1
|
Orimoto A, Wang Z, Ono M, Kitamura C, Ono K. Gene expression profiles in human dental pulp stem cells treated short-term with lipopolysaccharides before and after osteoinduction. J Oral Biosci 2024:100603. [PMID: 39710093 DOI: 10.1016/j.job.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear. This study aimed to compare the expression profiles of immortalized undifferentiated and osteo-differentiated human DPSCs (hDPSCs) treated with and without lipopolysaccharide (LPS) to elucidate the molecular regulatory mechanisms involved in inflammatory conditions. METHODS We investigated the differences between undifferentiated and osteodifferentiated hDPSCs in response to LPS. RNA-seq analyses of undifferentiated and osteodifferentiated hDPSCs were performed with and without LPS. RESULTS Whole-transcriptome profiling revealed distinct differences in the expression patterns of LPS-treated undifferentiated and osteodifferentiated DPSCs. Death-associated protein kinase 1 levels downregulated in LPS-treated osteodifferentiated cells, inhibiting apoptosis and enhancing cell survival. After LPS treatment, osteodifferentiated DPSCs exhibited higher expression levels of various inflammatory cytokines and chemokines than undifferentiated DPSCs. CONCLUSION This study provides valuable transcriptomic data as a critical resource for uncovering potential therapeutic targets to enhance cell survival and regulate inflammation within the dental pulp. By elucidating the key molecular mechanisms and identifying specific gene expression changes linked to inflammatory and immune responses, these findings provide significant insights into osteo-differentiated hDPSCs.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
2
|
Sano H, Nakakura-Ohshima K, Okada Y, Sato T, Ohshima H. The effect of intentionally perforating the floor of the pulp chamber on pulpal healing after tooth replantation in mice. J Oral Biosci 2023; 65:31-39. [PMID: 36737038 DOI: 10.1016/j.job.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Shortening the root of a mouse molar prior to tooth replantation results in early revascularization in the pulp cavity and activation of the dental pulp quiescent stem cells. This study aimed to validate the effects of pulp chamber floor perforation on pulpal healing after tooth replantation as a strategy to promote early revascularization into the pulp. METHODS The maxillary first molars of three-week-old Crlj:CD1 mice were extracted and repositioned into the original socket: the left teeth were immediately replanted (control group: CG), whereas the floor of the pulp chamber of the right teeth was perforated with a tungsten carbide bur before tooth replantation (experimental group: EG). The samples were collected from three days to eight weeks postoperatively. In addition to the TUNEL assay, immunohistochemistry for Nestin, CK14, and Ki-67 was conducted. RESULTS In the EG, early revascularization occurred with a decrease in apoptosis and an increase in cell proliferation, facilitating pulpal healing, compared with the CG. The rate of Nestin-positive perimeter in the distal root significantly increased on days 5 and 14 and the amount of Nestin-positive hard tissue increased on day 14. However, on day 7, the number of epithelial cell rests of Malassez in the EG significantly decreased, making the EG susceptible to ankylosis at the floor. CONCLUSIONS Intentionally perforating the floor of the pulp chamber provides a route for early revascularization, resulting in better pulpal healing after tooth replantation.
Collapse
Affiliation(s)
- Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan; Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
3
|
Epithelial plasticity enhances regeneration of committed taste receptor cells following nerve injury. Exp Mol Med 2023; 55:171-182. [PMID: 36631663 PMCID: PMC9833027 DOI: 10.1038/s12276-022-00924-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 01/13/2023] Open
Abstract
Taste receptor cells are taste bud epithelial cells that are dependent upon the innervating nerve for continuous renewal and are maintained by resident tissue stem/progenitor cells. Transection of the innervating nerve causes degeneration of taste buds and taste receptor cells. However, a subset of the taste receptor cells is maintained without nerve contact after glossopharyngeal nerve transection in the circumvallate papilla in adult mice. Here, we revealed that injury caused by glossopharyngeal nerve transection triggers the remaining differentiated K8-positive taste receptor cells to dedifferentiate and acquire transient progenitor cell-like states during regeneration. Dedifferentiated taste receptor cells proliferate, express progenitor cell markers (K14, Sox2, PCNA) and form organoids in vitro. These data indicate that differentiated taste receptor cells can enter the cell cycle, acquire stemness, and participate in taste bud regeneration. We propose that dedifferentiated taste receptor cells in combination with stem/progenitor cells enhance the regeneration of taste buds following nerve injury.
Collapse
|
4
|
Sangsuwan P, Chotigeat W, Tannukit S, Kedjarune-Leggat U. Long-Term Effect of Modified Glass Ionomer Cement with Mimicked Biological Property of Recombinant Translationally Controlled Protein. Polymers (Basel) 2022; 14:polym14163341. [PMID: 36015596 PMCID: PMC9412370 DOI: 10.3390/polym14163341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
This study modified glass ionomer cement (GIC) by adding mimicked biological molecules to reduce cell death. GIC was modified to BIOGIC by adding chitosan and bovine serum albumin for enhancing protein release. The BIOGIC was supplemented with tricalcium phosphate (TCP) and recombinant translationally controlled tumor protein (TCTP) to improve its biological properties. Four groups of materials, GIC, BIOGIC, BIOGIC+TCP, and BIOGIC + TCP + TCTP, were examined by XRD and SEM-EDX. TCTP released from the specimens was determined by an ELISA method. Human dental pulp stem cells (hDPSCs) were harvested and analyzed by MTT assay, apoptosis, gene expression, and cell differentiation. All groups had the same crystallization characteristic peaks of La2O3. The elemental compositions composed of La, Si, and Al are the main inorganic components. The results show that BIOGIC + TCP + TCTP presented significantly higher percentages of cell viability than other groups on day 1 to day 23 (p < 0.05), but were not different after day 24 to day 41 and had reduced cell apoptosis including BAX, TPT1, BCL-2, and Caspase-3. The BIOGIC + TCP + TCTP demonstrated higher odontoblast mineralization and differentiation markers including ALP activity, DSPP, DMP-1, ALP, BMP-2, and OPN. It enhanced cell proliferation and differentiation as well as mineralization with down-regulation of genes related to apoptosis compared with other groups.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Correspondence:
| |
Collapse
|
5
|
Tian C, Chai J, Liu W, Zhang X, Li Y, Zuo H, Yuan G, Zhang H, Liu H, Chen Z. Role of the Demethylase AlkB Homolog H5 in the Promotion of Dentinogenesis. Front Physiol 2022; 13:923185. [PMID: 35784864 PMCID: PMC9240783 DOI: 10.3389/fphys.2022.923185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Dentinogenesis is a key process in tooth formation and is regulated by a series of pre- and post-transcriptional regulations. N6-methyl-adenosine (m6A), which is the most prevalent internal chemical modification that can be removed by the RNA demethylase AlkB homolog H5 (ALKBH5), has recently been reported to be involved in several biological processes. However, the exact function of ALKBH5-mediated m6A modification in tooth development remains unclear. Here, we showed that Alkbh5 was expressed in pre-odontoblasts, polarizing odontoblasts, and secretory odontoblasts. Alkbh5 overexpression in the mouse dental papilla cell line mDPC6T promoted odontoblastic differentiation. Conditional knockout of Alkbh5 in Dmp1-expressing odontoblasts led to a decrease in number of odontoblasts and increased pre-dentin formation. Mechanistically, RNA sequencing and m6A sequencing of Alkbh5-overexpressing mDPC6T cells revealed that Alkbh5 promoted odontoblast differentiation by prolonging the half-life of Runx2 transcripts in an m6A-dependent manner and by activating the phosphatidylinositol 3-kinase/protein kinase B pathway. Notably, the loss of Alkbh5 expression in odontoblasts impaired tertiary dentin formation in vivo. These results suggested that the RNA demethylase ALKBH5 plays a role in dentinogenesis.
Collapse
Affiliation(s)
- Cheng Tian
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinye Zhang
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yashu Li
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Huan Liu, ; Zhi Chen,
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Huan Liu, ; Zhi Chen,
| |
Collapse
|
6
|
Jurado CA, AlResayes S, Sayed ME, Villalobos-Tinoco J, Llanes-Urias N, Tsujimoto A. A customized metal guide for controllable modification of anterior teeth contour prior to minimally invasive preparation. Saudi Dent J 2021; 33:518-523. [PMID: 34803295 PMCID: PMC8589579 DOI: 10.1016/j.sdentj.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Optimal tooth reduction is a key requirement for aesthetics, function, and the longevity of fixed restorations. Research has demonstrated that controlled and conservative tooth preparation is crucial for the long-term success of adhesive restorations. Different techniques of fabricating reduction guides have been previously reported in literature. The present technical note describes the fabrication technique and clinical application of a customized metal preparation reduction guide. Material and method Patient presented with tilted maxillary left central incisor. The flared-out part of the tooth was modified prior to veneer restoration preparation. Resin pattern reduction guide was fabricated on the diagnostic cast with a window on the tilted mesial portion of the tooth. After intraoral evaluation, resin pattern guide was casted. Metal reduction guide was place intraorally and reduction was provided on the exposed surface of the tooth. After the removal of the tilted portion, a harmonious arch form allowed the clinician to provide adequate evaluation and preparation for veneer restorations. Results The device demonstrated good practical value, allowing for selective and controlled reduction of tooth structure, and definitive protection of adjacent tooth surfaces from iatrogenic damage. The clinical outcome successfully addressed the patient's restorative and aesthetic needs, and the veneer was stable 2 years postoperatively. Conclusion Use of a metal guide assists clinicians to provide a more predictable reduction of a desired tooth surface, while decreasing the risk of compromising the other/adjacent tooth surfaces.
Collapse
Affiliation(s)
- Carlos Alberto Jurado
- Texas Tech University Health Sciences Center El Paso Woody L Hunt School of Dental Medicine, El Paso, Texas, USA
| | - Saad AlResayes
- Department of Prosthetic Dental Sciences, King Saud University College of Dentistry, Riyadh, Saudi Arabia
| | - Mohammed Edrees Sayed
- Department of Prosthetic Dental Sciences, Jazan University College of Dentistry, Jazan, Saudi Arabia
| | - Jose Villalobos-Tinoco
- Department of Oral Rehabilitation, Autonomous University of Queretaro School of Dentistry, Queretaro, Mexico
| | | | - Akimasa Tsujimoto
- Department of Operative Dentsitry, University of Iowa College of Dentistry, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Zhao L, Ito S, Arai A, Udagawa N, Horibe K, Hara M, Nishida D, Hosoya A, Masuko R, Okabe K, Shin M, Li X, Matsuo K, Abe S, Matsunaga S, Kobayashi Y, Kagami H, Mizoguchi T. Odontoblast death drives cell-rich zone-derived dental tissue regeneration. Bone 2021; 150:116010. [PMID: 34020080 DOI: 10.1016/j.bone.2021.116010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration. Herein, using a Cre/LoxP-based strategy, we demonstrated that cell-rich zone (CZ)-localizing Nestin-GFP-positive and Nestin-GFP-negative cells proliferate and differentiate into odontoblast-like cells in response to odontoblast depletion. The regenerated odontoblast-like cells played a role in reparative dentin formation. RNA-sequencing analysis revealed that the expression of odontoblast differentiation- and activation-related genes was upregulated in the pulp in response to odontoblast depletion even without damage to dental tissue. In this regenerative process, the expression of type I parathyroid hormone receptor (PTH1R) increased in the odontoblast-depleted pulp, thereby boosting dentin formation. The levels of PTH1R and its downstream mediator, i.e., phosphorylated cyclic AMP response element-binding protein (Ser133) increased in the physically damaged pulp. Collectively, odontoblast death triggered the PTH1R cascade, which may represent a therapeutic target for inducing CZ-mediated dental regeneration.
Collapse
Affiliation(s)
- Lijuan Zhao
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, Nagano, Japan
| | - Miroku Hara
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, Nagano, Japan
| | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Akihiro Hosoya
- Division of Histology, School of Dentistry, Health Science University of Hokkaido, Hokkaido, Japan
| | | | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Masashi Shin
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Center, Fukuoka Dental College, Fukuoka, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Nagano, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | | | | - Hideaki Kagami
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
8
|
The Role of Dendritic Cells during Physiological and Pathological Dentinogenesis. J Clin Med 2021; 10:jcm10153348. [PMID: 34362130 PMCID: PMC8348392 DOI: 10.3390/jcm10153348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct cell populations, capable of interacting with each other to maintain the vitality of the tooth. After tooth injuries, a sequence of complex biological events takes place in the pulpal tissue to restore its homeostasis. The pulpal response begins with establishing an inflammatory reaction that leads to the formation of a matrix of reactionary or reparative dentin, according to the nature of the exogenous stimuli. Using several in vivo designs, antigen-presenting cells, including macrophages and dendritic cells (DCs), are identified in the pulpal tissue before tertiary dentin deposition under the afflicted area. However, the precise nature of this phenomenon and its relationship to inherent pulp cells are not yet clarified. This literature review aims to discuss the role of pulpal DCs and their relationship to progenitor/stem cells, odontoblasts or odontoblast-like cells, and other immunocompetent cells during physiological and pathological dentinogenesis. The concept of “dentin-pulp immunology” is proposed for understanding the crosstalk among these cell types after tooth injuries, and the possibility of immune-based therapies is introduced to accelerate pulpal healing after exogenous stimuli.
Collapse
|
9
|
Lou Y, Liu Y, Zhao J, Tian W, Xu N, Zang C, Que K. Activation of Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Channels Promotes Odontogenic Differentiation of Human Dental Pulp Cells. J Endod 2021; 47:1409-1416. [PMID: 34126160 DOI: 10.1016/j.joen.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are thermosensitive channels that play an important role in thermal sensation or tooth pain by regulating intracellular Ca2+ concentration that is essential for pulp tissue repair. The aim of this study was to evaluate the role of TRPA1 and TRPV1 channels in the odontogenic differentiation of human dental pulp cells (HDPCs). METHODS HDPCs were isolated from healthy human intact third molars and cultured in odontogenic differentiation medium. Gene and protein expression levels of TRPA1 and TRPV1 channels during the odontogenic differentiation of HDPCs were evaluated by real-time quantitative polymerase chain reaction and Western blot analysis. HDPCs were then treated with channel agonists or antagonists, and the expression levels of odontogenic markers dentin sialophosphoprotein (DSPP) and osteopontin (OPN) were examined. Alkaline phosphatase activity and alizarin red staining were also conducted to detect mineralization levels. RESULTS Consistent with the mineralization degree and DSPP and OPN expression, messenger RNA and protein expression of TRPA1 and TRPV1 channels was up-regulated during the odontogenic differentiation of HDPCs. The application of TRPA1 or TRPV1 agonists increased the mineralized nodules of alizarin red staining and alkaline phosphatase activity and up-regulated the messenger RNA and protein expression of DSPP and OPN, respectively, with the highest values reached on the seventh day (P < .05). On the contrary, the mineralization level and DSPP and OPN expression could be suppressed by using the antagonists of these 2 channels. CONCLUSIONS TRPA1 and TRPV1 channels not only showed up-regulated expression along with the odontogenic differentiation of HDPCs but also could affect the odontogenic differentiation by regulating intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Yaxin Lou
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiange Zhao
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Na Xu
- Department of Paediatric Dentistry, Hospital of Stomatology, NanKai University, Tianjin, China
| | - Chengcheng Zang
- Department of Prosthodontics, College of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
11
|
Regulated Cell Death in Pulpitis. J Endod 2020; 46:1403-1413. [DOI: 10.1016/j.joen.2020.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/27/2022]
|
12
|
Saito K, Nakatomi M, Ohshima H. Dentin Matrix Protein 1 Compensates for Lack of Osteopontin in Regulating Odontoblastlike Cell Differentiation after Tooth Injury in Mice. J Endod 2019; 46:89-96. [PMID: 31740066 DOI: 10.1016/j.joen.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Although dentin matrix protein 1 (DMP1) and osteopontin (OPN) act as substrates and signaling molecules for odontoblastlike cell differentiation after tooth injury, the mutual interaction between these proteins in the mechanism of odontoblastlike cell differentiation remains to be clarified. This study aimed to elucidate the role of DMP1 and OPN in regulating odontoblastlike cell differentiation after tooth injury. METHODS A groove-shaped cavity was prepared on the mesial surface of the upper first molars in wild-type and Opn knockout (KO) mice. The demineralized paraffin sections were processed for immunohistochemistry for nestin and DMP1 and in situ hybridization for Dmp1. For the in vitro assay, the experiments of organ culture for evaluating dentin-pulp complex regeneration using small interfering RNA treatment were performed. RESULTS Once preexisting odontoblasts died, nestin-positive newly differentiated odontoblastlike cells were arranged along the pulp-dentin border and began to express DMP1/Dmp1. In Opn KO mice, the expression of DMP1/Dmp1 was up-regulated compared with that of wild-type mice. The in vitro assay showed that the gene suppression of Dmp1 by small interfering RNA showed a tendency to decrease the differentiation rate of odontoblastlike cells from 70.1% to 52.2% in wild-type teeth. In addition, the suppression of Dmp1 in Opn KO teeth tended to lead to the inhibition of odontoblastlike cell differentiation. CONCLUSIONS These results suggest that the expression of Dmp1 is up-regulated in Opn KO mice both in vivo and in vitro, and DMP1 compensates for the lack of OPN in regulating odontoblastlike cell differentiation after tooth injury.
Collapse
Affiliation(s)
- Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
13
|
Saito K, Ohshima H. The putative role of insulin-like growth factor (IGF)-binding protein 5 independent of IGF in the maintenance of pulpal homeostasis in mice. Regen Ther 2019; 11:217-224. [PMID: 31516919 PMCID: PMC6732709 DOI: 10.1016/j.reth.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although insulin-like growth factor binding protein 5 (IGFBP5) may play a crucial role in activating the functions of periodontal and bone marrow stem cells, the factors responsible for regulating the maintenance of dental pulp stem cells (DPSCs) remain to be clarified. This study aimed to elucidate the role of IGFBP5 in maintaining pulpal homeostasis during tooth development and pulpal healing after tooth injury in doxycycline-inducible TetOP-histone 2B (H2B)-green fluorescent protein (GFP) transgenic mice (GFP expression was induced at E14.5 or E15.5) by using TUNEL assay, RT-PCR, in situ hybridization for Igfbp5, and immunohistochemistry for IGFBP5, Nestin, and GFP. To observe the pulpal response to exogenous stimuli, the roots of the maxillary first molars were resected, and the coronal portion was autografted into the sublingual region. Intense IGFBP5/Igfbp5 expression was observed in cells from the center of the pulp tissue and the subodontoblastic layer in developing teeth during postnatal Week 4. Intense H2B-GFP-expressing label-retaining cells (LRCs) were localized in the subodontoblastic layer in addition to the center of the pulp tissue, suggesting that slowly dividing cell populations reside in these areas. During postoperative days 3–7, the LRCs were maintained in the dental pulp, showed an IGFBP5-positve reaction in their nuclei, and lacked a TUNEL-positive reaction. In situ hybridization and RT-PCR analyses confirmed the expression of Igfbp5 in the dental pulp. These findings suggest that IGFBP5 play a pivotal role in regulating the survival and apoptosis of DPSCs during both tooth development and pulpal healing following tooth injury.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- Apoptosis
- DAB, diaminobenzidine
- DPSC, dental pulp stem cell
- Dental pulp
- GFP, green fluorescent protein
- H&E, hematoxylin and eosin
- H2B, histone 2B
- IGF, insulin-like growth factor
- IGF-IR, insulin-like growth factor I receptor
- IGFBP5, insulin-like growth factor binding protein 5
- LRC, label-retaining cell
- MAS, Matsunami adhesive silane
- Mice (Transgenic)
- PDLSCs, periodontal ligament stem cells
- RT-PCR, reverse transcriptase-polymerase chain reaction
- Stem cells
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- Transplantation
Collapse
|
14
|
Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol 2018; 149:383-391. [DOI: 10.1007/s00418-018-1651-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/22/2023]
|
15
|
Li G, Liu M, Zhang S, Wan H, Zhang Q, Yue R, Yan X, Wang X, Wang Z, Sun Y. Essential Role of IFT140 in Promoting Dentinogenesis. J Dent Res 2017; 97:423-431. [PMID: 29195058 DOI: 10.1177/0022034517741283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Primary cilia, with highly regulated cellular sensory functions, play key roles in tissue development and function maintenance. Intraflagellar transport 140 (IFT140) is a subunit of IFT complex A, which is specialized for retrograde transportation in cilia. Mutations of Ift140 are usually associated with syndromic ciliopathy and may cause isolated diseases such as retinal dystrophy, short ribs, and polycystic kidney. However, the role of IFT140 in tooth development has not been well investigated. In this study, a close relationship between IFT140 and dentin formation is disclosed. During tooth development, IFT140 was highly expressed in odontoblasts. To further understand the role of IFT140 in dentinogenesis, Ift140flox/flox/Osx-Cre mouse was generated. The dentin thickness of Ift140flox/flox/Osx-Cre mouse is thinner and the dentin formation is slower than that in control. In vitro, deletion of IFT140 in odontoblasts led to poor odontogenic differentiation, abnormal primary cilia, and decreased Sonic hedgehog signaling molecules. More important, due to loss of primary cilia in odontoblasts by IFT140 deletion, reparative dentin formation was impaired in a tooth-drilling model. These results suggest that cilia gene IFT140 is essential in promoting dentin formation and reparation.
Collapse
Affiliation(s)
- G Li
- 1 Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - M Liu
- 2 Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - S Zhang
- 1 Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Wan
- 1 Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Q Zhang
- 2 Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - R Yue
- 3 School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - X Yan
- 4 State Key Laboratory of Cell Biology, CAS Centre for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - X Wang
- 5 Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Z Wang
- 1 Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Y Sun
- 1 Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
16
|
Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell Tissue Res 2017; 369:497-512. [DOI: 10.1007/s00441-017-2632-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
|
17
|
Differentiation capacity and maintenance of dental pulp stem/progenitor cells in the process of pulpal healing following tooth injuries. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Sugawara S, Shigetani Y, Kenmotsu S, Okiji T, Ohshima H. Evaluation of a new mouse model for studying dental pulpal responses to GaAlAs laser irradiation. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Xu J, Shao M, Pan H, Wang H, Cheng L, Yang H, Hu T. Novel role of zonula occludens-1: A tight junction protein closely associated with the odontoblast differentiation of human dental pulp cells. Cell Biol Int 2016; 40:787-95. [PMID: 27109589 DOI: 10.1002/cbin.10617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
Zonula occludens-1 (ZO-1), a tight junction protein, contributes to the maintenance of the polarity of odontoblasts and junctional complex formation in odontoblast layer during tooth development. However, expression and possible role of ZO-1 in human dental pulp cells (hDPCs) during repair process remains unknown. Here, we investigated the expression of ZO-1 in hDPCs and the relationship with odontoblast differentiation. We found the processes of two adjacent cells were fused and formed junction-like structure using scanning electron microscopy. Fluorescence immunoassay and Western blot confirmed ZO-1 expression in hDPCs. Especially, ZO-1 was high expressed at the cell-cell junction sites. More interestingly, ZO-1 accumulated at the leading edge of lamellipodia in migrating cells when a scratch assay was performed. Furthermore, ZO-1 gradual increased during odontoblast differentiation and ZO-1 silencing greatly inhibited the differentiation. ZO-1 binds directly to actin filaments and RhoA/ROCK signaling mainly regulates cell cytoskeleton, thus RhoA/ROCK might play a role in regulating ZO-1. Lysophosphatidic acid (LPA) and Y-27632 were used to activate and inhibit RhoA/ROCK signaling, respectively, with or without mineralizing medium. In normal cultured hDPCs, RhoA activation increased ZO-1 expression and especially in intercellular contacts, whereas ROCK inhibition attenuated the effects induced by LPA. However, expression of ZO-1 was upregulated by Y-27632 but not significantly affected by LPA after odontoblast differentiation. Hence, ZO-1 highly expresses in cell-cell junctions and is related to odontoblast differentiation, which may contribute to dental pulp repair or even the formation of an odontoblast layer. RhoA/ROCK signaling is involved in the regulation of ZO-1.
Collapse
Affiliation(s)
- Jue Xu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- State Key Laboratory of Oral Diseases, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongying Pan
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huning Wang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Saito K, Nakatomi M, Ida-Yonemochi H, Ohshima H. Osteopontin Is Essential for Type I Collagen Secretion in Reparative Dentin. J Dent Res 2016; 95:1034-41. [PMID: 27126446 DOI: 10.1177/0022034516645333] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteopontin (OPN) is a highly phosphorylated glycoprotein that is a prominent component of the mineralized extracellular matrix of bone. The secretion of OPN by immunocompetent cells plays a role in the differentiation of odontoblast-like cells during pulpal healing following tooth transplantation. This study aimed to clarify the role of OPN during reparative dentinogenesis. A groove-shaped cavity was prepared on the mesial surface of the upper first molars of wild-type (WT) and Opn knockout (KO) mice, and the samples were collected at intervals of 1 to 14 d. The demineralized sections were processed for immunohistochemistry for Ki67, nestin, OPN, dentin sialoprotein (DSP), integrin αvβ3, and type I collagen; in situ hybridization for Opn, col1a1, and dentin sialophosphoprotein (Dspp); and apoptosis assay. For the loss and gain of function experiments, an in vitro culture assay for evaluating dentin-pulp complex regeneration was performed. On day 1 in WT mice, odontoblasts beneath the affected dentin lost nestin immunoreactivity. On day 3, the expression of Opn was recognized at the mesial dental pulp, and OPN was deposited along the predentin-dentin border. Nestin-positive newly differentiated odontoblast-like cells expressed both Dspp and col1a1 and showed positive immunoreactivity for integrin αvβ3, DSP, and type I collagen. Until day 14, reparative dentin formation continued next to the preexisting dentin at the mesial coronal pulp. In contrast, there was no reparative dentin in the Opn KO mice where nestin- and DSP-positive newly differentiated odontoblast-like cells lacked immunoreaction for type I collagen. The in vitro organ culture demonstrated that the administration of recombinant OPN rescued the type I collagen secretion by odontoblast-like cells in the Opn KO mice. The results suggested that the deposition of OPN at the calcification front is essential for the type I collagen secretion by newly differentiated odontoblast-like cells to form reparative dentin during pulpal healing following cavity preparation.
Collapse
Affiliation(s)
- K Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
21
|
Zheng Y, Cai J, Hutchins AP, Jia L, Liu P, Yang D, Chen S, Ge L, Pei D, Wei S. Remission for Loss of Odontogenic Potential in a New Micromilieu In Vitro. PLoS One 2016; 11:e0152893. [PMID: 27050091 PMCID: PMC4822848 DOI: 10.1371/journal.pone.0152893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
During embryonic organogenesis, the odontogenic potential resides in dental mesenchyme from the bud stage until birth. Mouse dental mesenchymal cells (mDMCs) isolated from the inductive dental mesenchyme of developing molars are frequently used in the context of tooth development and regeneration. We wondered if and how the odontogenic potential could be retained when mDMCs were cultured in vitro. In the present study, we undertook to test the odontogenic potential of cultured mDMCs and attempted to maintain the potential during culturing. We found that cultured mDMCs could retain the odontogenic potential for 24 h with a ratio of 60% for tooth formation, but mDMCs were incapable of supporting tooth formation after more than 24 h in culture. This loss of odontogenic potential was accompanied by widespread transcriptomic alteration and, specifically, the downregulation of some dental mesenchyme-specific genes, such as Pax9, Msx1, and Pdgfrα. To prolong the odontogenic potential of mDMCs in vitro, we then cultured mDMCs in a serum-free medium with Knockout Serum Replacement (KSR) and growth factors (fibroblastic growth factor 2 and epidermal growth factor). In this new micromilieu, mDMCs could maintain the odontogenic potential for 48 h with tooth formation ratio of 50%. Moreover, mDMCs cultured in KSR-supplemented medium gave rise to tooth-like structures when recombined with non-dental second-arch epithelium. Among the supplements, KSR is essential for the survival and adhesion of mDMCs, and both Egf and Fgf2 induced the expression of certain dental mesenchyme-related genes. Taken together, our results demonstrated that the transcriptomic changes responded to the alteration of odontogenic potential in cultured mDMCs and a new micromilieu partly retained this potential in vitro, providing insight into the long-term maintenance of odontogenic potential in mDMCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Jinglei Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Andrew Paul Hutchins
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Pengfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Dandan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Shubin Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Duanqing Pei
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
- * E-mail: (DQP); (SCW)
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- * E-mail: (DQP); (SCW)
| |
Collapse
|
22
|
Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics. J Endod 2016; 42:47-56. [DOI: 10.1016/j.joen.2015.10.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
|
23
|
Hosoya A, Nakamura H. Ability of stem and progenitor cells in the dental pulp to form hard tissue. JAPANESE DENTAL SCIENCE REVIEW 2015. [DOI: 10.1016/j.jdsr.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Quispe-Salcedo A, Ida-Yonemochi H, Ohshima H. The effects of enzymatically synthesized glycogen on the pulpal healing process of extracted teeth following intentionally delayed replantation in mice. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Nakaki T, Saito K, Ida-Yonemochi H, Nakagawa E, Kenmotsu S, Ohshima H. Contribution of Donor and Host Mesenchyme to the Transplanted Tooth Germs. J Dent Res 2014; 94:112-20. [DOI: 10.1177/0022034514556536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autologous tooth germ transplantation of immature teeth is an alternative method of tooth replacement that could be used instead of dental implants in younger patients. However, it is paramount that the dental pulp remain vital and that root formation continue in the transplanted location. The goal of this study is to characterize the healing of allogenic tooth grafts in an animal model using GFP-labeled donor or host postnatal mice. In addition, the putative stem cells were labeled before transplantation with a pulse-chase paradigm. Transplanted molars formed cusps and roots and erupted into occlusion by 2 wk postoperatively. Host label-retaining cells (LRCs) were maintained in the center of pulp tissue associating with blood vessels. Dual labeling showed that a proportion of LRCs were incorporated into the odontoblast layer. Host cells, including putative dendritic cells and the endothelium, also immigrated into the pulp tissue but did not contribute to the odontoblast layer. Therefore, LRCs or putative mesenchymal stem cells are retained in the transplanted pulps. Hertwig’s epithelial root sheath remains vital, and epithelial LRCs are present in the donor cervical loops. Thus, the dynamic donor-host interaction occurred in the developing transplant, suggesting that these changes affect the characteristics of the dental pulp.
Collapse
Affiliation(s)
- T. Nakaki
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K. Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - E. Nakagawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S. Kenmotsu
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
26
|
Effects of a triple antibiotic solution on pulpal dynamics after intentionally delayed tooth replantation in mice. J Endod 2014; 40:1566-72. [PMID: 25260727 DOI: 10.1016/j.joen.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/05/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
INTRODUCTION This study analyzed the detailed biological events underlying pulpal dynamics evoked by 3Mix (the mixture of ciprofloxacin, metronidazole, and minocycline) solution after intentionally delayed tooth replantation because 3Mix improves pulpal healing after tooth injuries. METHODS The maxillary first molars of 3-week-old mice were extracted and immersed in 3Mix solution for 30 minutes in comparison with phosphate buffered saline (PBS) alone. Cell proliferation, apoptosis, and differentiation were assessed in extracted/replanted teeth during days 0-14 using immunohistochemistry, apoptosis assay, and reverse-transcriptase polymerase chain reaction. RESULTS 3Mix solution accelerated odontoblast differentiation in the coronal pulp on day 7 and tertiary dentin formation on day 14, whereas the regenerative process was delayed in the PBS group. Cell proliferation and apoptosis occurred in the pulp of the 3Mix group during days 5-7 and subsequently decreased from days 7-14. On day 5, dentin sialophosphoprotein and nestin were first recovered in the 3Mix group, whereas expression levels for alkaline phosphatase, osteopontin, and osteocalcin increased in the PBS group. The expression levels for octamer-binding factor 3/4A and 3/4B reached the maximum level on day 1 and were sharply decreased on day 3 in both groups. High expression levels of Cd11c were first observed in the 3Mix group on day 1 and later at days 5 and 7. CONCLUSIONS The results suggest that the application of 3Mix may suppress osteoblast differentiation by the migration of dendritic cells to the injury site and via the activation of stem/progenitor cells, resulting in the acceleration of odontoblastlike cell differentiation.
Collapse
|
27
|
Ide Y, Nakahara T, Nasu M, Ishikawa H. Cell dynamics in Hertwig's epithelial root sheath and surrounding mesenchyme in mice irradiated to the head. Oral Dis 2014; 21:232-9. [DOI: 10.1111/odi.12253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/22/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Y Ide
- Department of Developmental and Regenerative Dentistry; School of Life Dentistry at Tokyo; The Nippon Dental University; Tokyo Japan
| | - T Nakahara
- Department of Developmental and Regenerative Dentistry; School of Life Dentistry at Tokyo; The Nippon Dental University; Tokyo Japan
| | - M Nasu
- Research Center for Odontology; School of Life Dentistry at Tokyo; The Nippon Dental University; Tokyo Japan
| | - H Ishikawa
- Department of NDU Life Sciences; The Nippon Dental University School of Life Dentistry at Tokyo; The Nippon Dental University; Tokyo Japan
| |
Collapse
|
28
|
Saito K, Nakatomi M, Kenmotsu S, Ohshima H. Allogenic tooth transplantation inhibits the maintenance of dental pulp stem/progenitor cells in mice. Cell Tissue Res 2014; 356:357-67. [PMID: 24671256 DOI: 10.1007/s00441-014-1818-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/10/2023]
Abstract
Our recent study suggested that allogenic tooth transplantation may affect the maintenance of dental pulp stem/progenitor cells. This study aims to elucidate the influence of allograft on the maintenance of dental pulp stem/progenitor cells following tooth replantation and allo- or auto-genic tooth transplantation in mice using BrdU chasing, immunohistochemistry for BrdU, nestin and Ki67, in situ hybridization for Dspp, transmission electron microscopy and TUNEL assay. Following extraction of the maxillary first molar in BrdU-labeled animals, the tooth was immediately repositioned in the original socket, or the roots were resected and immediately allo- or auto-grafted into the sublingual region in non-labeled or the same animals. In the control group, two types of BrdU label-retaining cells (LRCs) were distributed throughout the dental pulp: those with dense or those with granular reaction for BrdU. In the replants and autogenic transplants, dense LRCs remained in the center of dental pulp associating with the perivascular environment throughout the experimental period and possessed a proliferative capacity and maintained the differentiation capacity into the odontoblast-like cells or fibroblasts. In contrast, LRCs disappeared in the center of the pulp tissue by postoperative week 4 in the allografts. The disappearance of LRCs was attributed to the extensive apoptosis occurring significantly in LRCs except for the newly-differentiated odontoblast-like cells even in cases without immunological rejection. The results suggest that the host and recipient interaction in the allografts disturbs the maintenance of dense LRCs, presumably stem/progenitor cells, resulting in the disappearance of these cell types.
Collapse
Affiliation(s)
- Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | | | | | | |
Collapse
|
29
|
Ida-Yonemochi H, Nakatomi M, Ohshima H. Establishment of in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of BrdU label-retaining dental pulp cells. Histochem Cell Biol 2014; 142:323-33. [DOI: 10.1007/s00418-014-1200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
|