1
|
Giustiniani A, Maistrello L, Mologni V, Danesin L, Burgio F. TMS and tDCS as potential tools for the treatment of cognitive deficits in Parkinson's disease: a meta-analysis. Neurol Sci 2025; 46:579-592. [PMID: 39320648 DOI: 10.1007/s10072-024-07778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Cognitive deficits are common nonmotor symptoms in Parkinson's disease (PD). Non-Invasive Brain Stimulation (NIBS) could be a potential aid to prevent or delay dementia progression in this clinical population. However, previous studies reported controversial results concerning their efficacy on cognitive symptoms of PD. Hence, the present meta-analysis aims to systematically examine the effects of NIBS as possible treatments for PD cognitive impairments. Understanding NIBS' impact on these symptoms may be of outstanding importance to implement new therapeutic strategies and improve the patients' quality of life. METHODS EMBASE, Scopus, and PubMed databases were systematically searched for consecutive studies published from 2000 to March 2023 describing Randomized Controlled Trials studies evaluating the effect of NIBS on PD cognitive symptoms. From the included studies, data concerning neuropsychological tests were extracted and grouped into six cognitive domains, separately analyzed. Hedge's method was computed as the effect size measure of the extracted data; heterogeneity among studies and publication bias were also assessed. The Cochrane's RoB2 tool was used to evaluate the risk of bias for each of the included studies. RESULTS After database searching and screening of texts, sixteen studies met the inclusion criteria. No significant results emerged from any investigated cognitive domain when comparing NIBS and sham treatments. CONCLUSION Several factors may have contributed to the lack of effects; among these, methodological choices, the small sample of studies, the high heterogeneity of data and stimulation protocols pose the need for more controlled studies to highlight the potentiality of NIBS as a future treatment for PD cognitive impairments.
Collapse
Affiliation(s)
- Andreina Giustiniani
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Lorenza Maistrello
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
| | - Valentina Mologni
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Laura Danesin
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy.
| | - Francesca Burgio
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
| |
Collapse
|
2
|
Magriço M, Meira B, Fernandes M, Salavisa M, Saraiva M, Borbinha C, Marto JP, Barbosa R, Bugalho P. Unveiling the role of subjective cognitive complaints in predicting cognitive impairment in Parkinson´s Disease- A longitudinal study with 4 year of follow up. Neurol Sci 2024; 45:5271-5276. [PMID: 38797763 DOI: 10.1007/s10072-024-07607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Emerging data associated subjective cognitive complaints (SCC) with a heightened risk of future cognitive decline in Parkinson´s Disease (PD). OBJECTIVE To determine whether SCC may predict the development of cognitive impairment in PD patients at baseline. METHODS Over 4 years, major aspects of motor and non-motor symptoms were assessed. SCC were evaluated by non-motor symptoms scale domain-5 (NMSS5). The predictor value of SCC in cognitive change was assessed with univariate linear regression analyses, with NMSS5 at baseline as predictor. Change in cognition (ΔMoCA) was calculated by subtracting Montreal Cognitive Assessment Scale (MoCA) scores at baseline from scores obtained at reassessment and employed as the outcome. We replicated these analyses by employing alterations in MoCA subdomains as outcomes. RESULTS 134 patients were evaluated at baseline, of those 73 PD patients were reassessed four years later. In our study, SCC didn´t act as a predictor for future cognitive decline. However, baseline NMSS5 was associated significantly with variation in attention, naming, and orientation domains. CONCLUSION Our findings did not support that SCC in PD patients acts as a predictor of global cognitive decline. However, our findings enhance comprehension of how SCC correlates with performance in distinct cognitive areas, thereby providing better guidance for patients on their current complaints.
Collapse
Affiliation(s)
- Marta Magriço
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal.
| | - Bruna Meira
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Marco Fernandes
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Manuel Salavisa
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Marlene Saraiva
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Cláudia Borbinha
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Paulo Bugalho
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| |
Collapse
|
3
|
Patrick K, Cousins E, Spitznagel MB. Associations between cognitive screening performance and motor symptoms in Parkinson's disease:a systematic review and meta-analysis. Dement Neuropsychol 2024; 18:e20230102. [PMID: 39258165 PMCID: PMC11386525 DOI: 10.1590/1980-5764-dn-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/27/2024] [Indexed: 09/12/2024] Open
Abstract
Although the most prominent symptoms of Parkinson's disease (PD) are those impacting movement, cognitive dysfunction is prevalent and often presents early in the disease process. Individuals with cognitive symptoms of PD often complete cognitive screening, making it important to identify factors associated with cognitive screening performance to ensure prompt and accurate detection of cognitive impairments. Objective Despite a body of research examining relationships between motor symptoms and cognitive dysfunction in PD, no prior study has undertaken a systematic review of the magnitude of the relationship between motor symptoms and cognitive screening performance in PD. Methods This study was a systematic review and meta-analysis of the relationship between cognitive screening performance, as assessed by the Montreal Cognitive Assessment (MoCA), and motor symptoms of PD. After the systematic screening, 20 studies were included, and meta-regressions using mixed-effects models were conducted. Results Motor symptoms across included studies were relatively mild, but average MoCA scores were at the established cutoff for risk of dementia in PD. The average disease duration was 5 years. Consistent with hypotheses, more severe motor symptoms were associated with lower MoCA scores (r=-0.22 (95%CI -0.29 to -0.16), p<0.001), indicating worse cognitive functioning. Conclusion The results indicate a significant negative correlation between MoCA performance and motor symptoms of PD. Average MoCA scores captured early disease-stage cognitive impairment when motor symptoms remained relatively mild. Serial screening for cognitive impairment beginning early in the disease course may be of benefit to ensure that cognitive dysfunction is detected as it arises.
Collapse
Affiliation(s)
- Karlee Patrick
- Kent State University, College of Arts and Sciences, Department of Psychological Sciences, Kent, Ohio, USA
| | - Elizabeth Cousins
- Kent State University, College of Arts and Sciences, Department of Psychological Sciences, Kent, Ohio, USA
| | - Mary Beth Spitznagel
- Kent State University, College of Arts and Sciences, Department of Psychological Sciences, Kent, Ohio, USA
| |
Collapse
|
4
|
Young CB, Cholerton B, Smith AM, Shahid-Besanti M, Abdelnour C, Mormino EC, Hu SC, Chung KA, Peterson A, Rosenthal L, Pantelyat A, Dawson TM, Quinn J, Zabetian CP, Montine TJ, Poston KL. The Parkinson's Disease Composite of Executive Functioning: A Measure for Detecting Cognitive Decline in Clinical Trials. Neurology 2024; 103:e209609. [PMID: 38870440 PMCID: PMC11244747 DOI: 10.1212/wnl.0000000000209609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Executive functioning is one of the first domains to be impaired in Parkinson disease (PD), and the majority of patients with PD eventually develop dementia. Thus, developing a cognitive endpoint measure specifically assessing executive functioning is critical for PD clinical trials. The objective of this study was to develop a cognitive composite measure that is sensitive to decline in executive functioning for use in PD clinical trials. METHODS We used cross-sectional and longitudinal follow-up data from PD participants enrolled in the PD Cognitive Genetics Consortium, a multicenter setting focused on PD. All PD participants with Trail Making Test, Digit Symbol, Letter-Number Sequencing, Semantic Fluency, and Phonemic Fluency neuropsychological data collected from March 2010 to February 2020 were included. Baseline executive functioning data were used to create the Parkinson's Disease Composite of Executive Functioning (PaCEF) through confirmatory factor analysis. We examined the changes in the PaCEF over time, how well baseline PaCEF predicts time to cognitive progression, and the required sample size estimates for PD clinical trials. PaCEF results were compared with the Montreal Cognitive Assessment (MoCA), individual tests forming the PaCEF, and tests of visuospatial, language, and memory functioning. RESULTS A total of 841 participants (251 no cognitive impairment [NCI], 480 mild cognitive impairment [MCI], and 110 dementia) with baseline data were included, of which the mean (SD) age was 67.1 (8.9) years and 270 were women (32%). Five hundred forty five PD participants had longitudinal neuropsychological data spanning 9 years (mean [SD] 4.5 [2.2] years) and were included in analyses examining cognitive decline. A 1-factor model of executive functioning with excellent fit (comparative fit index = 0.993, Tucker-Lewis index = 0.989, and root mean square error of approximation = 0.044) was used to calculate the PaCEF. The average annual change in PaCEF ranged from 0.246 points per year for PD-NCI participants who remained cognitively unimpaired to -0.821 points per year for PD-MCI participants who progressed to dementia. For PD-MCI, baseline PaCEF, but not baseline MoCA, significantly predicted time to dementia. Sample size estimates were 69%-73% smaller for PD-NCI trials and 16%-19% smaller for PD-MCI trials when using the PaCEF rather than MoCA as the endpoint. DISCUSSION The PaCEF is a sensitive measure of executive functioning decline in PD and will be especially beneficial for PD clinical trials.
Collapse
Affiliation(s)
- Christina B Young
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brenna Cholerton
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alena M Smith
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marian Shahid-Besanti
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carla Abdelnour
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth C Mormino
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shu-Ching Hu
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathryn A Chung
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amie Peterson
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liana Rosenthal
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexander Pantelyat
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ted M Dawson
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph Quinn
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cyrus P Zabetian
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas J Montine
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathleen L Poston
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Castelli MB, Alonso-Recio L, Carvajal F, Serrano JM. Does the Montreal Cognitive Assessment (MoCA) identify cognitive impairment profiles in Parkinson's disease? An exploratory study. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:238-247. [PMID: 34894908 DOI: 10.1080/23279095.2021.2011727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An important proportion of patients with Parkinson's Disease (PD) present signs of cognitive impairment, although this is heterogeneous. In an attempt to classify this, the dual syndrome hypothesis distinguishes between two profiles: one defined by attentional and executive problems with damage in anterior cerebral regions, and another with mnesic and visuospatial alterations, with damage in posterior cerebral regions. The Montreal Cognitive Assessment (MoCA) is one of the recommended screening tools, and one of the most used, to assess cognitive impairment in PD. However, its ability to specifically identify these two profiles of cognitive impairment has not been studied. The aim of this study was, therefore, to analyze the capacity of the MoCA to detect cognitive impairment, and also to identify anterior and posterior profiles defined by the dual syndrome hypothesis. For this purpose, 59 patients with idiopathic PD were studied with the MoCA and a neuropsychological battery of tests covering all cognitive domains. Results of logistic regression analysis with ROC (Receiver Operating Characteristic) curves showed that MoCA detected cognitive impairment and identified patients with a profile of anterior/attentional and executive deficit, with acceptable sensibility and specificity. However, it did not identify patients with a posterior/mnesic-visuospatial impairment. We discuss the reasons for the lack of sensitivity of MoCA in this profile, and other possible implications of these results with regards the usefulness of this tool to assess cognitive impairment in PD.
Collapse
Affiliation(s)
- María Belén Castelli
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Alonso-Recio
- Departamento de Psicología y Salud, Facultad de Ciencias de la Salud y la Educación, Universidad a Distancia de Madrid, Madrid, Spain
| | - Fernando Carvajal
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Manuel Serrano
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Thakkar A, Gupta A, De Sousa A. Artificial intelligence in positive mental health: a narrative review. Front Digit Health 2024; 6:1280235. [PMID: 38562663 PMCID: PMC10982476 DOI: 10.3389/fdgth.2024.1280235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
The paper reviews the entire spectrum of Artificial Intelligence (AI) in mental health and its positive role in mental health. AI has a huge number of promises to offer mental health care and this paper looks at multiple facets of the same. The paper first defines AI and its scope in the area of mental health. It then looks at various facets of AI like machine learning, supervised machine learning and unsupervised machine learning and other facets of AI. The role of AI in various psychiatric disorders like neurodegenerative disorders, intellectual disability and seizures are discussed along with the role of AI in awareness, diagnosis and intervention in mental health disorders. The role of AI in positive emotional regulation and its impact in schizophrenia, autism spectrum disorders and mood disorders is also highlighted. The article also discusses the limitations of AI based approaches and the need for AI based approaches in mental health to be culturally aware, with structured flexible algorithms and an awareness of biases that can arise in AI. The ethical issues that may arise with the use of AI in mental health are also visited.
Collapse
|
7
|
Monaghan AS, Ragothaman A, Harker GR, Carlson-Kuhta P, Horak FB, Peterson DS. Freezing of Gait in Parkinson's Disease: Implications for Dual-Task Walking. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1035-1046. [PMID: 37574744 PMCID: PMC10578213 DOI: 10.3233/jpd-230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The simultaneous completion of multiple tasks (dual-tasking, DT) often leads to poorer task performance (DT cost, DTC). People with Parkinson's disease (PwPD) exhibit difficulty with DT, and DTC may be particularly pronounced in PwPD with freezing of gait (FOG). OBJECTIVE This study assessed the relationship between FOG status and DTC during gait. METHODS Gait parameters were collected using inertial sensors in 106 PwPD (off-medication), including definite-freezers (dFOG; n = 25), possible-freezers (pFOG; n = 16), and non-freezers (nFOG; n = 65) during single (ST)-and DT walking. RESULTS PwPD with dFOG had larger (worse) DTC than nFOG for foot-strike angle, stride length, toe-off angle, variability of foot-strike angle, and arm range of motion (ROM). After accounting for covariates, DTC for toe-off angle and stride length remained worse in PwPD who freeze. Worse cognition predicted larger DTC for stride length, gait cycle duration, gait speed, and step duration across groups. Men had larger DTC compared to women for gait speed, variability in foot-strike angle, stride length, and arm ROM. Increased variability in gait speed DTC was associated with increased disease severity. CONCLUSION These findings provide additional support that PwPD who freeze may rely on greater cortical control for the execution of specific gait metrics. The results also underscore the importance of considering cognition when assessing DT ability in PwPD.
Collapse
Affiliation(s)
| | | | - Graham R. Harker
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Daniel S. Peterson
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Phoenix VA Health Care Center, Phoenix, AZ, USA
| |
Collapse
|
8
|
How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines 2022; 10:biomedicines10123026. [PMID: 36551782 PMCID: PMC9775565 DOI: 10.3390/biomedicines10123026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
Collapse
|
9
|
Das J, Morris R, Barry G, Vitorio R, Oman P, McDonald C, Walker R, Stuart S. Exploring the feasibility of technological visuo-cognitive training in Parkinson's: Study protocol for a pilot randomised controlled trial. PLoS One 2022; 17:e0275738. [PMID: 36206239 PMCID: PMC9543984 DOI: 10.1371/journal.pone.0275738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/19/2022] [Indexed: 11/12/2022] Open
Abstract
Visual and cognitive dysfunction are common in Parkinson's disease and relate to balance and gait impairment, as well as increased falls risk and reduced quality of life. Vision and cognition are interrelated (termed visuo-cognition) which makes intervention complex in people with Parkinson's (PwP). Non-pharmacological interventions for visuo-cognitive deficits are possible with modern technology, such as combined mobile applications and stroboscopic glasses, but evidence for their effectiveness in PwP is lacking. We aim to investigate whether technological visuo-cognitive training (TVT) can improve visuo-cognitive function in PwP. We will use a parallel group randomised controlled trial to evaluate the feasibility and acceptability of TVT versus standard care in PwP. Forty PwP who meet our inclusion criteria will be randomly assigned to one of two visuo-cognitive training interventions. Both interventions will be carried out by a qualified physiotherapist in participants own homes (1-hour sessions, twice a week, for 4 weeks). Outcome measures will be assessed on anti-parkinsonian medication at baseline and at the end of the 4-week intervention. Feasibility of the TVT intervention will be assessed in relation to safety and acceptability of the technological intervention, compliance and adherence to the intervention and usability of equipment in participants homes. Additionally, semi structured interviews will be conducted to explore participants' experience of the technology. Exploratory efficacy outcomes will include change in visual attention measured using the Trail Making Test as well as changes in balance, gait, quality of life, fear of falling and levels of activity. This pilot study will focus on the feasibility and acceptability of TVT in PwP and provide preliminary data to support the design of a larger, multi-centre randomised controlled trial. This trial is registered at isrctn.com (ISRCTN46164906).
Collapse
Affiliation(s)
- Julia Das
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Rosie Morris
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Gill Barry
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Vitorio
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul Oman
- Department of Mathematics, Physics & Electrical Engineering, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Claire McDonald
- Gateshead Health NHS Foundation Trust, Gateshead, United Kingdom
| | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Samuel Stuart
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Padmanabhan D, Paul A, Suresh V, Nayagam S, Kartha N, Paul G, Vijayakumar P. Analysis of neuropathological comorbid conditions in elderly patients with mild cognitive impairment in a tertiary care center in South India. J Family Med Prim Care 2022; 11:1268-1274. [PMID: 35516690 PMCID: PMC9067214 DOI: 10.4103/jfmpc.jfmpc_1094_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Mild cognitive impairment (MCI) is a transitional stage in the continuum of cognitive decline. Multiple risk factors may be involved apart from neuropathological states such as Alzheimer’s disease, Parkinson’s disease, and vascular dementia. There is scant data in the literature pertaining to our study population in Kerala, South India that provide associations between suggested risk factors and MCI. Most of the elderly present to family and primary care physicians with complaints of some form of memory impairment. Objectives: To find out the significant neuropathological comorbid conditions present in elderly patients with MCI. To assess for other risk factors in the same population- including laboratory parameters, comorbidities, and psychosocial parameters. Methods: This retrospective record-based study included a sample of 93 patients with MCI as quantified by the Mini-Mental Status Examination (MMSE). These subjects were compared with controls (n = 97) without MCI, with respect to neuropathological diagnoses, laboratory parameters and psychosocial parameters. Results: The findings of our study were that female gender, higher depression scores, a greater number of medications taken, benzodiazepine use, higher alkaline phosphatase levels, positive fall history, loss of a spouse, and lower levels of education were associated with MCI. MCI is negatively associated with positive alcohol history. The most commonly seen proven neuropathological diagnosis was Parkinson’s disease. Conclusion: The risk factors that were found in our study should be highlighted in the elderly and preventive measures should be taken to prevent the downward progression through the cognitive continuum. Prospective studies looking into mild cognitive impairment with better screening tools and proper assessment of neuropathological comorbid conditions can further elucidate the findings related to this study.
Collapse
|
11
|
Sivaranjini S, Sujatha CM. Morphological analysis of subcortical structures for assessment of cognitive dysfunction in Parkinson's disease using multi-atlas based segmentation. Cogn Neurodyn 2021; 15:835-845. [PMID: 34603545 PMCID: PMC8448821 DOI: 10.1007/s11571-021-09671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/27/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment in Parkinson's Disease (PD) is the most prevalent non-motor symptom that requires analysis of anatomical associations to cognitive decline in PD. The objective of this study is to analyse the morphological variations of the subcortical structures to assess cognitive dysfunction in PD. In this study, T1 MR images of 58 Healthy Control (HC) and 135 PD subjects categorised as 91 Cognitively normal PD (NC-PD), 25 PD with Mild Cognitive Impairment (PD-MCI) and 19 PD with Dementia (PD-D) subjects, based on cognitive scores are utilised. The 132 anatomical regions are segmented using spatially localized multi-atlas model and volumetric analysis is carried out. The morphological alterations through textural features are captured to differentiate among the HC and PD subjects under different cognitive domains. The volumetric differences in the segmented subcortical structures of accumbens, amygdala, caudate, putamen and thalamus are able to predict cognitive impairment in PD. The volumetric distribution of the subcortical structures in PD-MCI subjects exhibit an overlap with the HC group due to lack of spatial specificity in their atrophy levels. The 3D GLCM features extracted from the significant subcortical structures could discriminate HC, NC-PD, PD-MCI and PD-D subjects with better classification accuracies. The disease related atrophy levels of the subcortical structures captured through morphological analysis provide sensitive evaluation of cognitive impairment in PD.
Collapse
Affiliation(s)
- S. Sivaranjini
- Department of Electronics and Communication Engineering, College of Engineering (CEG), Anna University, Chennai, India
| | - C. M. Sujatha
- Department of Electronics and Communication Engineering, College of Engineering (CEG), Anna University, Chennai, India
| |
Collapse
|
12
|
Liu H, Deng B, Xie F, Yang X, Xie Z, Chen Y, Yang Z, Huang X, Zhu S, Wang Q. The influence of white matter hyperintensity on cognitive impairment in Parkinson's disease. Ann Clin Transl Neurol 2021; 8:1917-1934. [PMID: 34310081 PMCID: PMC8419402 DOI: 10.1002/acn3.51429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/05/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this meta‐analysis was to review systematically and to identify the relationship between the severity and location of white matter hyperintensities (WMHs) and the degree of cognitive decline in patients with Parkinson’s disease (PD). We searched the PubMed, EMBASE, Web of Science, Ovid, and Cochrane Library databases for clinical trials of the severity and location of WMHs on the degree of cognitive impairment in PD through October 2020. We conducted the survey to compare the association of WMH burden in patients with PD with mild cognitive impairment (PD‐MCI) versus those with normal cognition (PD‐NC) and in patients with PD with dementia (PDD) versus those with PD without dementia (PD‐ND). Nine studies with PD‐MCI versus PD‐NC and 10 studies with PDD versus PD‐ND comparisons were included. The WMH burden in PD‐MCI patients was significantly different compared to that in PD‐NC patients (standard mean difference, SMD = 0.39, 95% CI: 0.12 to 0.66, p = 0.005), while there was no correlation shown in the age‐matched subgroup of the comparison. In addition, PDD patients had a significantly higher burden of WMHs (SMD = 0.8, 95% CI: 0.44 to 1.71, p < 0.0001), especially deep white matter hyperintensities (SMD = 0.54, 95% CI: 0.36 to 0.73, p < 0.00001) and periventricular hyperintensities (SMD = 0.70, 95% CI: 0.36 to 1.04, p < 0.0001), than PD‐NC patients, regardless of the adjustment of age. WMHs might be imaging markers for cognitive impairment in PDD but not in PD‐MCI, regardless of age, vascular risk factors, or race. Further prospective studies are needed to validate the conclusions.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.,Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Yonghua Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Zhi Yang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Xiyan Huang
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| |
Collapse
|
13
|
Vitorio R, Hasegawa N, Carlson-Kuhta P, Nutt JG, Horak FB, Mancini M, Shah VV. Dual-Task Costs of Quantitative Gait Parameters While Walking and Turning in People with Parkinson's Disease: Beyond Gait Speed. JOURNAL OF PARKINSONS DISEASE 2021; 11:653-664. [PMID: 33386812 DOI: 10.3233/jpd-202289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is a lack of recommendations for selecting the most appropriate gait measures of Parkinson's disease (PD)-specific dual-task costs to use in clinical practice and research. OBJECTIVE We aimed to identify measures of dual-task costs of gait and turning that best discriminate performance in people with PD from healthy individuals. We also investigated the relationship between the most discriminative measures of dual-task costs of gait and turning with disease severity and disease duration. METHODS People with mild-to-moderate PD (n = 144) and age-matched healthy individuals (n = 79) wore 8 inertial sensors while walking under single and dual-task (reciting every other letter of the alphabet) conditions. Outcome measures included 26 objective measures within four gait domains (upper/lower body, turning and variability). The area under the curve (AUC) from the receiver-operator characteristic plot was calculated to compare discriminative ability of dual-task costs on gait across outcome measures. RESULTS PD-specific, dual-task interference was identified for arm range of motion, foot strike angle, turn velocity and turn duration. Arm range of motion (AUC = 0.73) and foot strike angle (AUC = 0.68) had the largest AUCs across dual-task costs measures and they were associated with disease severity and/or disease duration. In contrast, the most commonly used dual-task gait measure, gait speed, showed an AUC of only 0.54. CONCLUSION Findings suggest that people with PD rely more than healthy individuals on executive-attentional resources to control arm swing, foot strike, and turning, but not gait speed. The dual-task costs of arm range of motion best discriminated people with PD from healthy individuals.
Collapse
Affiliation(s)
- Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Naoya Hasegawa
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - John G Nutt
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
He PK, Wang LM, Chen JN, Zhang YH, Gao YY, Xu QH, Qiu YH, Cai HM, Li Y, Huang ZH, Feng SJ, Zhao JH, Ma GX, Nie K, Wang LJ. Repetitive transcranial magnetic stimulation (rTMS) fails to improve cognition in patients with parkinson's disease: a Meta-analysis of randomized controlled trials. Int J Neurosci 2020; 132:269-282. [PMID: 33208009 DOI: 10.1080/00207454.2020.1809394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive decline is one of the greatest concerns for patients with Parkinson's disease (PD) and their care partners. Repetitive transcranial magnetic stimulation (rTMS) is a nonpharmacological treatment option used to improve cognitive function in PD, but its efficacy is unclear. We performed a meta-analysis to determine whether rTMS improves cognition in PD patients. METHODS Eligibility criteria (PICOS) were as follows: (1) 'P': The patients participating were diagnosed with idiopathic PD; (2) 'I': Intervention using rTMS; (3) 'C': Sham stimulation as control; (4) 'O': The outcome of the study included cognitive evaluations; (5) 'S': The study adopted randomized controlled design. The standardized mean difference (SMD) of change of score was applied to measure efficacy, and we used Version 2 of the Cochrane tool to assess risk of bias. RESULTS Twelve studies met the inclusion criteria. Compared with sham-controlled group, the pooled result showed a non-significant short-term effect of rTMS on global cognition (SMD: -0.15, 95% CI: -0.59 to 0.29, I2 = 36.7%), executive function (SMD: 0.03, 95% CI: -0.21 to 0.26, I2 = 0.0%), and attention and working memory (SMD: 0.05, 95% CI: -0.25 to 0.35, I2 = 0.0%). Long-term outcomes were either shown to be statistically nonsignificant. CONCLUSIONS Based on a limited number of studies, rTMS fails to improve cognition in PD. We call for additional high-quality randomized controlled trials with adequate sample sizes to determine the efficacy of rTMS.
Collapse
Affiliation(s)
- Pei Kun He
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li Min Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jia Ning Chen
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu Hu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu Yuan Gao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Qi Huan Xu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yi Hui Qiu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Hui Min Cai
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - You Li
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhi Heng Huang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Shu Jun Feng
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jie Hao Zhao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Gui Xian Ma
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li Juan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
15
|
Frontal lobe metabolic alterations characterizing Parkinson's disease cognitive impairment. Neurol Sci 2020; 42:1053-1064. [PMID: 32729012 DOI: 10.1007/s10072-020-04626-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Diagnosis of Parkinson's disease (PD) cognitive impairment at early stages is challenging compared to the stage of PD dementia where functional impairment is apparent and easily diagnosed. Hence, to evaluate potential early stage cognitive biomarkers, we assessed frontal lobe metabolic alterations using in vivo multi-voxel proton magnetic resonance spectroscopic imaging (1H-MRSI). METHOD Frontal metabolism was studied in patients with PD with normal cognition (PD-CN) (n = 26), with cognitive impairment (PD-CI) (n = 27), and healthy controls (HC) (n = 30) using a single slice (two-dimensional) 1H-MRSI at 3 T. The acquired spectra were post-processed distinctly for voxels corresponding to the bilateral middle/superior frontal gray matter (GM) and frontal white matter (WM) regions (delineated employing neuromorphometrics atlas) using the LC-Model software. RESULT Significant (post hoc p < 0.016) reduction in the concentration of N-acetyl aspartate (NAA) in the middle and superior frontal GMs and total choline (tCho) and total creatine (tCr) in the frontal WM was observed in PD-CI compared to PD-CN and HC, while that in HC and PD-CN groups were comparable. The NAA and tCr/tCho metabolite concentrations showed significant (p < 0.05) positive correlations with cognitive test scores in the frontal GM and WM, respectively. The receiver operating curve (ROC) analysis revealed significant (p < 0.05) "area under curve" for NAA/tNAA in the frontal GM and tCho in the frontal WM. CONCLUSION The frontal metabolic profile is altered in cognitively impaired PD compared with cognitively normal PD. Neuronal function loss (NAA), altered energy metabolism (Cr), and cholinergic (Cho) neural transmission are implicated in PD cognitive pathology. Frontal neuro-metabolism may promisingly serve as PD cognitive biomarker.
Collapse
|
16
|
Chaudhary S, Kumaran SS, Goyal V, Kaloiya GS, Kalaivani M, Jagannathan NR, Sagar R, Mehta N, Srivastava AK. Cortical thickness and gyrification index measuring cognition in Parkinson's disease. Int J Neurosci 2020; 131:984-993. [PMID: 32423354 DOI: 10.1080/00207454.2020.1766459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cortical dynamics is driven by cortico-cortical connectivity and it characterizes cortical morphological features. These brain surface features complement volumetric changes and may offer improved understanding of disease pathophysiology. Hence, present study aims to investigate surface features; cortical thickness (CT) and gyrification index (GI) in Parkinson's disease (PD) patients of normal cognition (PD-CN), cognitively impaired patients with PD (PD-CI) in comparison with cognitively normal healthy controls (HC) to better elucidate cognition linked features in PD. METHOD Anatomical MRI (3DT1) was carried out in 30 HC (56.53 ± 8.42 years), 30 PD-CN (58.8 ± 6.07 years), and 30 PD-CI (60.3 ± 6.43 years) subjects. Whole brain ROI based parcellation using Desikan-Killiany (DK-40) atlas followed by regional CT and GI differentiation [with 'age' and 'total intracranial volume' (TIV) correction], multiple linear regression (with 'age', 'TIV', and 'education' correction) with clinical variables, ROC analysis, and CT-GI correlation across the groups was used for data analysis. RESULTS Widespread cortical thinning with regional GI reduction was evident in PD-CI with respect to other two groups (HC and PD-CN), and with absence of such alterations in PD-CN compared to HC. Frontal, parietal, and temporal CT/GI significantly correlated with cognition and presented classification abilities for cognitive state in PD. Mean regional CT and GI were found negatively correlated across groups with heterogeneous regions. CONCLUSION Fronto-parietal and temporal regions suffer cognition associated cortical thinning and GI reduction. CT may serve better discriminator properties and may be more consistent than GI in studying cognition in PD. Heterogeneous surface dynamics across the groups may signify neuro-developmental alterations in PD.
Collapse
Affiliation(s)
| | | | - Vinay Goyal
- Department of Neurology, AIIMS, New Delhi, India
| | - G S Kaloiya
- National Drug Dependence Treatment Centre, AIIMS, New Delhi, India
| | - M Kalaivani
- Department of Biostatistics, AIIMS, New Delhi, India
| | | | - Rajesh Sagar
- Department of Psychiatry, AIIMS, New Delhi, India
| | - Nalin Mehta
- Department of Physiology, AIIMS, New Delhi, India
| | | |
Collapse
|