anticancer behavior. However, the mechanism governing such selectivity is still largely unknown. In this review, the authors first summarize the progress that has been made applying CAP as a selective tool for cancer treatment. Then, the key role of aquaporins in the H2O2 transmembrane diffusion is discussed. Finally, a novel model, based on the expression of aquaporins, is proposed to explain why cancer cells respond to CAP treatment with a greater rise in reactive oxygen species than homologous normal cells. Cancer cells tend to express more aquaporins on their cytoplasmic membranes, which may cause the H2O2 uptake speed in cancer cells to be faster than in normal cells. As a result, CAP treatment kills cancer cells more easily than normal cells. Our preliminary observations indicated that glioblastoma cells consumed H2O2 much faster than did astrocytes in either the CAP-treated or H2O2-rich media, which supported the selective model based on aquaporins.
Collapse
|
19
|
Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS, McDermott MW. Seizures in supratentorial meningioma: a systematic review and meta-analysis. J Neurosurg 2015; 124:1552-61. [PMID: 26636386 DOI: 10.3171/2015.4.jns142742] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Meningioma is the most common benign intracranial tumor, and patients with supratentorial meningioma frequently suffer from seizures. The rates and predictors of seizures in patients with meningioma have been significantly under-studied, even in comparison with other brain tumor types. Improved strategies for the prediction, treatment, and prevention of seizures in patients with meningioma is an important goal, because tumor-related epilepsy significantly impacts patient quality of life. METHODS The authors performed a systematic review of PubMed for manuscripts published between January 1980 and September 2014, examining rates of pre- and postoperative seizures in supratentorial meningioma, and evaluating potential predictors of seizures with separate meta-analyses. RESULTS The authors identified 39 observational case series for inclusion in the study, but no controlled trials. Preoperative seizures were observed in 29.2% of 4709 patients with supratentorial meningioma, and were significantly predicted by male sex (OR 1.74, 95% CI 1.30-2.34); an absence of headache (OR 1.77, 95% CI 1.04-3.25); peritumoral edema (OR 7.48, 95% CI 6.13-9.47); and non-skull base location (OR 1.77, 95% CI 1.04-3.25). After surgery, seizure freedom was achieved in 69.3% of 703 patients with preoperative epilepsy, and was more than twice as likely in those without peritumoral edema, although an insufficient number of studies were available for formal meta-analysis of this association. Of 1085 individuals without preoperative epilepsy who underwent resection, new postoperative seizures were seen in 12.3% of patients. No difference in the rate of new postoperative seizures was observed with or without perioperative prophylactic anticonvulsants. CONCLUSIONS Seizures are common in supratentorial meningioma, particularly in tumors associated with brain edema, and seizure freedom is a critical treatment goal. Favorable seizure control can be achieved with resection, but evidence does not support routine use of prophylactic anticonvulsants in patients without seizures. Limitations associated with systematic review and meta-analysis should be considered when interpreting these results.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephen T Magill
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Seunggu J Han
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Michael W McDermott
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
20
|
Sugimoto N, Leu H, Inoue N, Shimizu M, Toma T, Kuroda M, Saito T, Wada T, Yachie A. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci 2015; 22:78. [PMID: 26385393 PMCID: PMC4575422 DOI: 10.1186/s12929-015-0184-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, there was an outbreak of Shiga toxin-producing Escherichia coli (STEC) infections in Japan. Approximately 62 % of patients with hemolytic-uremic syndrome also showed symptoms of encephalopathy. To determine the mechanisms of onset for encephalopathy during STEC infections, we conducted an in vitro study with glial cell lines and primary glial cells. Results Shiga toxin 2 (Stx-2) in combination with lipopolysaccharide (LPS), or LPS alone activates nuclear factor-κB (NF-κB) signaling in glial cells. Similarly, Stx-2 in combination with LPS, or LPS alone increases expression levels of aquaporin 4 (AQP4) in glial cells. It is possible that overexpression of AQP4 results in a rapid and increased influx of osmotic water across the plasma membrane into cells, thereby inducing cell swelling and cerebral edema. Conclusions We have showed that a combination of Stx-2 and LPS induced apoptosis of glial cells recently. Glial cells are indispensable for cerebral homeostasis; therefore, their dysfunction and death impairs cerebral homeostasis and results in encephalopathy. We postulate that the onset of encephalopathy in STEC infections occurs when Stx-2 attacks vascular endothelial cells of the blood–brain barrier, inducing their death. Stx-2 and LPS then attack the exposed glial cells that are no longer in contact with the endothelial cells. AQP4 is overexpressed in glial cells, resulting in their swelling and adversely affecting cerebral homeostasis. Once cerebral homeostasis is affected in such a way, encephalopathy is the likely result in STEC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0184-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. .,Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Natsumi Inoue
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Mondo Kuroda
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Takekatsu Saito
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
21
|
Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2576-83. [PMID: 25204262 DOI: 10.1016/j.bbamem.2014.09.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022]
Abstract
Aquaporins are protein channels that facilitate the flow of water across plasma cell membranes in response to osmotic gradients. This review summarizes the evidence that aquaporins play key roles in tumor biology including tumor-associated edema, tumor cell migration, tumor proliferation and tumor angiogenesis. Aquaporin inhibitors may thus be a novel class of anti-tumor agents. However, attempts to produce small molecule aquaporin inhibitors have been largely unsuccessful. Recently, monoclonal human IgG antibodies against extracellular aquaporin-4 domains have become available and could be engineered to kill aquaporin-4 over-expressing cells in the malignant brain tumor glioblastoma. We conclude this review by discussing future directions in aquaporin tumor research. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
| | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
22
|
Ribatti D, Ranieri G, Annese T, Nico B. Aquaporins in cancer. Biochim Biophys Acta Gen Subj 2013; 1840:1550-3. [PMID: 24064112 DOI: 10.1016/j.bbagen.2013.09.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aquaporins (AQPs) are a family of 13 small hydrophobic integral transmembrane water channel proteins involved in transcellular and transepithelial water movement, transport of fluid and cell migration. SCOPE OF THE REVIEW This review article summarizes our knowledge concerning the involvement of AQPs in tumor growth, angiogenesis and metastatic process. MAJOR CONCLUSIONS Tumor cells types express AQPs and a positive correlation exists between histological tumor grade and the AQP expression. Moreover, AQPs are involved also in tumor edema formation and angiogenesis in several solid and hematological tumors. GENERAL SIGNIFICANCE AQPs inhibition in endothelial and tumor cells might limit tumor growth and spread, suggesting a potential therapeutic use in the treatment of tumors. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II," Bari, Italy.
| | | | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
23
|
Lambertz N, Hindy NE, Adler C, Rump K, Adamzik M, Keyvani K, Bankfalvi A, Siffert W, Erol Sandalcioglu I, Bachmann HS. Expression of aquaporin 5 and the AQP5 polymorphism A(-1364)C in association with peritumoral brain edema in meningioma patients. J Neurooncol 2013; 112:297-305. [PMID: 23392848 DOI: 10.1007/s11060-013-1064-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
Abstract
Aquaporins (AQP) are a growing family of water-channel proteins, numbering 13 to date. Recent studies have reported AQP1 and AQP4 to be involved in the development and resorption of brain edemas of different origin. Other AQPs have also been detected in brain tissue, but their impact on brain edema remains to be shown. To evaluate a possible role of AQP5 in brain edema, we investigated the association of AQP5 expression and the functional AQP5 promoter polymorphism A(-1364)C with occurrence and intensity of peritumoral edema in meningioma patients. Peritumoral edema was classified in three degrees based on preoperative imaging in 89 meningioma patients treated at the University Hospital Essen between 2003 and 2006. AQP5 expression was assessed immunohistochemically in tumor tissue obtained during neurosurgical tumor resection. Genotypes of the A(-1364)C polymorphism were determined using the "slowdown" polymerase chain reaction. Higher levels of AQP5 expression were significantly correlated with the AQP5-1364 AA genotype (P = 0.02). AQP5 expression was positively correlated with edema (P = 0.04). AQP5 genotypes were not significantly associated with the occurrence, but with the intensity of peritumoral brain edema (P = 0.04). In our cohort, 40 % of patients with grade I, 66.7 % with grade II, and 76.5 % with grade III edema possessed at least one A allele. Development and intensity of peritumoral edema in meningiomas are associated with AQP5 expression. The intensity of edema correlates with the AQP5 A(-1364)C genotype. This suggests AQP5 as an interesting new candidate involved in peritumoral brain edema in meningioma patients.
Collapse
Affiliation(s)
- Nicole Lambertz
- Department of Neurosurgery, Westdeutsches Tumorzentrum WTZ, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
González C, González-Buitrago JM, Izquierdo G. Aquaporins, anti-aquaporin-4 autoantibodies and neuromyelitis optica. Clin Chim Acta 2013; 415:350-60. [DOI: 10.1016/j.cca.2012.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/24/2022]
|
25
|
Aquaporins in drug discovery and pharmacotherapy. Mol Aspects Med 2012; 33:691-703. [DOI: 10.1016/j.mam.2012.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 11/18/2022]
|
26
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|
27
|
Niu D, Kondo T, Nakazawa T, Kawasaki T, Yamane T, Mochizuki K, Kato Y, Matsuzaki T, Takata K, Katoh R. Differential expression of aquaporins and its diagnostic utility in thyroid cancer. PLoS One 2012; 7:e40770. [PMID: 22808259 PMCID: PMC3393684 DOI: 10.1371/journal.pone.0040770] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aquaporin3 (AQP3) and Aquaporin4 (AQP4) play a major role in transcellular and transepithelial water movement as water channel membrane proteins. Little is known of their expression and significance in human thyroid tissues. Thus, we examined the expression of AQP3 and AQP4 in normal, hyperplastic and neoplastic thyroid tissues in conjunction with human thyroid cancer cell lines. METHODS AND RESULTS Immunohistochemical analyses demonstrated AQP3 in the cytoplasmic membrane of normal C cells, but not in follicular cells. In contrast, AQP4 was not found in C cells but was identified in normal follicular cells. AQP4 was positive in 92% of Graves' disease thyroids and 97% of multinodular goiters, and we failed to demonstrate AQP3 in these hyperplastic tissues. In neoplastic thyroid lesions, we observed AQP3 in 91% of medullary thyroid carcinomas but in no other follicular cell tumors. AQP4 was demonstrated in 100% of follicular adenomas, 90% of follicular carcinomas, and 85% of papillary carcinomas, while it was negative in all medullary carcinomas and undifferentiated carcinomas. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed AQP3 mRNA expression only in medullary carcinomas and AQP4 mRNA expression in follicular cell-derived tumors except for undifferentiated carcinomas. In thyroid cancer cell lines, using RT-PCR and western blotting, AQP3 mRNA and protein were only identified in the TT cell line (human medullary carcinoma cell line) and AQP4 in the other cell lines. In addition, AQP3 mRNA expression was up-regulated by FBS and calcium administration in both a dose and time dependent manner in TT cells. CONCLUSION The differential expressions of AQP3 and AQP4 may reflect the biological nature and/or function of normal, hyperplastic, and neoplastic thyroid cells and additionally may have value in determining differential diagnoses of thyroid tumors.
Collapse
Affiliation(s)
- Dongfeng Niu
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Tadao Nakazawa
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Tomonori Kawasaki
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Tetsu Yamane
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Kunio Mochizuki
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| | - Yohichiro Kato
- Department of Pathology, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kuniaki Takata
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryohei Katoh
- Department of Human Pathology, University of Yamanashi Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi, Japan
| |
Collapse
|
28
|
Nico B, Ribatti D. Role of aquaporins in cell migration and edema formation in human brain tumors. Exp Cell Res 2011; 317:2391-6. [PMID: 21784068 DOI: 10.1016/j.yexcr.2011.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/04/2011] [Accepted: 07/09/2011] [Indexed: 01/08/2023]
Abstract
The aquaporins (AQPs) are a family of transmembrane water channel proteins widely distributed and play a major role in transcellular and transepithelial water movement. Moreover, recent evidence indicates that AQPs may be involved in cell migration, angiogenesis, and tumor growth. This review article summarizes literature data concerning the involvement of AQP-1 and -4 in human brain tumor growth and edema formation and suggests a potential therapeutic approach by antagonizing their biological activity.
Collapse
Affiliation(s)
- Beatrice Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
29
|
Wang P, Ni R, Chen M, Mou K, Mao Q, Liu Y. Expression of aquaporin-4 in human supratentorial meningiomas with peritumoral brain edema and correlation of VEGF with edema formation. GENETICS AND MOLECULAR RESEARCH 2011; 10:2165-71. [DOI: 10.4238/vol10-3gmr1212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Zelenina M. Regulation of brain aquaporins. Neurochem Int 2010; 57:468-88. [DOI: 10.1016/j.neuint.2010.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 01/27/2023]
|
31
|
Ding T, Gu F, Fu L, Ma YJ. Aquaporin-4 in glioma invasion and an analysis of molecular mechanisms. J Clin Neurosci 2010; 17:1359-61. [DOI: 10.1016/j.jocn.2010.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 12/23/2022]
|
32
|
Chan KH, Kwan JSC, Ho PWL, Ho SL, Chui WH, Chu ACY, Ho JWM, Zhang WY, Kung MHW. Aquaporin-4 water channel expression by thymoma of patients with and without myasthenia gravis. J Neuroimmunol 2010; 227:178-84. [PMID: 20728226 DOI: 10.1016/j.jneuroim.2010.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuromyelitis optica (NMO) is a serious idiopathic inflammatory demyelinating disorder characterized by acute transverse myelitis and optic neuritis. A significant proportion of NMO patients are seropositive for NMO-IgG, an autoantibody targeting aquaporin-4 (AQP4) water channel. Paraneoplastic NMO associated various tumors were recently reported. AIM We studied the expression of AQP4 by thymoma from patients with and without myasthenia gravis (MG). METHODS Thymoma obtained from thymomectomy in patients with and without MG were studied by immunohistochemistry and western blot. RESULTS Ten thymoma patients (9 with MG) and two control patients without thymoma or MG were studied. Immunohistochemistry revealed AQP4 immunoreactivity in cell membrane of thymoma cells from all ten thymoma specimens whereas thymic tissues from patients without thymoma or MG were negative for AQP4 immunoreactivity. Western blot revealed that lysates of nine of the ten thymoma specimens reacted with anti-human AQP4 antibody with a band of ~30 kDa compatible with the molecular weight of AQP4. Interestingly, immunofluorescence revealed that IgG isolated from 2 NMO patients seropositive for NMO-IgG bound to cell membrane of thymoma cells from all ten thymoma specimens while IgG from healthy control subject did not. CONCLUSION Thymoma cells of patients with and without MG express AQP4. AQP4 autoantibodies from serum of NMO patients bound to AQP4 expressed on thymoma cell membrane.
Collapse
Affiliation(s)
- K H Chan
- University Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aquaporins in tumor growth and angiogenesis. Cancer Lett 2010; 294:135-8. [DOI: 10.1016/j.canlet.2010.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/22/2022]
|
34
|
Tena-Suck ML, Collado-Ortìz MA, Salinas-Lara C, García-López R, Gelista N, Rembao-Bojorquez D. Chordoid meningioma: a report of ten cases. J Neurooncol 2010; 99:41-8. [PMID: 20094774 DOI: 10.1007/s11060-009-0097-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/07/2009] [Indexed: 11/30/2022]
Abstract
Chordoid meningioma is a rare variant of meningioma with histological features resembling those of chordoma. This tumor has a great risk of recurrence and aggressive growth (WHO grade II). This study was done to document the clinical and pathological features of ten patients with chordoid meningioma who submitted to surgery at the National Institute of Neurology and Neurosurgery in Mexico City. Clinical, histological and immunohistochemical features were examined. The age range was from 30 to 67 years old (mean, 34.2 years). Seven patients were female and three male. The duration of symptoms varied from 3.5 months to 5 years (mean, 14.1 months). No systemic symptoms were noted. The tumor was localized in eight cases in the supratentorial compartments. Histologically, the tumors were characterized by strands and cords of meningothelial cells arranged in a mucinous stroma. Two of the ten tumors showed metaplasic changes, and seven showed brain invasion. Tumor cells demonstrated CK7, EMA and focal S-100 protein and Ep-CAM. Cytokeratin AE1/AE3, GFAP and synaptophysin were negative. The MIB-1 proliferative index was from 6 to 9% (mean 7.8). PCNA Li was 6 to 20% (mean, 14), and microvascular density was 6-16 (mean, 14.5). The mean rate of the MIB-1 labeling index in recurrences was 7.1% versus 6.33% for no tumor recurrence. Chordoid meningioma, World Health Organization grade II, is an uncommon variant of meningioma with a propensity for aggressive behavior and increased likelihood of recurrence. Chordoid meningiomas are predominantly tumors of young adults with a predilection for the supratentorial location. Intraventricular location and absence of systemic manifestations, despite the presence of abundant B-lymphocytes, mast cells and low MIB-1 LI, are some of the interesting findings in the present series that need further study. Hence, a larger number of cases with adequate follow-up data need to be studied further to establish the clinical relevance of this variant.
Collapse
Affiliation(s)
- Martha Lilia Tena-Suck
- Department of Neuropathology, National Institute of Neurology and Neurosurgery, Mexico City, DF, Mexico.
| | | | | | | | | | | |
Collapse
|