1
|
Mowforth OD, Brannigan J, El Khoury M, Sarathi CIP, Bestwick H, Bhatti F, Mair R. Personalised therapeutic approaches to glioblastoma: A systematic review. Front Med (Lausanne) 2023; 10:1166104. [PMID: 37122327 PMCID: PMC10140534 DOI: 10.3389/fmed.2023.1166104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is the most common and malignant primary brain tumour with median survival of 14.6 months. Personalised medicine aims to improve survival by targeting individualised patient characteristics. However, a major limitation has been application of targeted therapies in a non-personalised manner without biomarker enrichment. This has risked therapies being discounted without fair and rigorous evaluation. The objective was therefore to synthesise the current evidence on survival efficacy of personalised therapies in glioblastoma. Methods Studies reporting a survival outcome in human adults with supratentorial glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, Scopus, Web of Science and the Cochrane Library were searched to 5th May 2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were hand-searched. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A quantitative synthesis is presented. Results A total of 102 trials were included: 16 were randomised and 41 studied newly diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age was 53.7 years. More than 20 types of personalised therapy were included: targeted molecular therapies were the most studied (33.3%, 34/102), followed by autologous dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). There was no consistent evidence for survival efficacy of any personalised therapy. Conclusion Personalised glioblastoma therapies remain of unproven survival benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging results in some trials provide reason for optimism. Future focus should address target-enriched trials, combination therapies, longitudinal biomarker monitoring and standardised reporting.
Collapse
Affiliation(s)
- Oliver D. Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Jamie Brannigan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Marc El Khoury
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | | | - Harry Bestwick
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Faheem Bhatti
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- *Correspondence: Richard Mair,
| |
Collapse
|
2
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Nikova AS, Sioutas G, Karanikas M, Birbilis T. “Security Dilemma”: Active Immunotherapy before Versus after Radiation Therapy Alone or Chemo-Radiotherapy for Newly Diagnosed Glioblastoma. Folia Med (Plovdiv) 2022; 64:195-201. [DOI: 10.3897/folmed.64.e62981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Management of glioblastoma should be aggressive and personalised to increase the quality of life. Many new therapies, such as active immunotherapy, increase the overall survival, yet they result in complications which render the search for the optimal treatment stra-tegy challenging.
In order to answer whether the available treatment options should be administered in a specific row, we performed a literature search and meta-analysis. The results show that overall survival among the different treatment groups was equal, while the rates of complications were unequal. After surgery, when active immunotherapy was administered before radiation, radiation and chemotherapy, complication rates were lower.
For newly diagnosed glioblastoma in adults, applying active immunotherapy after total resection but before the other complementary treatment options is associated with lower complication rates.
Collapse
|
4
|
Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG, Jiang X, Pillarisetty VG, Pillai SPS, Wittrup KD, Stephan MT. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest 2017; 127:2176-2191. [PMID: 28436934 DOI: 10.1172/jci87624] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.
Collapse
Affiliation(s)
- Tyrel T Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Howell F Moffett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sirkka B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cary F Opel
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Amy G Dumigan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Smitha P S Pillai
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA.,Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Yu TW, Chueh HY, Tsai CC, Lin CT, Qiu JT. Novel GM-CSF-based vaccines: One small step in GM-CSF gene optimization, one giant leap for human vaccines. Hum Vaccin Immunother 2016; 12:3020-3028. [PMID: 27560197 DOI: 10.1080/21645515.2016.1221551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that is known to facilitate vaccine efficacy by promoting the development and prolongation of both humoral and cellular immunity. In the past years we have generated a novel codon-optimized GM-CSF gene as an adjuvant. The codon-optimized GM-CSF gene significantly increased protein expression levels in all cells tested and helped in generating a strong immune responses against HIV-1 Gag and HPV-associated cancer. Here, we review the literature dealing with the adjuvant activity of GM-CSF both in animal models and clinical trials. We anticipate that the codon-optimized GM-CSF gene offers a practical molecular strategy for potentiating immune responses to tumor cell-based vaccinations as well as other immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ting-Wei Yu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ho-Yen Chueh
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ching-Chou Tsai
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,c Department of Obstetrics and Gynecology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan , ROC
| | - Cheng-Tao Lin
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Jiantai Timothy Qiu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC.,d Department of Biomedical Sciences , School of Medicine, Chang Gung University , Taoyuan , Taiwan , ROC
| |
Collapse
|
6
|
Abstract
Vaccination against cancer-associated antigens has long held the promise of inducting potent antitumor immunity, targeted cytotoxicity while sparing normal tissues, and long-lasting immunologic memory that can provide surveillance against tumor recurrence. Evaluation of vaccination strategies in preclinical brain tumor models has borne out the capacity for the immune system to effectively and safely eradicate established tumors within the central nervous system. Early phase clinical trials have established the feasibility, safety, and immunogenicity of several vaccine platforms, predominantly in patients with glioblastoma. Definitive demonstration of clinical benefit awaits further study, but initial results have been encouraging. With increased understanding of the stimulatory and regulatory pathways that govern immunologic responses and the enhanced capacity to identify novel antigenic targets using genomic interrogation of tumor cells, vaccination platforms for patients with malignant brain tumors are advancing with increasing personalized complexity and integration into combinatorial treatment paradigms.
Collapse
Affiliation(s)
- John H Sampson
- Preston Robert Tisch Brain Tumor Center at Duke, Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida (D.A.M.)
| | - Duane A Mitchell
- Preston Robert Tisch Brain Tumor Center at Duke, Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida (D.A.M.)
| |
Collapse
|
7
|
Field CS, Hermans IF, Hunn MK. Whole tumor cell vaccines for glioma immunotherapy. Immunotherapy 2016; 8:387-9. [PMID: 26973119 DOI: 10.2217/imt-2015-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Cameron S Field
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand.,School of Biological Sciences, Victoria University of Wellington 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand.,School of Biological Sciences, Victoria University of Wellington 6242, New Zealand.,Maurice Wilkins Centre, Wellington, New Zealand
| | - Martin K Hunn
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand.,Capital & Coast District Health Board, Wellington 6021, New Zealand
| |
Collapse
|
8
|
The efficacy of a novel vaccine approach using tumor cells that ectopically express a codon-optimized murine GM-CSF in a murine tumor model. Vaccine 2016; 34:134-41. [DOI: 10.1016/j.vaccine.2015.10.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
|
9
|
Immunomonitoring in glioma immunotherapy: current status and future perspectives. J Neurooncol 2015; 127:1-13. [PMID: 26638171 DOI: 10.1007/s11060-015-2018-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Given the continued poor clinical outcomes and refractory nature of glioblastoma multiforme to traditional interventions, immunotherapy is gaining traction due to its potential for specific tumor-targeting and long-term antitumor protective surveillance. Currently, development of glioma immunotherapy relies on overall survival as an endpoint in clinical trials. However, the identification of surrogate immunologic biomarkers can accelerate the development of successful immunotherapeutic strategies. Immunomonitoring techniques possess the potential to elucidate immunological mechanisms of antitumor responses, monitor disease progression, evaluate therapeutic effect, identify candidates for immunotherapy, and serve as prognostic markers of clinical outcome. Current immunomonitoring assays assess delayed-type hypersensitivity, T cell proliferation, cytotoxic T-lymphocyte function, cytokine secretion profiles, antibody titers, and lymphocyte phenotypes. Yet, no single immunomonitoring technique can reliably predict outcomes, relegating immunological markers to exploratory endpoints. In response, the most recent immunomonitoring assays are incorporating emerging technologies and novel analysis techniques to approach the goal of identifying a competent immunological biomarker which predicts therapy responsiveness and clinical outcome. This review addresses the current status of immunomonitoring in glioma vaccine clinical trials with emphasis on correlations with clinical response.
Collapse
|
10
|
Fecci PE, Heimberger AB, Sampson JH. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 2015; 20:5620-9. [PMID: 25398845 DOI: 10.1158/1078-0432.ccr-14-0832] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunotherapy for cancer continues to gain both momentum and legitimacy as a rational mode of therapy and a vital treatment component in the emerging era of personalized medicine. Gliomas, and their most malignant form, glioblastoma, remain as a particularly devastating solid tumor for which standard treatment options proffer only modest efficacy and target specificity. Immunotherapy would seem a well-suited choice to address such deficiencies given both the modest inherent immunogenicity of gliomas and the strong desire for treatment specificity within the confines of the toxicity-averse normal brain. This review highlights the caveats and challenges to immunotherapy for primary brain tumors, as well as reviewing modalities that are currently used or are undergoing active investigation. Tumor immunosuppressive countermeasures, peculiarities of central nervous system immune access, and opportunities for rational treatment design are discussed.
Collapse
Affiliation(s)
- Peter E Fecci
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
11
|
Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cancer Res Clin Oncol 2014; 141:575-89. [PMID: 25005789 DOI: 10.1007/s00432-014-1772-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas invariably recur after irradiation, showing radioresistance. Meanwhile, cranial irradiation can bring some risk for developing cognitive dysfunction. There is increasing evidence that cytokines play their peculiar roles in these processes. On the one hand, cytokines directly influence the progression of malignant glioma, promoting or suppressing tumor progression. On the other hand, cytokines indirectly contribute to the immunologic response against gliomas, exhibiting pro-inflammatory or immunosuppressive activities. We propose that cytokines are not simply unregulated products from tumor cells or immune cells, but mediators finely adjust the balance between glioma cells and tumor microenvironment after irradiation. The paper, therefore, focuses on the changes of cytokines after irradiation, analyzing how these mediate the response of tumor cells and normal cells to irradiation. In addition, cytokine-based immunotherapeutic strategies, accompanied with irradiation, for the treatment of gliomas are also discussed.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cancer Centre, Qilu Hospital, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | | | | | | | | |
Collapse
|
12
|
Eberstål S, Sandén E, Fritzell S, Darabi A, Visse E, Siesjö P. Intratumoral COX-2 inhibition enhances GM-CSF immunotherapy against established mouse GL261 brain tumors. Int J Cancer 2013; 134:2748-53. [DOI: 10.1002/ijc.28607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Sofia Eberstål
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Emma Sandén
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Sara Fritzell
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Edward Visse
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group; Division of Neurosurgery, Department of Clinical Sciences, Lund University; Lund Sweden
| |
Collapse
|
13
|
Badhiwala J, Decker WK, Berens ME, Bhardwaj RD. Clinical trials in cellular immunotherapy for brain/CNS tumors. Expert Rev Neurother 2013; 13:405-24. [PMID: 23545055 DOI: 10.1586/ern.13.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade gliomas are the most common type of primary malignant brain/CNS tumor. There have been only modest advances in surgical techniques, radiotherapy and chemotherapy for high-grade gliomas over the past several decades. None of these have provided a major improvement in survival for patients. Recently, immunotherapy has been explored for the treatment of high-grade gliomas. Immunotherapy capitalizes on the specificity of the host immune system to selectively target tumor cells for destruction, while sparing normal brain parenchyma, thus making it a particularly attractive option. This article provides a comprehensive review of published clinical trials evaluating cellular immunotherapy in primary brain/CNS tumors.
Collapse
Affiliation(s)
- Jetan Badhiwala
- Michael G DeGroote School of Medicine, McMaster University, 1280 Main Street W, Hamilton, ON, L8S 4K1, Canada
| | | | | | | |
Collapse
|
14
|
Ardon H, Van Gool SW, Verschuere T, Maes W, Fieuws S, Sciot R, Wilms G, Demaerel P, Goffin J, Van Calenbergh F, Menten J, Clement P, Debiec-Rychter M, De Vleeschouwer S. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 2012; 61:2033-44. [PMID: 22527250 PMCID: PMC11028710 DOI: 10.1007/s00262-012-1261-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/02/2012] [Indexed: 01/04/2023]
Abstract
PURPOSE Dendritic cell (DC)-based tumor vaccination has rendered promising results in relapsed high-grade glioma patients. In the HGG-2006 trial (EudraCT 2006-002881-20), feasibility, toxicity, and clinical efficacy of the full integration of DC-based tumor vaccination into standard postoperative radiochemotherapy are studied in 77 patients with newly diagnosed glioblastoma. PATIENTS AND METHODS Autologous DC are generated after leukapheresis, which is performed before the start of radiochemotherapy. Four weekly induction vaccines are administered after the 6-week course of concomitant radiochemotherapy. During maintenance chemotherapy, 4 boost vaccines are given. Feasibility and progression-free survival (PFS) at 6 months (6mo-PFS) are the primary end points. Overall survival (OS) and immune profiling, rather than monitoring, as assessed in patients' blood samples, are the secondary end points. Analysis has been done on intent-to-treat basis. RESULTS The treatment was feasible without major toxicity. The 6mo-PFS was 70.1 % from inclusion. Median OS was 18.3 months. Outcome improved significantly with lower EORTC RPA classification. Median OS was 39.7, 18.3, and 10.7 months for RPA classes III, IV, and V, respectively. Patients with a methylated MGMT promoter had significantly better PFS (p = 0.0027) and OS (p = 0.0082) as compared to patients with an unmethylated status. Exploratory "immunological profiles" were built to compare to clinical outcome, but no statistical significant evidence was found for these profiles to predict clinical outcome. CONCLUSION Full integration of autologous DC-based tumor vaccination into standard postoperative radiochemotherapy for newly diagnosed glioblastoma seems safe and possibly beneficial. These results were used to power the currently running phase IIb randomized clinical trial.
Collapse
Affiliation(s)
- Hilko Ardon
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
| | - Stefaan W. Van Gool
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Women, Catholic University of Leuven, Leuven, Belgium
| | - Tina Verschuere
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Wim Maes
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Biostatistics and Statistical Bioinformatics, Catholic University of Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, Catholic University of Leuven, Leuven, Belgium
| | - Guido Wilms
- Department of Imaging, Catholic University of Leuven, Leuven, Belgium
| | - Philippe Demaerel
- Department of Imaging, Catholic University of Leuven, Leuven, Belgium
| | - Jan Goffin
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
| | | | - Johan Menten
- Department of Radiotherapy, Catholic University of Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | | | - Steven De Vleeschouwer
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
15
|
|
16
|
Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol 2012; 2012:764213. [PMID: 22474481 PMCID: PMC3299309 DOI: 10.1155/2012/764213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Treatment of patients with glioblastoma multiforme (GBM) remains to be a challenge with a median survival of 14.6 months following diagnosis. Standard treatment options include surgery, radiation therapy, and systemic chemotherapy with temozolomide. Despite the fact that the brain constitutes an immunoprivileged site, recent observations after immunotherapies with lysate from autologous tumor cells pulsed on dendritic cells (DCs), peptides, protein, messenger RNA, and cytokines suggest an immunological and even clinical response from immunotherapies. Given this plethora of immunomodulatory therapies, this paper gives a structure overview of the state-of-the art in the field. Particular emphasis was also put on immunogenic antigens as potential targets for a more specific stimulation of the immune system against GBM.
Collapse
|
17
|
Abstract
Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma.
Collapse
Affiliation(s)
- Alissa A. Thomas
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Marc S. Ernstoff
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Camilo E. Fadul
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Neuro-oncology Program, Norris Cotton Cancer Center, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| |
Collapse
|
18
|
Revoltella RP, Menicagli M, Campani D. Granulocyte-macrophage colony-stimulating factor as an autocrine survival-growth factor in human gliomas. Cytokine 2011; 57:347-59. [PMID: 22200506 DOI: 10.1016/j.cyto.2011.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 10/12/2011] [Accepted: 11/20/2011] [Indexed: 11/28/2022]
Abstract
We studied the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptors (GM-CSF.R) in 20 human brain gliomas with different tumor gradings and demonstrated constitutive high levels of both mRNA gene expression and protein production exclusively in the highest-grade tumors (WHO, III-IV grade). Five astrocytic cell lines were isolated in vitro from glioma cells, which had selectively adhered to plates pre-coated with rhGM-CSF. These cells were tumorigenic when xenografted to athymic mice, and produced GM-CSF constitutively in culture. Two lines, particularly lines AS1 and PG1, each from a patient with glioblastoma multiforme, constitutively over-expressed both GM-CSF and GM-CSF.R genes and secreted into their culture media biologically active GM-CSF. Different clones of the AS1 line, isolated after subsequent passages in vitro and then transplanted to athymic mice, demonstrated higher tumorigenic capacity with increasing passages in vivo. Cell proliferation was stimulated by rhGM-CSF in late-stage malignant clones, whereas apoptosis occurred at high frequency in the presence of blocking anti-GM-CSF antibodies. In contrast, rhGM-CSF did not induce any apparent effect in early-stage clones expressing neither GM-CSF nor GM-CSF.R. The addition of rhGM-CSF or rhIL-1β, to cultures induced the overproduction of both GM-CSF and its receptors and increased gene activation for several functional proteins (e.g. NGF, VEGF, VEGF.R1, G-CSF, MHC-II), indicating that these cells may undergo dynamic changes in response to environmental stimuli. These findings thus revealed: (1) that the co-expression of both autocrine GM-CSF and GM-CSF.R correlates with the advanced tumor stage; (2) that an important contribution of GM-CSF in malignant glioma cells is the prevention of apoptosis. These results imply that GM-CSF has an effective role in the evolution and pathogenesis of gliomas.
Collapse
Affiliation(s)
- Roberto P Revoltella
- Institute for Chemical-Physical Processes (IPCF), National Research Council of Italy (CNR), Pisa, Italy.
| | | | | |
Collapse
|
19
|
Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010; 2010. [PMID: 20953324 PMCID: PMC2952949 DOI: 10.1155/2010/689171] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.
Collapse
|