1
|
Ghaderi S, Mohammadi S, Fatehi F. Diffusion Tensor Imaging (DTI) Biomarker Alterations in Brain Metastases and Comparable Tumors: A Systematic Review of DTI and Tractography Findings. World Neurosurg 2024; 190:113-129. [PMID: 38986953 DOI: 10.1016/j.wneu.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Brain metastases (BMs) are the most frequent tumors of the central nervous system. Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides insights into brain microstructural alterations and tensor metrics and generates tractography to visualize white matter fiber tracts based on diffusion directionality. This systematic review assessed evidence from DTI biomarker alterations in BMs and comparable tumors such as glioblastoma. METHODS PubMed, Scopus, and Web of Science were searched, and published between January 2000 and August 2023. The key inclusion criteria were studies reporting DTI metrics in BMs and comparisons with other tumors. Data on study characteristics, tumor types, sample details, and main DTI findings were extracted. RESULTS Fifty-seven studies with 1592 BM patients and 1578 comparable brain tumors were included. Peritumoral fractional anisotropy (FA) consistently differentiates BMs from primary brain tumors, whereas intratumoral FA shows limited discriminatory power. Mean diffusivity increased in BMs versus comparators. Intratumoral metrics were less consistent but revealed differences in BM origin. Axial and radial diffusivity have provided insights into the effects of radiation, tumor origin, and infiltration. Axial diffusivity/radial diffusivity differentiated tumor infiltration from vasogenic edema. Tractography revealed anatomical relationships between white matter tracts and BMs. In addition, tractography-guided BM surgery and radiotherapy planning are required. Machine learning models incorporating DTI biomarkers/metrics accurately classified BMs versus comparators and improved diagnostic classification. CONCLUSIONS DTI metrics provide noninvasive biomarkers for distinguishing BMs from other tumors and predicting outcomes. Key metrics included peritumoral FA and mean diffusivity.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| |
Collapse
|
2
|
Ivanova NI, Kyuchukova DM, Tsalta-Mladenov ME, Georgieva DK, Andonova SP. Prosopagnosia Due to Metastatic Brain Tumor: A Case-Based Review. Cureus 2024; 16:e55349. [PMID: 38559526 PMCID: PMC10981948 DOI: 10.7759/cureus.55349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Prosopagnosia, also referred to as "face blindness," is a type of visual agnosia characterized by a decreased capacity to recognize familiar faces with a preserved ability to identify individuals based on non-facial visual traits or voice. Prosopagnosia can be categorized as developmental (DP) or acquired (AP) owing to a variety of underlying conditions, including trauma, neurodegenerative diseases, stroke, neuroinfections, and, less frequently, malignancies. Facial recognition is a complex process in which different neuronal networks are involved. The infrequent but notable higher visual-processing abnormalities can be caused by lesions of the inferior longitudinal fasciculus (ILF) in the non-dominant temporal lobe. We report a rare case of AP in a 69-year-old patient who is right-hand dominant with rectal carcinoma cerebral metastases. The patient complained of dizziness, vertigo, falls, and trouble recognizing her family members' faces. The CT scan of the head with contrast revealed two metastatic brain lesions with vasogenic edema, as one of them was in the right cerebellar hemisphere, causing dislocation and compression of the ILF. Corticosteroids and osmotherapy were utilized as a conservative treatment approach, which resulted in the prosopagnosia being completely withdrawn. In conclusion, patients with primary brain tumors or metastatic disease rarely present with an isolated cognitive deficit such as prosopagnosia. Based on the anatomical features and the personalized approach, a conservative or surgical approach may be useful to improve higher cortical functioning.
Collapse
Affiliation(s)
- Nora I Ivanova
- Department of Neurology and Neuroscience, Medical University "Prof. Paraskev Stoyanov", Varna, BGR
- Second Clinic of Neurology With Intensive Care Unit and Stroke Unit, University Hospital "St. Marina", Varna, BGR
| | - Dayana M Kyuchukova
- Department of Neurology and Neuroscience, Medical University "Prof. Paraskev Stoyanov", Varna, BGR
- Second Clinic of Neurology With Intensive Care Unit and Stroke Unit, University Hospital "St. Marina", Varna, BGR
| | - Mihael E Tsalta-Mladenov
- Department of Neurology and Neuroscience, Medical University "Prof. Paraskev Stoyanov", Varna, BGR
- Second Clinic of Neurology With Intensive Care Unit and Stroke Unit, University Hospital "St. Marina", Varna, BGR
| | - Darina K Georgieva
- Department of Neurology and Neuroscience, Medical University "Prof. Paraskev Stoyanov", Varna, BGR
- Second Clinic of Neurology With Intensive Care Unit and Stroke Unit, University Hospital "St. Marina", Varna, BGR
| | - Silva P Andonova
- Department of Neurology and Neuroscience, Medical University "Prof. Paraskev Stoyanov", Varna, BGR
- Second Clinic of Neurology With Intensive Care Unit and Stroke Unit, University Hospital "St. Marina", Varna, BGR
| |
Collapse
|
3
|
Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exp Neurol 2021; 347:113899. [PMID: 34678230 DOI: 10.1016/j.expneurol.2021.113899] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI. METHODS The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies. RESULTS JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were prevented by SR144528, a selective CB2 antagonist. CONCLUSIONS This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.
Collapse
|
4
|
Weiss HK, Pacione DR, Galetta S, Kondziolka D. Prosopagnosia associated with brain metastasis near the inferior longitudinal fasciculus in the nondominant temporal lobe: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21313. [PMID: 35855187 PMCID: PMC9265230 DOI: 10.3171/case21313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Disruptions of the inferior longitudinal fasciculus (ILF) in the nondominant temporal lobe can lead to the rare but significant higher visual-processing disturbance of prosopagnosia. Here, the authors describe a 57-year-old right hand-dominant female with a large breast cancer brain metastasis in the right temporal lobe who underwent resection and subsequent Gamma Knife radiosurgery. She presented with difficulty with facial recognition, but following surgical intervention, the prosopagnosia became more profound. OBSERVATIONS Even in nondominant cortex, significant deficits can arise when operating near higher visual-processing centers, including the ILF. LESSONS This case highlights the utility of imaging-based tractography obtained from preoperative imaging for resective surgical planning even when operating in areas that do not involve what is traditionally considered elegant areas of the brain. To optimize neurological outcomes in metastatic tumor resection, awareness and diffusion tensor imaging of neighboring, displaced white matter tracts may prevent permanent deficits in higher visual processing.
Collapse
|
5
|
La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, Ottenhausen M, Demichelis G, Romito LM, Acerbi F, Broggi M, Schiariti MP, Ferroli P, Bruzzone MG, Serrao G. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Front Neurol 2021; 12:641586. [PMID: 33732210 PMCID: PMC7959833 DOI: 10.3389/fneur.2021.641586] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The frontal aslant tract (FAT) is a recently identified white matter tract connecting the supplementary motor complex and lateral superior frontal gyrus to the inferior frontal gyrus. Advancements in neuroimaging and refinements to anatomical dissection techniques of the human brain white matter contributed to the recent description of the FAT anatomical and functional connectivity and its role in the pathogenesis of several neurological, psychiatric, and neurosurgical disorders. Through the application of diffusion tractography and intraoperative electrical brain stimulation, the FAT was shown to have a role in speech and language functions (verbal fluency, initiation and inhibition of speech, sentence production, and lexical decision), working memory, visual–motor activities, orofacial movements, social community tasks, attention, and music processing. Microstructural alterations of the FAT have also been associated with neurological disorders, such as primary progressive aphasia, post-stroke aphasia, stuttering, Foix–Chavany–Marie syndrome, social communication deficit in autism spectrum disorders, and attention–deficit hyperactivity disorder. We provide a systematic review of the current literature about the FAT anatomical connectivity and functional roles. Specifically, the aim of the present study relies on providing an overview for practical neurosurgical applications for the pre-operative, intra-operative, and post-operative assessment of patients with brain tumors located around and within the FAT. Moreover, some useful tests are suggested for the neurosurgical evaluation of FAT integrity to plan a safer surgery and to reduce post-operative deficits.
Collapse
Affiliation(s)
- Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Eldahaby
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Greco
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomo Bertolini
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Levi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Malte Ottenhausen
- Department of Neurological Surgery, University Medical Center Mainz, Mainz, Germany
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Michele Romito
- Parkinson's Disease and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Paolo Schiariti
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Graziano Serrao
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|