1
|
Vucurovic K, Raucher-Chéné D, Obert A, Gobin P, Henry A, Barrière S, Traykova M, Gierski F, Portefaix C, Caillies S, Kaladjian A. Activation of the left medial temporal gyrus and adjacent brain areas during affective theory of mind processing correlates with trait schizotypy in a nonclinical population. Soc Cogn Affect Neurosci 2023; 18:6701589. [PMID: 36107738 PMCID: PMC9949503 DOI: 10.1093/scan/nsac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, a severe psychiatric disorder, is associated with abnormal brain activation during theory of mind (ToM) processing. Researchers recently suggested that there is a continuum running from subclinical schizotypal personality traits to fully expressed schizophrenia symptoms. Nevertheless, it remains unclear whether schizotypal personality traits in a nonclinical population are associated with atypical brain activation during ToM tasks. Our aim was to investigate correlations between fMRI brain activation during affective ToM (ToMA) and cognitive ToM (ToMC) tasks and scores on the Schizotypal Personality Questionnaire (SPQ) and the Basic Empathy Scale in 39 healthy individuals. The total SPQ score positively correlated with brain activation during ToMA processing in clusters extending from the left medial temporal gyrus (MTG), lingual gyrus and fusiform gyrus to the parahippocampal gyrus (Brodmann area: 19). During ToMA processing, the right inferior occipital gyrus, right MTG, precuneus and posterior cingulate cortex negatively correlated with the emotional disconnection subscore and the total score of self-reported empathy. These posterior brain regions are known to be involved in memory and language, as well as in creative reasoning, in nonclinical individuals. Our findings highlight changes in brain processing associated with trait schizotypy in nonclinical individuals during ToMA but not ToMC processing.
Collapse
Affiliation(s)
- Ksenija Vucurovic
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Centre Rémois de Psychothérapie et Neuromodulation, 51100 Reims, France
| | - Delphine Raucher-Chéné
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada
| | - Alexandre Obert
- Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France
| | - Pamela Gobin
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Audrey Henry
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Sarah Barrière
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Martina Traykova
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Fabien Gierski
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Christophe Portefaix
- Radiology Department, Reims University Hospital, 51100 Reims, France.,University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100 Reims, France
| | - Stéphanie Caillies
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France
| | - Arthur Kaladjian
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,University of Reims Champagne-Ardenne Faculty of Medicine, 51100 Reims, France
| |
Collapse
|
2
|
Mason NL, Kuypers KPC, Müller F, Reckweg J, Tse DHY, Toennes SW, Hutten NRPW, Jansen JFA, Stiers P, Feilding A, Ramaekers JG. Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology 2020; 45:2003-2011. [PMID: 32446245 PMCID: PMC7547711 DOI: 10.1038/s41386-020-0718-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
There is growing interest in the therapeutic utility of psychedelic substances, like psilocybin, for disorders characterized by distortions of the self-experience, like depression. Accumulating preclinical evidence emphasizes the role of the glutamate system in the acute action of the drug on brain and behavior; however this has never been tested in humans. Following a double-blind, placebo-controlled, parallel group design, we utilized an ultra-high field multimodal brain imaging approach and demonstrated that psilocybin (0.17 mg/kg) induced region-dependent alterations in glutamate, which predicted distortions in the subjective experience of one's self (ego dissolution). Whereas higher levels of medial prefrontal cortical glutamate were associated with negatively experienced ego dissolution, lower levels in hippocampal glutamate were associated with positively experienced ego dissolution. Such findings provide further insights into the underlying neurobiological mechanisms of the psychedelic, as well as the baseline, state. Importantly, they may also provide a neurochemical basis for therapeutic effects as witnessed in ongoing clinical trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - F Müller
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - J Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - S W Toennes
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt/Main, Germany
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - J F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - P Stiers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, UK
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Chaudhari JP, Kothari KS, Pandya TP, Goel NA. Angiocentric Glioma: Report of a Rare Case Presenting with Psychosis. Asian J Neurosurg 2018; 13:1186-1192. [PMID: 30459891 PMCID: PMC6208224 DOI: 10.4103/ajns.ajns_371_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Angiocentric glioma (AG), first described in 2005, was included as a distinct entity in the 2007 World Health Organization Classification of Tumors of the Central Nervous System. It is a very rare cerebrocortical tumor mainly affecting children and young adults with a history of intractable partial seizures. The histopathological features of this entity are perivascular arrangement of monomorphic, bipolar spindled cells with subpial aggregation of tumor cells and variable neuroparenchymal colonization. Of uncertain histogenesis, this is a stable/slowly growing tumor. Prognosis following total surgical resection is favorable. We describe an AG in a 16-year-old, intellectually disabled, male patient, with psychosis. This is a rare presentation with only one such case in literature. Patient's symptoms ameliorated following surgery.
Collapse
Affiliation(s)
| | - Kanchan Snehal Kothari
- Department of Pathology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Tejal Pratin Pandya
- Department of Pathology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Naina Atul Goel
- Department of Pathology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Wolthusen RPF, Coombs G, Boeke EA, Ehrlich S, DeCross SN, Nasr S, Holt DJ. Correlation Between Levels of Delusional Beliefs and Perfusion of the Hippocampus and an Associated Network in a Non-Help-Seeking Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018. [PMID: 29529413 DOI: 10.1016/j.bpsc.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Delusions are a defining and common symptom of psychotic disorders. Recent evidence suggests that subclinical and clinical delusions may represent distinct stages on a phenomenological and biological continuum. However, few studies have tested whether subclinical psychotic experiences are associated with neural changes that are similar to those observed in clinical psychosis. For example, it is unclear if overactivity of the hippocampus, a replicated finding of neuroimaging studies of schizophrenia, is also present in individuals with subclinical psychotic symptoms. METHODS To investigate this question, structural and pulsed arterial spin labeling scans were collected in 77 adult participants with no psychiatric history. An anatomical region of interest approach was used to extract resting perfusion of the hippocampus, and 15 other regions, from each individual. A self-report measure of delusional ideation was collected on the day of scanning. RESULTS The level of delusional thinking (number of beliefs [r = .27, p = .02]), as well as the associated level of distress (r = .29, p = .02), was significantly correlated with hippocampal perfusion (averaged over right and left hemispheres). The correlations remained significant after controlling for age, hippocampal volume, symptoms of depression and anxiety, and image signal-to-noise ratio, and they were confirmed in a voxelwise regression analysis. The same association was observed in the thalamus and parahippocampal, lateral temporal, and cingulate cortices. CONCLUSIONS Similar to patients with schizophrenia, non-help-seeking individuals show elevated perfusion of a network of limbic regions in association with delusional beliefs.
Collapse
Affiliation(s)
- Rick P F Wolthusen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Garth Coombs
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Emily A Boeke
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, New York University, New York, New York
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Stephanie N DeCross
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Shahin Nasr
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts.
| |
Collapse
|
5
|
Lebedev AV, Lövdén M, Rosenthal G, Feilding A, Nutt DJ, Carhart-Harris RL. Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Hum Brain Mapp 2015; 36:3137-53. [PMID: 26010878 DOI: 10.1002/hbm.22833] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/03/2023] Open
Abstract
Ego-disturbances have been a topic in schizophrenia research since the earliest clinical descriptions of the disorder. Manifesting as a feeling that one's "self," "ego," or "I" is disintegrating or that the border between one's self and the external world is dissolving, "ego-disintegration" or "dissolution" is also an important feature of the psychedelic experience, such as is produced by psilocybin (a compound found in "magic mushrooms"). Fifteen healthy subjects took part in this placebo-controlled study. Twelve-minute functional MRI scans were acquired on two occasions: subjects received an intravenous infusion of saline on one occasion (placebo) and 2 mg psilocybin on the other. Twenty-two visual analogue scale ratings were completed soon after scanning and the first principal component of these, dominated by items referring to "ego-dissolution", was used as a primary measure of interest in subsequent analyses. Employing methods of connectivity analysis and graph theory, an association was found between psilocybin-induced ego-dissolution and decreased functional connectivity between the medial temporal lobe and high-level cortical regions. Ego-dissolution was also associated with a "disintegration" of the salience network and reduced interhemispheric communication. Addressing baseline brain dynamics as a predictor of drug-response, individuals with lower diversity of executive network nodes were more likely to experience ego-dissolution under psilocybin. These results implicate MTL-cortical decoupling, decreased salience network integrity, and reduced inter-hemispheric communication in psilocybin-induced ego disturbance and suggest that the maintenance of "self"or "ego," as a perceptual phenomenon, may rest on the normal functioning of these systems.
Collapse
Affiliation(s)
- Alexander V Lebedev
- Aging Research Center, Karolinska Institutet & Stockholm University, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Norway
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet & Stockholm University, Sweden
| | - Gidon Rosenthal
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Israel
| | | | - David J Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - Robin L Carhart-Harris
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| |
Collapse
|
6
|
Angiocentric glioma manifesting as psychotic symptoms in an adolescent: A case report. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Karnik-Henry MS, Wang L, Barch DM, Harms MP, Campanella C, Csernansky JG. Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings. Schizophr Res 2012; 138:128-35. [PMID: 22542243 PMCID: PMC3372633 DOI: 10.1016/j.schres.2012.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Medial temporal lobe (MTL) structures play a central role in episodic memory. Prior studies suggest that individuals with schizophrenia have deficits in episodic memory as well as structural abnormalities of the medial temporal lobe (MTL). While correlations have been reported between MTL volume loss and episodic memory deficits in such individuals, it is not clear whether such correlations reflect the influence of the disease state or of underlying genetic influences that might contribute to risk. We used high resolution magnetic resonance imaging and probabilistic algorithms for image analysis to determine whether MTL structure, episodic memory performance and the relationship between the two differed among groups of 47 healthy control subjects, 50 control siblings, 39 schizophrenia subjects, and 33 siblings of schizophrenia subjects. High-dimensional large deformation brain mapping was used to obtain volume measures of the hippocampus. Cortical distance mapping was used to obtain volume and thickness measures of the parahippocampal gyrus (PHG) and its substructures: the entorhinal cortex (ERC), the perirhinal cortex (PRC), and the parahippocampal cortex (PHC). Neuropsychological data was used to establish an episodic memory domain score for each subject. Both schizophrenia subjects and their siblings displayed abnormalities in episodic memory performance. Siblings of individuals with schizophrenia, and to a lesser extent, individuals with schizophrenia themselves, displayed abnormalities in measures of MTL structure (volume loss or cortical thinning) as compared to control groups. Further, we observed correlations between structural measures and memory performance in both schizophrenia subjects and their siblings, but not in their respective control groups. These findings suggest that disease-specific genetic factors present in both patients and their relatives may be responsible for correlated abnormalities of MTL structure and memory impairment. The observed attenuated effect of such factors on MTL structure in individuals with schizophrenia may be due to non-genetic influences related to the development and progression of the disease on global brain structure and cognitive processing.
Collapse
Affiliation(s)
- Meghana S. Karnik-Henry
- Department of Psychology, Green Mountain College,Corresponding Author: Meghana S. Karnik-Henry, 1 Brennan Circle, Poultney, VT 05764,
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL
| | - Deanna M. Barch
- Department of Psychology, Washington University, St. Louis, MO,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Choi H, Kubicki M, Whitford TJ, Alvarado JL, Terry DP, Niznikiewicz M, McCarley RW, Kwon JS, Shenton ME. Diffusion tensor imaging of anterior commissural fibers in patients with schizophrenia. Schizophr Res 2011; 130:78-85. [PMID: 21561738 PMCID: PMC3745276 DOI: 10.1016/j.schres.2011.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Alterations in white matter connections in schizophrenia have been investigated using diffusion tensor imaging (DTI). There is also evidence from post-mortem studies as well as from magnetic resonance imaging morphometry studies that the anterior commissure (AC) might be implicated in schizophrenia, but no studies, to date, have investigated the AC using DTI or tractography. METHOD DTI scans were analyzed from 25 patients and 23 controls. Mean fractional anisotropy (FA) and trace were measured from the AC tracts. SANS and SAPS were used to evaluate clinical symptoms, and the Iowa Gambling Task, related to decision making, was also examined. RESULTS Results revealed a significant decrease in mean FA and a significant increase in mean trace of AC tracts in patients compared with controls. In addition, patients, but not controls, showed a negative correlation between age and AC integrity. Statistically significant positive correlations were also found between AC FA and total positive symptom score. Decision making was negatively correlated with FA in patients on the Iowa Gambling Task, but not in controls. CONCLUSION This study provides quantitative evidence for a reduction of interhemispheric connectivity in schizophrenia within the AC. Negative correlation between age and AC FA in the patients is consistent with the idea that schizophrenia may be a disorder of white matter maturation. Positive correlation between FA and positive symptom is discussed in the context of white matter's established role in modulating neural conduction velocity.
Collapse
Affiliation(s)
- Hongyoon Choi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|