1
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
3
|
Lattanzi S, Meletti S. Response to letter to the editor: "The need for careful consideration of futile recanalization in acute ischemic stroke patients undergoing endovascular treatment". J Neurol Sci 2024; 462:123105. [PMID: 38910054 DOI: 10.1016/j.jns.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy.
| | - Stefano Meletti
- Neurophysiology Unit and Epilepsy Centre, OCB Hospital, AOU, Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Tanaka T, Ihara M, Fukuma K, Mishra NK, Koepp MJ, Guekht A, Ikeda A. Pathophysiology, Diagnosis, Prognosis, and Prevention of Poststroke Epilepsy: Clinical and Research Implications. Neurology 2024; 102:e209450. [PMID: 38759128 PMCID: PMC11175639 DOI: 10.1212/wnl.0000000000209450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024] Open
Abstract
Poststroke epilepsy (PSE) is associated with higher mortality and poor functional and cognitive outcomes in patients with stroke. With the remarkable development of acute stroke treatment, there is a growing number of survivors with PSE. Although approximately 10% of patients with stroke develop PSE, given the significant burden of stroke worldwide, PSE is a significant problem in stroke survivors. Therefore, the attention of health policymakers and significant funding are required to promote PSE prevention research. The current PSE definition includes unprovoked seizures occurring more than 7 days after stroke onset, given the high recurrence risks of seizures. However, the pathologic cascade of stroke is not uniform, indicating the need for a tissue-based approach rather than a time-based one to distinguish early seizures from late seizures. EEG is a commonly used tool in the diagnostic work-up of PSE. EEG findings during the acute phase of stroke can potentially stratify the risk of subsequent seizures and predict the development of poststroke epileptogenesis. Recent reports suggest that cortical superficial siderosis, which may be involved in epileptogenesis, is a promising marker for PSE. By incorporating such markers, future risk-scoring models could guide treatment strategies, particularly for the primary prophylaxis of PSE. To date, drugs that prevent poststroke epileptogenesis are lacking. The primary challenge involves the substantial cost burden due to the difficulty of reliably enrolling patients who develop PSE. There is, therefore, a critical need to determine reliable biomarkers for PSE. The goal is to be able to use them for trial enrichment and as a surrogate outcome measure for epileptogenesis. Moreover, seizure prophylaxis is essential to prevent functional and cognitive decline in stroke survivors. Further elucidation of factors that contribute to poststroke epileptogenesis is eagerly awaited. Meanwhile, the regimen of antiseizure medications should be based on individual cardiovascular risk, psychosomatic comorbidities, and concomitant medications. This review summarizes the current understanding of poststroke epileptogenesis, its risks, prognostic models, prophylaxis, and strategies for secondary prevention of seizures and suggests strategies to advance research on PSE.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Masafumi Ihara
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Kazuki Fukuma
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Nishant K Mishra
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Matthias J Koepp
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Alla Guekht
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
5
|
Tanaka T, Gyanwali B, Tomari S. Editorial: Epilepsy and dementia in stroke survivors. Front Neurol 2023; 14:1320031. [PMID: 38020639 PMCID: PMC10654623 DOI: 10.3389/fneur.2023.1320031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Bibek Gyanwali
- Memory Ageing and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shinya Tomari
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Rajabian A, McCloskey AP, Jamialahmadi T, Moallem SA, Sahebkar A. A review on the efficacy and safety of lipid-lowering drugs in neurodegenerative disease. Rev Neurosci 2023; 34:801-824. [PMID: 37036894 DOI: 10.1515/revneuro-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023]
Abstract
There is a train of thought that lipid therapies may delay or limit the impact of neuronal loss and poor patient outcomes of neurodegenerative diseases (NDDs). A variety of medicines including lipid lowering modifiers (LLMs) are prescribed in NDDs. This paper summarizes the findings of clinical and observational trials including systematic reviews and meta-analyses relating to LLM use in NDDs published in the last 15 years thus providing an up-to-date evidence pool. Three databases were searched PubMed, CINAHL, and Web of Science using key terms relating to the review question. The findings confirm the benefit of LLMs in hyperlipidemic patients with or without cardiovascular risk factors due to their pleotropic effects. In NDDs LLMs are proposed to delay disease onset and slow the rate of progression. Clinical observations show that LLMs protect neurons from α-synuclein, tau, and Aβ toxicity, activation of inflammatory processes, and ultimately oxidative injury. Moreover, current meta-analyses and clinical trials indicated low rates of adverse events with LLMs when used as monotherapy. LLMs appear to have favorable safety and tolerability profiles with few patients stopping treatment due to severe adverse effects. Our collated evidence thus concludes that LLMs have a role in NDDs but further work is needed to understand the exact mechanism of action and reach more robust conclusions on where and when it is appropriate to use LLMs in NDDs in the clinic.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Lam Ching W, Li HJ, Guo J, Yao L, Chau J, Lo S, Yuen CS, Ng BFL, Chau-Leung Yu E, Bian Z, Lau AY, Zhong LL. Acupuncture for post-stroke depression: a systematic review and network meta-analysis. BMC Psychiatry 2023; 23:314. [PMID: 37143014 PMCID: PMC10161596 DOI: 10.1186/s12888-023-04749-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with post-stroke depression (PSD) usually experience anxiety, hopelessness, and insomnia, which have a negative impact on their daily activities and post-stroke rehabilitation. Acupuncture (AC), as a minimally invasive technique, has become a popular choice for improving depression symptoms. However, it is still unclear which therapy is associated with the best outcomes for PSD. In this review, we aimed to explore the impact of AC in alleviating symptoms of PSD and to evaluate the difference in effectiveness between AC combined with pharmacotherapies and various non-pharmacotherapies. METHODS Six databases and three clinical trials registration platforms were searched from inception to March 2023. Randomized clinical trial comparing needle-based AC with pharmacotherapy, and other non-pharmacotherapy or invalid group were included. Two independent reviewers identified eligible studies, and collected data using a pre-made form. A Bayesian network meta-analysis was conducted to assess and compare different techniques using RStudio 3.6.0 with the package 'GEMTC' V.0.8.1. The primary outcome was the efficacy for PSD assessed by scales measuring depressive symptoms. The secondary outcomes were effectiveness for neurological function and the quality of life. The ranking probabilities for all treatment interventions was performed using the Surface Under the Cumulative Ranking curve (SUCRA). The risk of bias was assessed by using the Revised Cochrane Risk of Bias tool 2. RESULTS Sixty-two studies, involving 5308 participants published from 2003 to 2022, were included. The results showed that compared with western medicine (WM) (defined as pharmacotherapy for PSD), AC alone or with repetitive transcranial magnetic stimulation (RTMS), Traditional Chinese medicine (TCM) alone or with WM, were superior for alleviating depression symptoms. Compared to Usual Care, AC alone or plus other therapies could significantly decrease scores on the Hamilton Depression Rating scale. According to result of SUCRA, AC plus RTMS had the highest probability of improving depressive symptoms with a probability of 49.43%. CONCLUSIONS The results of this study indicate that AC alone or combined with other therapies appears to be effective in improving depression symptoms of stroke survivors. Moreover, in comparison to WM, AC alone or plus RTMS, TCM, TCM with WM, or WM, were more effective in improving depression symptoms of PSD. Also, AC with RTMS seems to be the most effective with the highest probability. REGISTRATION This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database in November 2020 and updated in July 2021. The registration number is CRD42020218752.
Collapse
Affiliation(s)
- Wai Lam Ching
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hui Juan Li
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jianwen Guo
- Brain Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong University of Chinese Medicine, Guangzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Janita Chau
- The Nethersole School of Nursing, Faculty of Medicine, the Chinese University of Hong Kong, Ma Liu Shui, Hong Kong SAR, China
| | - Suzanne Lo
- The Nethersole School of Nursing, Faculty of Medicine, the Chinese University of Hong Kong, Ma Liu Shui, Hong Kong SAR, China
| | - Chun Sum Yuen
- School of Chinese medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Bacon Fung Leung Ng
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Edwin Chau-Leung Yu
- Hong Kong Association for Integration of Chinese-Western Medicine Limited, Kowloon, Hong Kong SAR, China
| | - Zhaoxiang Bian
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Alexander Y Lau
- Department of Medicine and Therapeutics and Hong Kong Institute of Integrative Medicine, Prince of Wales Hospital, Faculty of Medicine, the Chinese University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Linda Ld Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Stredny C, Rotenberg A, Leviton A, Loddenkemper T. Systemic inflammation as a biomarker of seizure propensity and a target for treatment to reduce seizure propensity. Epilepsia Open 2023; 8:221-234. [PMID: 36524286 PMCID: PMC9978091 DOI: 10.1002/epi4.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
People with diabetes can wear a device that measures blood glucose and delivers just the amount of insulin needed to return the glucose level to within bounds. Currently, people with epilepsy do not have access to an equivalent wearable device that measures a systemic indicator of an impending seizure and delivers a rapidly acting medication or other intervention (e.g., an electrical stimulus) to terminate or prevent a seizure. Given that seizure susceptibility is reliably increased in systemic inflammatory states, we propose a novel closed-loop device where release of a fast-acting therapy is governed by sensors that quantify the magnitude of systemic inflammation. Here, we review the evidence that patients with epilepsy have raised levels of systemic indicators of inflammation than controls, and that some anti-inflammatory drugs have reduced seizure occurrence in animals and humans. We then consider the options of what might be incorporated into a responsive anti-seizure system.
Collapse
Affiliation(s)
- Coral Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Leviton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Poststroke Seizure and Epilepsy: A Review of Incidence, Risk Factors, Diagnosis, Pathophysiology, and Pharmacological Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7692215. [PMCID: PMC9629926 DOI: 10.1155/2022/7692215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022]
Abstract
Stroke is the most common cause of epilepsy and ultimately leads to a decrease in the quality of life of those affected. Ischemic and hemorrhagic strokes can both lead to poststroke epilepsy (PSE). Significant risk factors for PSE include age < 65age less than 65 years, stroke severity measured by the National Institutes of Health Stroke Scale (NIHSS), cortical involvement, and genetic factors such as TRPM6 polymorphism. The diagnosis of PSE is made by using imaging modalities, blood biomarkers, and prognostic criteria. Electroencephalography (EEG) is currently the gold standard to diagnose PSE, while new combinations of modalities are being tested to increase diagnostic specificity. This literature review uncovers a newly found mechanism for the pathology of poststroke epilepsy. The pathogenesis of early-onset and late-onset is characterized by sequelae of neuronal cellular hypoxia and disruption of the blood-brain barrier, respectively. Interleukin-6 is responsible for increasing the activity of glial cells, causing gliosis and hyperexcitability of neurons. Epinephrine, high-mobility group protein B1, downregulation of CD32, and upregulation of HLA-DR impact the pathology of poststroke epilepsy by inhibiting the normal neuronal immune response. Decreased levels of neuropeptide Y, a neurotransmitter, act through multiple unique mechanisms, such as inhibiting intracellular Ca2+ accumulation and acting as an anti-inflammatory, also implemented in the worsening progression of poststroke epilepsy. Additionally, CA1 hippocampal resonant neurons that increase theta oscillation are associated with poststroke epilepsy. Hypertensive small vessel disease may also have an implication in the temporal lobe epilepsy by causing occult microinfarctions. Furthermore, this review highlights the potential use of statins as primary prophylaxis against PSE, with multiple studies demonstrating a reduction in incidence using statins alone, statins in combination with antiepileptic drugs (AEDs), and statins with aspirin. The evidence strongly suggests that the second generation AEDs are a superior treatment method for PSE. Data from numerous studies demonstrate their relative lack of significant drug interactions, increased tolerability, and potential superiority in maintaining seizure-free status.
Collapse
|
10
|
Clinical Characteristics and Gene Mutation Analysis of Poststroke Epilepsy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4801037. [PMID: 36105439 PMCID: PMC9444425 DOI: 10.1155/2022/4801037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is one of the most common brain disorders worldwide. Poststroke epilepsy (PSE) affects functional retrieval after stroke and brings considerable social values. A stroke occurs when the blood circulation to the brain fails, causing speech difficulties, memory loss, and paralysis. An electroencephalogram (EEG) is a tool that may detect anomalies in brain electrical activity, including those induced by a stroke. Using EEG data to determine the electrical action in the brains of stroke patients is an effort to measure therapy. Hence in this paper, deep learning assisted gene mutation analysis (DL-GMA) was utilized for classifying poststroke epilepsy in patients. This study suggested a model categorizing poststroke patients based on EEG signals that utilized wavelet, long short-term memory (LSTM), and convolutional neural networks (CNN). Gene mutation analysis can help determine the cause of an individual's epilepsy, leading to an accurate diagnosis and the best probable medical management. The test outcomes show the viability of noninvasive approaches that quickly evaluate brain waves to monitor and detect daily stroke diseases. The simulation outcomes demonstrate that the proposed GL-GMA achieves a high accuracy ratio of 98.3%, a prediction ratio of 97.8%, a precision ratio of 96.5%, and a recall ratio of 95.6% and decreases the error rate 10.3% compared to other existing methods.
Collapse
|
11
|
Ren Z, Wen Q, Yan X, Wang Y, Zhang Y. Post-stroke epilepsy and risk of all-cause mortality: A systematic review and meta-analysis of cohort studies. Clin Neurol Neurosurg 2022; 220:107362. [PMID: 35839716 DOI: 10.1016/j.clineuro.2022.107362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Post-stroke epilepsy (PSE) has been suggested as a predictor of poor prognosis. We aimed to evaluate the association between PSE and all-cause mortality via a meta-analysis. METHODS Relevant cohort studies were identified by search of electronic databases including PubMed, Embase, and Web of Science. Two authors independently performed database search, data collection, and study quality evaluation. A randomized-effect model incorporating the possible between-study heterogeneity was used to pool the results. RESULTS Overall, ten cohort studies including 177,929 patients with stroke contributed to the meta-analysis. Of them, 15,836 (8.9%) had PSE during a mean follow-up of 4 years. Compared to stroke survivors without PSE, patients with PSE had a significantly increased risk of all-cause death (odds ratio [OR]: 1.68, 95% confidence interval: 1.51-1.87, p < 0.001; I2 = 80%). Subgroup analyses showed consistent association in patients with ischemic and hemorrhagic stroke, in prospective and retrospective studies, in PSE diagnosed as unprovoked seizure occurred more than 7 days and 14 days after stroke, in studies with follow-up durations within or over 5 years, and in studies with different quality scores (p for subgroup effect all < 0.05). The Galbraith plot identified three outlier studies which may contribute to the heterogeneity of the meta-analysis, and all of the three studies were database-linked studies. The between-study heterogeneity was significantly reduced after removing the three database-linked studies (OR: 1.39, 95% CI: 1.18-1.62, p < 0.001; I2 = 0%). CONCLUSION PSE was associated with a higher risk of all-cause mortality.
Collapse
Affiliation(s)
- Zhong Ren
- Center of Cerebral Diseases, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Quan Wen
- Center of Cerebral Diseases, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Xue Yan
- Center of Cerebral Diseases, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ying Wang
- Center of Cerebral Diseases, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Yidan Zhang
- Center of Cerebral Diseases, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China.
| |
Collapse
|
12
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
13
|
Zhao L, Li J, Kälviäinen R, Jolkkonen J, Zhao C. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2021; 233:108030. [PMID: 34742778 DOI: 10.1016/j.pharmthera.2021.108030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Jinwei Li
- Department of Stroke Center, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|