1
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
2
|
Petrič B, Redenšek Trampuž S, Dolžan V, Gregorič Kramberger M, Trošt M, Maraković N, Goličnik M, Bavec A. Investigation of Paraoxonase-1 Genotype and Enzyme-Kinetic Parameters in the Context of Cognitive Impairment in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12020399. [PMID: 36829958 PMCID: PMC9952446 DOI: 10.3390/antiox12020399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), which often progresses to PD dementia. PD patients with and without dementia may differ in certain biochemical parameters, which could thus be used as biomarkers for PD dementia. The enzyme paraoxonase 1 (PON1) has previously been investigated as a potential biomarker in the context of other types of dementia. In a cohort of PD patients, we compared a group of 89 patients with cognitive impairment with a group of 118 patients with normal cognition. We determined the kinetic parameters Km and Vmax for PON1 for the reaction with dihydrocoumarin and the genotype of four single nucleotide polymorphisms in PON1. We found that no genotype or kinetic parameter correlated significantly with cognitive impairment in PD patients. However, we observed associations between PON1 rs662 and PON1 Km (p < 10-10), between PON1 rs662 and PON1 Vmax (p = 9.33 × 10-7), and between PON1 rs705379 and PON1 Vmax (p = 2.21 × 10-10). The present study is novel in three main aspects. (1) It is the first study to investigate associations between the PON1 genotype and enzyme kinetics in a large number of subjects. (2) It is the first study to report kinetic parameters of PON1 in a large number of subjects and to use time-concentration progress curves instead of initial velocities to determine Km and Vmax in a clinical context. (3) It is also the first study to calculate enzyme-kinetic parameters in a clinical context with a new algorithm for data point removal from progress curves, dubbed iFIT. Although our results suggest that in the context of PD, there is no clinically useful correlation between cognitive status on the one hand and PON1 genetic and enzyme-kinetic parameters on the other hand, this should not discourage future investigation into PON1's potential associations with other types of dementia.
Collapse
Affiliation(s)
- Boštjan Petrič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Center, 1000 Ljubljana, Slovenia
- Chair of Neurology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, 141 83 Huddinge, Sweden
| | - Maja Trošt
- Department of Neurology, University Medical Center, 1000 Ljubljana, Slovenia
- Chair of Neurology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nikola Maraković
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aljoša Bavec
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
3
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
4
|
Fu X, Wang Y, He X, Li H, Liu H, Zhang X. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson's disease. Lipids Health Dis 2020; 19:97. [PMID: 32430016 PMCID: PMC7236933 DOI: 10.1186/s12944-020-01284-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/12/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Numerous studies have reported that lipid metabolic abnormalities may play an important role in the development of Parkinson’s disease (PD), with mixed results. This meta-analysis aims to systematically assess the relationship between serum cholesterol or triglyceride and the PD risk and to further determine the role of dyslipidemia in potential predictive value. Methods This research systematically consulted and screened observational studies to evaluate the association of serum lipids with the risk of PD as of April 01, 2020 based on the inclusion and exclusion criteria. Two researchers screened and extracted the data independently. Then this article summarized the characteristics of all clinical studies and collected the corresponding data to perform pooled and sensitivity analyses. The meta-analysis was performed by using the RevMan 5.3 software after data extraction, quality assessment and analysis of publication bias. Results Twenty-one related studies (13 case-control and 8 cohort studies) were selected with a total of 980,180 subjects, including 11,188 PD patients. Meta-analysis showed that higher levels of serum triglyceride (S-TG) [standard mean different (SMD) = − 0.26 (95% confidence interval (CI): − 0.39 to − 0.13, p<0.00001), relative risk (RR) = 0.67 (95% CI: 0.60 to 0.75, p<0.00001)] could be considered as protective factors for the pathogenesis of PD. However, there was no significant association between serum high density lipoprotein cholesterol (S-HDL) and the risk of PD. Meanwhile, serum low density lipoprotein cholesterol (S-LDL) [SMD = -0.26 (95% CI: − 0.43 to − 0.07, p = 0.006), RR = 0.76 (95% CI: 0.59 to 0.97, p = 0.03)] and serum total cholesterol (S-TC) levels [SMD = -0.21 (95% CI: − 0.33 to − 0.10, p = 0.0002), RR = 0.86 (95% CI: 0.77 to 0.97, p = 0.01)] were negatively associated with PD risk. Conclusions This systematic review suggests that elevated serum levels of TG, LDL and TC may be protective factors for the pathogenesis of PD. Further longitudinal and well-designed prospective studies with a large sample size are needed to confirm the findings in this meta-analysis.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Yu Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng He
- Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi city, Shanxi, P.R. China
| | - Hongyu Li
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Hong Liu
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi Province, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
Alım Z, Kılıç D, Demir Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Arch Physiol Biochem 2019; 125:387-395. [PMID: 29741961 DOI: 10.1080/13813455.2018.1470646] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Paraoxonase 1 (PON1: EC 3.1.8.1) is a vital antioxidant enzyme against mainly atherosclerosis and many other diseases associated with oxidative stress. Thus, studies related to PON1 have an important place in the pharmacology. In this study, we aimed to evaluate the in vitro inhibition effects of some indazoles on the activity of human PON1. Methods: PON1 was purified from human serum with a specific activity of 5000 U/mg and 13.50% yield by using simple chromatographic methods. Results: The indazoles showed Ki values in a range of 26.0 ± 3.00-111 ± 31.0 μM against hPON1. All these indazoles exhibited competitive inhibition. In addition, molecular docking studies were performed in order to assess the probable binding mechanisms into the active site of hPON1. Molecular modeling studies confirmed our results. Conclusions: Inhibition of PON1 by indazoles supplies a verification to further consideration of limitation dosage of indazole molecule groups as drug.
Collapse
Affiliation(s)
- Zuhal Alım
- Faculty of Science and Arts, Department of Chemistry, Ahi Evran University , Kırşehir , Turkey
| | - Deryanur Kılıç
- Faculty of Science and Arts, Department of Chemistry, Aksaray University , Aksaray , Turkey
| | - Yeliz Demir
- Faculty of Sciences, Department of Chemistry, Biochemistry Division, Ataturk University , Erzurum , Turkey
| |
Collapse
|
6
|
Emir GK, Ünal Y, Yılmaz N, Tosun K, Kutlu G. The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson’s disease. Neurol Sci 2019; 40:2529-2535. [DOI: 10.1007/s10072-019-03975-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
|
7
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
8
|
Pietrucha B, Heropolitanska-Pliszka E, Maciejczyk M, Car H, Sawicka-Powierza J, Motkowski R, Karpinska J, Hryniewicka M, Zalewska A, Pac M, Wolska-Kusnierz B, Bernatowska E, Mikoluc B. Comparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6745840. [PMID: 29456787 PMCID: PMC5804414 DOI: 10.1155/2017/6745840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 11/18/2022]
Abstract
This study compared the antioxidant status and major lipophilic antioxidants in patients with ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS). Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and concentrations of coenzyme Q10 (CoQ10) and vitamins A and E were estimated in the plasma of 22 patients with AT, 12 children with NBS, and the healthy controls. In AT patients, TAS (median 261.7 μmol/L) was statistically lower but TOS (496.8 μmol/L) was significantly elevated in comparison with the healthy group (312.7 μmol/L and 311.2 μmol/L, resp.). Tocopherol (0.8 μg/mL) and CoQ10 (0.1 μg/mL) were reduced in AT patients versus control (1.4 μg/mL and 0.3 μg/mL, resp.). NBS patients also displayed statistically lower TAS levels (290.3 μmol/L), while TOS (404.8 μmol/L) was comparable to the controls. We found that in NBS patients retinol concentration (0.1 μg/mL) was highly elevated and CoQ10 (0.1 μg/mL) was significantly lower in comparison with those in the healthy group. Our study confirms disturbances in redox homeostasis in AT and NBS patients and indicates a need for diagnosing oxidative stress in those cases as a potential disease biomarker. Decreased CoQ10 concentration found in NBS and AT indicates a need for possible supplementation.
Collapse
Affiliation(s)
- Barbara Pietrucha
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Mateusz Maciejczyk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | | | - Radosław Motkowski
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| | - Joanna Karpinska
- Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Pac
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Beata Wolska-Kusnierz
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Ewa Bernatowska
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bozena Mikoluc
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| |
Collapse
|
9
|
Fedorova TN, Logvinenko AA, Poleshchuk VV, Illarioshkin SN. The state of systemic oxidative stress during Parkinson’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
KAUR GURPREET, JAIN AK, SINGH SANDEEP. CYP/PON genetic variations as determinant of organophosphate pesticides toxicity. J Genet 2017; 96:187-201. [DOI: 10.1007/s12041-017-0741-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Vural G, Gumusyayla S, Bektas H, Deniz O, Alisik M, Erel O. Impairment of dynamic thiol–disulphide homeostasis in patients with idiopathic Parkinson’s disease and its relationship with clinical stage of disease. Clin Neurol Neurosurg 2017; 153:50-55. [DOI: 10.1016/j.clineuro.2016.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
12
|
Ellwanger JH, Franke SIR, Bordin DL, Prá D, Henriques JAP. Biological functions of selenium and its potential influence on Parkinson's disease. AN ACAD BRAS CIENC 2016; 88:1655-1674. [PMID: 27556332 DOI: 10.1590/0001-3765201620150595] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 03/01/2023] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - Diana L Bordin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Bloco 12, sala 1206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - João A P Henriques
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil.,Instituto de Biotecnologia, Universidade de Caxias do Sul/UCS, Rua Francisco Getúlio Vargas, 1130, 95070-560 Caxias do Sul, RS, Brasil
| |
Collapse
|
13
|
Alim Z, Beydemir Ş. Some Anticancer Agents Act on Human Serum Paraoxonase-1 to Reduce Its Activity. Chem Biol Drug Des 2016; 88:188-96. [DOI: 10.1111/cbdd.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Zuhal Alim
- Biochemistry Division; Department of Chemistry; Faculty of Science and Arts; Ahi Evran University; Kırşehir 40000 Turkey
| | - Şükrü Beydemir
- Biochemistry Division; Department of Chemistry; Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
- Department of Food Sciences; Faculty of Engineering; Iğdır University; Iğdır Turkey
| |
Collapse
|
14
|
Dursun F, Vural Ozec A, Aydin H, Topalkara A, Dursun A, Toker MI, Erdogan H, Arici MK. Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Int J Ophthalmol 2015; 8:985-90. [PMID: 26558214 DOI: 10.3980/j.issn.2222-3959.2015.05.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/25/2014] [Indexed: 01/31/2023] Open
Abstract
AIM To investigate the oxidative stress status of the aqueous humor and serum of patients with pseudoexfoliation (PEX) syndrome and pseudoexfoliative glaucoma (PEG) and to measure paraoxonase (PON) and arylesterase (ARE) levels. METHODS A total of 78 patients were enrolled in the study, with 26 patients in each separate group. The patients were divided into three groups: the first group entailed PEX syndrome patients, while the second group consisted of patients with PEG and the third group involved patients with no additional systemic diseases, other than the diagnosis of cataract as control. Total oxidative stress (TOS), total antioxidant capacity (TAC), PON, and ARE levels in aqueous humor and serum were measured. RESULTS TAC, PON and arylesterase levels in aqueous humor and serum of the PEX syndrome and PEG patients were significantly decreased compared with control group (P<0.05). TOS values were higher in patients with PEX syndrome and PEG than controls (P<0.05). TAC, PON and ARE levels of aqueous humor did not differ significantly between the PEX syndrome and PEG groups. CONCLUSION These findings are potentially of significance and add to the growing body of evidence for oxidative stress in PEX syndrome and PEG. Decreased antioxidant defense and increased oxidative stress system may play an important role in the pathogenesis of PEX syndrome and PEG.
Collapse
Affiliation(s)
- Feyza Dursun
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Ayse Vural Ozec
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Huseyin Aydin
- Department of Biochemistry, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Aysen Topalkara
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Ayhan Dursun
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Mustafa Ilker Toker
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Haydar Erdogan
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Mustafa Kemal Arici
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| |
Collapse
|
15
|
Plasma Prolidase Activity and Oxidative Stress in Patients with Parkinson's Disease. PARKINSONS DISEASE 2015; 2015:598028. [PMID: 26347150 PMCID: PMC4546767 DOI: 10.1155/2015/598028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/18/2022]
Abstract
Prolidase deficiency has been related to mental retardation and oxidative stress. The study aimed to observe plasma prolidase activity (PPA), total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) in patients with Parkinson's disease (PD). 240 subjects with PD and 150 healthy volunteers were considered as cases and controls, respectively. PPA, TOS, TAS, and OSI were measured spectrophotometrically. PPA and TAS in cases were more significantly decreased than controls (P < 0.01), while TOS and OSI were significantly increased (P < 0.001). In cases, nonsignificant, positive correlation was observed between PPA and TOS and OSI while significant, negative correlation was observed between PPA and TAS (P = 0.047). PPA in cases was nonsignificantly decreased with increased duration of PD (P = 0.747) while TAS was significantly decreased (P < 0.001) and TOS and OSI were significantly increased (P < 0.001). It was observed that higher age groups had decreased PPA, and TAS and increased TOS and OSI compared to lower age groups in cases. In summary, patients with PD have decreased PPA and increased oxidative stress compared to healthy volunteers. PPA was associated with oxidative stress markers in patients with PD. Decreased PPA and TAS and increased TOS and OSI were associated with progression of disease and higher age.
Collapse
|