1
|
Beheshti M, Rabiei N, Taghizadieh M, Eskandari P, Mollazadeh S, Dadgostar E, Hamblin MR, Salmaninejad A, Emadi R, Mohammadi AH, Mirazei H. Correlations between single nucleotide polymorphisms in obsessive-compulsive disorder with the clinical features or response to therapy. J Psychiatr Res 2023; 157:223-238. [PMID: 36508934 DOI: 10.1016/j.jpsychires.2022.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.
Collapse
Affiliation(s)
- Masoumeh Beheshti
- Pathophysiology Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pariya Eskandari
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Raziye Emadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirazei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Hao LS, Du Y, Chen L, Jiao YG, Cheng Y. Brain-derived neurotrophic factor as a biomarker for obsessive-compulsive disorder: A meta-analysis. J Psychiatr Res 2022; 151:676-682. [PMID: 35667336 DOI: 10.1016/j.jpsychires.2022.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a growth factor that plays many critical functions in the central nervous system (CNS) and may be involved in the development of a range of psychopathologies, including depression, dementia, and neurodegenerative disorders. METHODS In the present study, we performed the first systematic review with a meta-analysis to quantitatively compare the peripheral blood BDNF levels between patients with obsessive-compulsive disorder (OCD) and healthy controls (HCs). A systematic search was conducted using PubMed and Web of Science databases to identify the relevant articles. RESULTS Nine studies encompassing 474 adults with OCD and 436 HCs were included in this meta-analysis. A random-effects meta-analysis showed that patients with OCD had significantly decreased peripheral blood levels of Brain-derived neurotrophic factor (BDNF) when compared with the HCs (Hedges' g = -0.722, 95% confidence interval [CI] = -1.152 to -0.292, P = 0.001). Subgroup analyses revealed decreased BDNF levels in plasma of patients (Hedges' g = -1.137, 95% CI = -1.463 to -0.810, P = 0.000) and drug-free patients (Hedges' g = -1.269, 95% CI = -1.974 to -0.564, P = 0.000) as compared to patients on active drug therapy and HCs. Meta-regression analyses showed that age, sex, sample size, Y-BOS total score, and publication year had no moderating effects on the outcome. CONCLUSION Although the relationship between our findings and the pathophysiology of OCD and the role BDNF plays in the development of the disease remains to be determined, the outcomes suggest that BDNF may serve as a potential biomarker of OCD.
Collapse
Affiliation(s)
- Lin-Shuai Hao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Guo Jiao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China.
| |
Collapse
|
3
|
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell'Osso B, D'Addario C. Genetic and epigenetic architecture of Obsessive-Compulsive Disorder: In search of possible diagnostic and prognostic biomarkers. J Psychiatr Res 2021; 137:554-571. [PMID: 33213890 DOI: 10.1016/j.jpsychires.2020.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a prevalent and severe clinical condition whose hallmarks are excessive, unwanted thoughts (obsessions) and repetitive behaviors (compulsions). The onset of symptoms generally occurs during pre-adult life and typically affects subjects in different aspects of their life's, compromising social and professional relationships. Although robust evidence suggests a genetic component in the etiopathogenesis of OCD, the causes of the disorder are still not completely understood. It is thus of relevance to take into account how genes interact with environmental risk factors, thought to be mediated by epigenetic mechanisms. We here provide an overview of genetic and epigenetic mechanisms of OCD, focusing on the modulation of key central nervous system genes, in the attempt to suggest possible disease biomarkers.
Collapse
Affiliation(s)
- Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy
| | - Eugenia Annunzi
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Alemany-Navarro M, Costas J, Real E, Segalàs C, Bertolín S, Domènech L, Rabionet R, Carracedo Á, Menchón JM, Alonso P. Do polygenic risk and stressful life events predict pharmacological treatment response in obsessive compulsive disorder? A gene-environment interaction approach. Transl Psychiatry 2019; 9:70. [PMID: 30718812 PMCID: PMC6362161 DOI: 10.1038/s41398-019-0410-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/18/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
The rate of response to pharmacological treatment in Obsessive-compulsive disorder (OCD) oscillates between 40 and 70%. Genetic and environmental factors have been associated with treatment response in OCD. This study analyzes the predictive ability of a polygenic risk score (PRS) built from OCD-risk variants, for treatment response in OCD, and the modulation role of stressful life events (SLEs) at the onset of the disorder. PRSs were calculated for a sample of 103 patients. Yale-Brown Obsessive Compulsive Scale (YBOCS) scores were obtained before and after a 12-week treatment. Regression analyses were performed to analyze the influence of the PRS and SLEs at onset on treatment response. PRS did not predict treatment response. The best predictive model for post-treatment YBOCS (post YBOCS) included basal YBOCS and age. PRS appeared as a predictor for basal and post YBOCS. SLEs at onset were not a predictor for treatment response when included in the regression model. No evidence for PRS predictive ability for treatment response was found. The best predictor for treatment response was age, agreeing with previous literature specific for SRI treatment. Suggestions are made on the possible role of neuroplasticity as a mediator on this association. PRS significantly predicted OCD severity independent on pharmacological treatment. SLE at onset modulation role was not evidenced. Further research is needed to elucidate the genetic and environmental bases of treatment response in OCD.
Collapse
Affiliation(s)
- María Alemany-Navarro
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Spain. .,OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Spain.
| | - Javier Costas
- 0000 0000 9403 4738grid.420359.9Grupo de Xenética Psiquiátrica, Instituto de Investigación Sanitaria de Santiago, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Eva Real
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 8836 0780grid.411129.eOCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Cinto Segalàs
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 8836 0780grid.411129.eOCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Sara Bertolín
- 0000 0000 8836 0780grid.411129.eOCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Laura Domènech
- grid.473715.3Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003 Spain ,0000 0001 2172 2676grid.5612.0Universitat Pompeu Fabra (UPF), Barcelona, Spain ,CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Raquel Rabionet
- grid.473715.3Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003 Spain ,0000 0001 2172 2676grid.5612.0Universitat Pompeu Fabra (UPF), Barcelona, Spain ,CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Ángel Carracedo
- 0000 0000 9403 4738grid.420359.9Grupo de Xenética Psiquiátrica, Instituto de Investigación Sanitaria de Santiago, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Spain ,0000000109410645grid.11794.3aGrupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Instituto Carlos III, Santiago de Compostela, Spain ,0000 0004 1791 1185grid.452372.5Centro de Investigación Biomédica en Red de Enfermedades Raras, Santiago de Compostela, Spain
| | - Jose M. Menchón
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 8836 0780grid.411129.eOCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 9314 1427grid.413448.eCIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain ,0000 0004 1937 0247grid.5841.8Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Pino Alonso
- Institut d’ Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 8836 0780grid.411129.eOCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat (Barcelona), Spain ,0000 0000 9314 1427grid.413448.eCIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain ,0000 0004 1937 0247grid.5841.8Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Mas S, Gassó P, Morer A, Calvo A, Bargalló N, Lafuente A, Lázaro L. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity. PLoS One 2016; 11:e0153846. [PMID: 27093171 PMCID: PMC4836736 DOI: 10.1371/journal.pone.0153846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder.
Collapse
Affiliation(s)
- Sergi Mas
- Dept. Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- * E-mail:
| | - Patricia Gassó
- Dept. Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Department of Radiology, Centre de Diagnostic per la Imatge, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Dept. Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luisa Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain
- Dept. Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Grados M, Sung HM, Kim S, Srivastava S. Genetic findings in obsessive-compulsive disorder connect to brain-derived neutrophic factor and mammalian target of rapamycin pathways: implications for drug development. Drug Dev Res 2015; 75:372-83. [PMID: 25195581 DOI: 10.1002/ddr.21223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traditional pharmacological approaches to the treatment of obsessive-compulsive disorder (OCD) are based on affecting serotonergic and dopaminergic transmission in the central nervous system. However, genetic epidemiology findings are pointing to glutamate pathways and developmental genes as etiological in OCD. A review of recent genetic findings in OCD is conducted, and bioinformatics approaches are used to locate pathways relevant to neuroprotection. The OCD susceptibility genes DLGAP1, RYR3, PBX1-MEIS2, LMX1A and candidate genes BDNF and GRIN2B are components of the neuronal growth, differentiation and neurogenesis pathways BDNF-mTOR. These pathways are emerging as a promising area of research for the development of neuroprotective pharmaceuticals. Emergent genetic epidemiologic data on OCD and repetitive behaviors may support new approaches for pharmacological discovery. Neuroprotective approaches that take into consideration glutamate-mediated BDNF-mTOR pathways are suggested by OCD susceptibility genes.
Collapse
Affiliation(s)
- Marco Grados
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, 1800 Orleans St.-12th floor, Baltimore, MD, 21287, USA
| | | | | | | |
Collapse
|
7
|
Grados MA, Atkins EB, Kovacikova GI, McVicar E. A selective review of glutamate pharmacological therapy in obsessive-compulsive and related disorders. Psychol Res Behav Manag 2015; 8:115-31. [PMID: 25995654 PMCID: PMC4425334 DOI: 10.2147/prbm.s58601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate, an excitatory central nervous system neurotransmitter, is emerging as a potential alternative pharmacological treatment when compared to gamma-aminobutyric acid (GABA)-, dopamine-, and serotonin-modulating treatments for neuropsychiatric conditions. The pathophysiology, animal models, and clinical trials of glutamate modulation are explored in disorders with underlying inhibitory deficits (cognitive, motor, behavioral) including obsessive–compulsive disorder, attention deficit hyperactivity disorder, Tourette syndrome, trichotillomania, excoriation disorder, and nail biting. Obsessive–compulsive disorder, attention deficit hyperactivity disorder, and grooming disorders (trichotillomania and excoriation disorder) have emerging positive data, although only scarce controlled trials are available. The evidence is less supportive for the use of glutamate modulators in Tourette syndrome. Glutamate-modulating agents show promise in the treatment of disorders of inhibition.
Collapse
Affiliation(s)
- Marco A Grados
- Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|