1
|
Inchingolo AM, Inchingolo AD, Nardelli P, Latini G, Trilli I, Ferrante L, Malcangi G, Palermo A, Inchingolo F, Dipalma G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J Funct Biomater 2024; 15:308. [PMID: 39452606 PMCID: PMC11508604 DOI: 10.3390/jfb15100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to their proliferative and differentiative abilities. This systematic review, following PRISMA guidelines, evaluated fifteen studies and identified effective strategies for improving dental, periodontal, and bone tissue regeneration through scaffolds, secretomes, and bioengineering methods. Key advancements include the use of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) to boost cell viability and manage inflammation. Additionally, pharmacological agents like matrine and surface modifications on biomaterials improve stem cell adhesion and promote osteogenic differentiation. By integrating these approaches, regenerative medicine and TE can optimize dental therapies and enhance patient outcomes. This review highlights the potential and challenges in this field, providing a critical assessment of current research and future directions.
Collapse
Affiliation(s)
- Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| |
Collapse
|
2
|
Atila D, Dalgic AD, Krzemińska A, Pietrasik J, Gendaszewska-Darmach E, Bociaga D, Lipinska M, Laoutid F, Passion J, Kumaravel V. Injectable Liposome-Loaded Hydrogel Formulations with Controlled Release of Curcumin and α-Tocopherol for Dental Tissue Engineering. Adv Healthc Mater 2024; 13:e2400966. [PMID: 38847504 DOI: 10.1002/adhm.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Indexed: 06/19/2024]
Abstract
An injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses. In vitro studies are conducted using human dental pulp stem cells (hDPSCs) and human gingival fibroblasts (hGFs) to examine the biological performance of the hydrogels toward endodontics and periodontics, respectively. The viability of hDPSCs treated with the hydrogels with Lip/Cur+Toc is the highest till day 14, compared to the neat hydrogels. During odontogenic differentiation tests, alkaline phosphatase (ALP) enzyme activity of hDPSCs is induced in the Cur-containing groups. Biomineralization is enhanced mostly with Lip/Cur+Toc incorporation. The viability of hGFs is the highest in HCH combined with Lip/Cur+Toc while wound healing occurs almost 100% in both (Lip/Cur+Toc@LCH and Lip/Cur+Toc@HCH) after 2 days. Antioxidant activity of Lip/Cur+Toc@LCH on hGFs is significantly the highest among the groups. Antimicrobial tests demonstrate that Lip/Cur+Toc@LCH is more effective against Escherichia coli whereas so is Lip/Cur+Toc@HCH against Staphylococcus aureus. The antimicrobial mechanism of the hydrogels is investigated for the first time through various computational models. LCH and HCH loaded with Lip/Cur+Toc are promising candidates with multi-functional features for endodontics and periodontics.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Ali Deniz Dalgic
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, 34060, Turkey
| | - Agnieszka Krzemińska
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, 90-924, Poland
| | - Dorota Bociaga
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, 90-924, Poland
| | - Magdalena Lipinska
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Fouad Laoutid
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Julie Passion
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| |
Collapse
|
3
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
4
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
5
|
Salar Amoli M, Anand R, EzEldeen M, Geris L, Jacobs R, Bloemen V. Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering. Gels 2024; 10:140. [PMID: 38391470 PMCID: PMC10887597 DOI: 10.3390/gels10020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
- Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
- Biomechanics Research Unit, GIGA-R In Silico Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 11, 4000 Liège, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
- Department of Dental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Sequeira DB, Diogo P, Gomes BPFA, Peça J, Santos JMM. Scaffolds for Dentin-Pulp Complex Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:7. [PMID: 38276040 PMCID: PMC10821321 DOI: 10.3390/medicina60010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Background and Objectives: Regenerative dentistry aims to regenerate the pulp-dentin complex and restore those of its functions that have become compromised by pulp injury and/or inflammation. Scaffold-based techniques are a regeneration strategy that replicate a biological environment by utilizing a suitable scaffold, which is considered crucial for the successful regeneration of dental pulp. The aim of the present review is to address the main characteristics of the different scaffolds, as well as their application in dentin-pulp complex regeneration. Materials and Methods: A narrative review was conducted by two independent reviewers to answer the research question: What type of scaffolds can be used in dentin-pulp complex regeneration? An electronic search of PubMed, EMBASE and Cochrane library databases was undertaken. Keywords including "pulp-dentin regeneration scaffold" and "pulp-dentin complex regeneration" were used. To locate additional reports, reference mining of the identified papers was undertaken. Results: A wide variety of biomaterials is already available for tissue engineering and can be broadly categorized into two groups: (i) natural, and (ii) synthetic, scaffolds. Natural scaffolds often contain bioactive molecules, growth factors, and signaling cues that can positively influence cell behavior. These signaling molecules can promote specific cellular responses, such as cell proliferation and differentiation, crucial for effective tissue regeneration. Synthetic scaffolds offer flexibility in design and can be tailored to meet specific requirements, such as size, shape, and mechanical properties. Moreover, they can be functionalized with bioactive molecules, growth factors, or signaling cues to enhance their biological properties and the manufacturing process can be standardized, ensuring consistent quality for widespread clinical use. Conclusions: There is still a lack of evidence to determine the optimal scaffold composition that meets the specific requirements and complexities needed for effectively promoting dental pulp tissue engineering and achieving successful clinical outcomes.
Collapse
Affiliation(s)
- Diana B. Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Brenda P. F. A. Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas—UNICAMP, Piracicaba 13083-970, Brazil;
| | - João Peça
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Holiel AA, Sedek EM. Marginal adaptation, physicochemical and rheological properties of treated dentin matrix hydrogel as a novel injectable pulp capping material for dentin regeneration. BMC Oral Health 2023; 23:938. [PMID: 38017480 PMCID: PMC10683231 DOI: 10.1186/s12903-023-03677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Treated dentin matrix hydrogel (TDMH) has been introduced as a novel injectable direct pulp capping material. In this regard, this study aimed to evaluate its marginal adaptation, physicochemical and rheological properties for the development of clinically feasible TDMH. METHODS TDMH was applied to the pulp floor of prepared Class I cavities (n = 5), marginal adaptation was assessed by SEM at 1000 X magnification to detect gap between dentin and filling material. Five syringes were filled with TDMH and placed between the compression plates of a universal testing machine to evaluate injectability and gelation time was also evaluated by test vial inverting method. The microstructures of lyophilized TDMH were observed by SEM. Moreover, TDMH discs (n = 5) were prepared and the water uptake (%) was determined based on the equilibrium swelling theory state of hydrogels. Its solubility was measured after one week by the ISO standard method. Rheological behaviours of TDMH (n = 5) were analysed with a rotational rheometer by computing their complex shear modulus G* and their associated storage modulus (G') and loss modulus (G''). Statistical analysis was performed using F test (ANOVA) with repeated measures and Post Hoc Test (p = 0.05). RESULTS TDMH presented an overall 92.20 ± 2.95% of continuous margins. It exhibited gelation during the first minute, and injectability mean was 66 ± 0.36%. TDMH showed a highly porous structure, and the pores were interconnected with an average diameter about 5.09 ± 3.17 μm. Swelling equilibrium gradually reached at 6 days up to 377%. The prepared hydrogels and maintained their shape after absorbing over three times their original weight of water. TDMH fulfilled the requirements of ISO 6876, demonstrating a weight loss of 1.98 ± 0.09% and linear viscoelastic behaviour with G` 479.2 ± 12.7 and G`` 230.8 ± 13.8. CONCLUSIONS TDMH provided good marginal adaptation, appropriate physicochemical and viscoelastic properties support its use as a novel direct pulp capping material in future clinical applications.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Piglionico SS, Varga B, Pall O, Romieu O, Gergely C, Cuisinier F, Levallois B, Panayotov IV. Biomechanical characterization of a fibrinogen-blood hydrogel for human dental pulp regeneration. Biomater Sci 2023; 11:6919-6930. [PMID: 37655620 DOI: 10.1039/d3bm00515a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In dental practice, Regenerative Endodontic Treatment (RET) is applied as an alternative to classical endodontic treatments of immature necrotic teeth. This procedure, also known as dental pulp revitalization, relies on the formation of a blood clot inside the root canal leading to the formation of a reparative vascularized tissue similar to dental pulp, which would provide vitality to the affected tooth. Despite the benefit of this technique, it lacks reproducibility due to the fast degradation and poor mechanical properties of blood clots. This work presents a method for constructing a fibrinogen-blood hydrogel that mimics the viscoelastic properties of human dental pulp while preserving the biological properties of blood for application in RET. By varying the blood and fibrinogen concentrations, gels with different biomechanical and biological properties were obtained. Rheology and atomic force microscopy (AFM) were combined to study the viscoelastic properties. AFM was used to evaluate the elasticity of human dental pulp. The degradation and swelling rates were assessed by measuring weight changes. The biomimetic properties of the gels were demonstrated by studying the cell survival and proliferation of dental pulp cells (DPCs) for 14 days. The formation of an extracellular matrix (ECM) was assessed by multiphoton microscopy (MPM). The angiogenic potential was evaluated by an ex vivo aortic ring assay, in which the endothelial cells were observed by histological staining after migration. The results show that the Fbg-blood gel prepared with 9 mg ml-1 fibrinogen and 50% blood of the Fbg solution volume has similar elasticity to human dental pulp and adequate degradation and swelling rates. It also allows cell survival and ECM secretion and enhances endothelial cell migration and formation of neovessel-like structures.
Collapse
Affiliation(s)
- Sofia Silvia Piglionico
- LBN, Univ Montpellier, Montpellier, France.
- Centro de Investigaciones Odontológicas, National University of Cuyo, Argentina
| | - Bela Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Astudillo-Ortiz E, Babo PS, Sunde PT, Galler KM, Gomez-Florit M, Gomes ME. Endodontic Tissue Regeneration: A Review for Tissue Engineers and Dentists. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:491-513. [PMID: 37051704 DOI: 10.1089/ten.teb.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others. This fact triggered some misinterpretations, mainly when the denominations of different approaches were used as synonyms. The evaluation of results is not precise, leading to biased conjectures. Therefore, this literature review aims to conceptualize the commonly used terminology, summarize the main research areas on pulp regeneration, identify future trends, and ultimately clarify whether we are really on the edge of a paradigm shift in contemporary endodontics toward pulp regeneration.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Endodontics, School of Dentistry, University of Cuenca, Cuenca, Ecuador
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Pia T Sunde
- Department of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
10
|
van Haasterecht L, Zhou M, Ma Y, Bartolini L, Van Mourik F, Van Zuijlen PPM, Groot ML. Visualizing dynamic three-dimensional changes of human reticular dermal collagen under mechanical strain. Biomed Phys Eng Express 2023; 9:035033. [PMID: 37054703 DOI: 10.1088/2057-1976/accc8e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
In clinical practice, plastic surgeons are often faced with large skin defects that are difficult to close primarily. Management of large skin wounds e.g. burns or traumatic lacerations requires knowledge of skin biomechanic properties. Research into skin microstructural adaptation to mechanical deformation has only been performed using static regimes due to technical limitations. Here, we combine uniaxial stretch tests with fast second harmonic generation imaging and we apply this for the first time to investigate dynamic collagen rearrangement in reticular human dermis.Ex vivohuman skin from the abdomen and upper thigh was simultaneously uniaxially stretched while either periodically visualizing 3D reorganization, or visualizing 2D changes in real time. We determined collagen alignment via orientation indices and found pronounced variability across samples. Comparing mean orientation indices at the different stages of the stress strain curves (toe, heel, linear) showed a significant increase in collagen alignment during the linear part of the mechanical response. We conclude that fast SHG imaging during uni-axial extension is a promising research tool for future studies on skin biomechanic properties.
Collapse
Affiliation(s)
- L van Haasterecht
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB Amsterdam, The Netherlands
- Burn Center, Red Cross Hospital, PO Box 1074, 1940 EB Beverwijk, The Netherlands
| | - M Zhou
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Y Ma
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - L Bartolini
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - F Van Mourik
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - P P M Van Zuijlen
- Amsterdam UMC, Vrije Universiteit, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB Amsterdam, The Netherlands
- Burn Center, Red Cross Hospital, PO Box 1074, 1940 EB Beverwijk, The Netherlands
| | - M L Groot
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gross T, Dieterle MP, Vach K, Altenburger MJ, Hellwig E, Proksch S. Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10030323. [PMID: 36978714 PMCID: PMC10045720 DOI: 10.3390/bioengineering10030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as “trophic mediators”. Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Correspondence: ; Tel.: +49-(0)761-270-48850; Fax: +49-(0)761-270-47620
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs—University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Markus Joerg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Dental Clinic 1–Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstr. 11, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Sugiaman VK, Jeffrey, Naliani S, Pranata N, Djuanda R, Saputri RI. Polymeric Scaffolds Used in Dental Pulp Regeneration by Tissue Engineering Approach. Polymers (Basel) 2023; 15:1082. [PMID: 36904323 PMCID: PMC10007583 DOI: 10.3390/polym15051082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Currently, the challenge in dentistry is to revitalize dental pulp by utilizing tissue engineering technology; thus, a biomaterial is needed to facilitate the process. One of the three essential elements in tissue engineering technology is a scaffold. A scaffold acts as a three-dimensional (3D) framework that provides structural and biological support and creates a good environment for cell activation, communication between cells, and inducing cell organization. Therefore, the selection of a scaffold represents a challenge in regenerative endodontics. A scaffold must be safe, biodegradable, and biocompatible, with low immunogenicity, and must be able to support cell growth. Moreover, it must be supported by adequate scaffold characteristics, which include the level of porosity, pore size, and interconnectivity; these factors ultimately play an essential role in cell behavior and tissue formation. The use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix in dental tissue engineering has recently received a lot of attention because it shows great potential with good biological characteristics for cell regeneration. This review describes the latest developments regarding the usage of natural or synthetic scaffold polymers that have the ideal biomaterial properties to facilitate tissue regeneration when combined with stem cells and growth factors in revitalizing dental pulp tissue. The utilization of polymer scaffolds in tissue engineering can help the pulp tissue regeneration process.
Collapse
Affiliation(s)
- Vinna K. Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Jeffrey
- Department of Pediatric Dentistry, Faculty of Dentistry, Jenderal Achmad Yani University, Cimahi 40531, West Java, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rosalina Intan Saputri
- College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| |
Collapse
|
13
|
Atila D, Keskin D, Lee YL, Lin FH, Hasirci V, Tezcaner A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf B Biointerfaces 2023; 222:113078. [PMID: 36525752 DOI: 10.1016/j.colsurfb.2022.113078] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Use of injectable hydrogels attract attention in the regeneration of dental pulp due to their ability to fill non-uniform voids such as pulp cavities. Here, gelatin methacrylate/thiolated pectin hydrogels (GelMA/PecTH) carrying electrospun core/shell fibers of melatonin (Mel)-polymethylmethacrylate (PMMA)/Tideglusib (Td)-silk fibroin (SF) were designed as an injectable hydrogel for vital pulp regeneration, through prolonged release of Td and Mel to induce proliferation and odontoblastic differentiation of dental pulp stem cells (DPSC). H NMR and FTIR confirmed methacrylation of Gel and thiolation of Pec. Addition of PMMA/SF increased degradation and water retention capacities of GelMA/PecTH. Rheological analyses and syringe tests proved the injectability of the hydrogel systems. Release studies indicated that Td and Mel were released from the fibers inside the hydrogels sequentially due to their specific locations. This release pattern from the hydrogels resulted in DPSC proliferation and odontogenic differentiation in vitro. Gene expression studies showed that the upregulation of DMP1, DSPP, and Axin-2 genes was promoted by GelMA/PecTH carrying PMMA/SF loaded with Mel (50 µg/mL) and Td (200 nM), respectively. Our results suggest that this hydrogel system holds promise for use in the regeneration of pulp tissue.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Yuan-Ling Lee
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan; Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Vasif Hasirci
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University (ACU), Istanbul 34758, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
14
|
Noohi P, Abdekhodaie MJ, Nekoofar MH, Galler KM, Dummer PMH. Advances in Scaffolds Used for Pulp-Dentine Complex Tissue Engineering - A Narrative Review. Int Endod J 2022; 55:1277-1316. [PMID: 36039729 DOI: 10.1111/iej.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy tissue inside the root canal. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Hence, designing and fabricating an appropriate scaffold is a crucial step in tissue engineering. In this review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds, and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication, and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontic, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Histological Evaluation of Restylane Lyft Used as a Scaffold for Dental Pulp Regeneration in Non-Infected Immature Teeth in Dogs. MATERIALS 2022; 15:ma15124095. [PMID: 35744154 PMCID: PMC9228365 DOI: 10.3390/ma15124095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Commercially available hyaluronic acid dermal fillers used as a scaffold in regenerative endodontic procedures (REPs) have demonstrated attractive potentials. This study aimed to histologically evaluate the outcome of REPs using Restylane Lyft (HA) as a scaffold. REPs were performed on pulpless, immature roots in dogs (n = 69). The roots were divided into four groups: blood clot (BC), Restylane Lyft (BC + HA), negative control, and positive control. At 13 weeks postoperatively, hard tissue formation, vascularization, the presence of vascularized soft connective tissue and collagen fibers, the degree of inflammation within pulp spaces and/or periapical tissues, and apical closure were evaluated histologically. The vascularization and formation of loosely arranged collagen fibers within the regenerated soft connective tissues were observed significantly more in the BC+HA group (85% and 40%, respectively; p < 0.05) compared to the BC group (54.6% and 9.1%, respectively; p < 0.05). The degree of inflammation was significantly higher in the HA group than in the BC group; moderate to severe inflammatory cell infiltration was seen in 45% and 13.6% of the cases, respectively. The results of the present study suggest that Restylane Lyft combined with a blood clot used as a scaffold may improve the outcomes of REPs in non-infected, pulpless, immature teeth in dogs.
Collapse
|
16
|
AlHowaish NA, AlSudani DI, AlMuraikhi NA. Evaluation of a hyaluronic acid hydrogel (Restylane Lyft) as a scaffold for dental pulp regeneration in a regenerative endodontic organotype model. Odontology 2022; 110:726-734. [PMID: 35471745 DOI: 10.1007/s10266-022-00710-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
Scaffolds are crucial elements for dental pulp regeneration. Most of the currently used scaffolds in regenerative endodontic procedures (REPs) are unsuitable for chairside clinical use. This study aimed to evaluate the effect of an injectable synthetic scaffold (Restylane Lyft) on human bone marrow mesenchymal stem cell (hBMSC) viability, proliferation, and osteo/dentinogenic differentiation in a regenerative endodontic organotype model (REM). hBMSC were loaded in an REM either alone (hBMSC group) or mixed with the Restylane Lyft scaffold (Restylane/hBMSC group) and cultured in basal culture medium (n = 9/group). hMSC on culture plates served as controls. Cell viability and proliferation were measured using AlamarBlue assay. The loaded REM was cultured in an osteogenic differentiation medium to measure alkaline phosphatase activity (ALP) and examine the expression of the osteo/dentinogenic markers using real-time reverse transcriptase polymerase chain reaction. Cell viability in all groups increased significantly over 5 days. The Restylane/hBMSC group showed significantly higher ALP activity and dentin sialophosphoprotein, osteocalcin, and bone sialoprotein genes expression than the hBMSC and the control groups. Restylane Lyft, a hyaluronic acid (HA) injectable, FDA-approved hydrogel, maintained cell viability and proliferation and promoted osteo/dentinogenic differentiation of hBMSC when cultured in an REM. Henceforth, it could be a promising chairside scaffold material for REPs.
Collapse
Affiliation(s)
- Norah A AlHowaish
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, 11612, Saudi Arabia
| | - Dina I AlSudani
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, 11612, Saudi Arabia.
| | - Nihal A AlMuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
17
|
Atila D, Chen CY, Lin CP, Lee YL, Hasirci V, Tezcaner A, Lin FH. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr Polym 2022; 278:118976. [PMID: 34973790 DOI: 10.1016/j.carbpol.2021.118976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Injectable systems receive attention in endodontics due to the complicated and irregular anatomical structure of root canals. Here, injectable Tideglusib (Td)-loaded hyaluronic acid hydrogels (HAH) incorporated with Rg1-loaded chitosan microspheres (CSM) were developed for vital pulp regeneration, providing release of Td and Rg1 to trigger odontoblastic differentiation of human dental pulp stem cells (DPSC) by Td and vascularization of pulp by Rg1. The optimal concentrations were determined as 90 nM and 50 μg/mL for Td and Rg1, and loaded in HA and CSM in HAH, respectively. Odontogenic (COL1A1, ALP, OCN, Axin-2, DSPP, and DMP1) and angiogenic (VEGFA, VEGFR2, and eNOS) differentiation of DPSC cultured in the presence of hydrogels was shown at gene expression level. Our results suggest that our injectable hydrogel formulation has potential to improve strategies for vital pulp regeneration. In vivo evaluations are needed to test the feasibility and potential of these hydrogels for vital pulp regeneration.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Yuan-Ling Lee
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Vasif Hasirci
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34758, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan; Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei 106216, Taiwan.
| |
Collapse
|
18
|
Peskersoy C, Sahan HM. Finite element analysis and nanomechanical properties of composite and ceramic dental onlays. Comput Methods Biomech Biomed Engin 2022; 25:1649-1661. [PMID: 35098830 DOI: 10.1080/10255842.2022.2032004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim is to evaluate the mechanical properties of the composite and ceramic based indirect restorative materials used in dental treatments with scanning nanoindentation test (NT). Finite element analysis (FEA) was applied to investigate the stress distribution. Four hybrid composite materials; Indirect resin composite (IRC), Resin nanoceramic (RNC), Polymer infiltrated ceramic (PIC) and Zirconia-reinforced lithium-di-silicate (ZRC) were divided into two subgroups for NT (n = 20) and fracture test (n = 40). Statistical analyses were performed with independent t-test, ANOVA and post-hoc Tukey tests (p ≤ 0.05). The highest hardness, elasticity and fracture toughness were observed in ZRC (p = 0.001). Frequency of vertical root fractures in RNC and IRC were statistically lower than ZRC (p = 0.032). Reinforced CAD-CAM ceramics revealed higher mechanical properties compared with IRC materials. The FEA model for fracture mechanism of RNC demonstrated lowest stress values and uniform stress distribution amongst all groups, while ZRC and PIC presented the highest fracture toughness.
Collapse
Affiliation(s)
- Cem Peskersoy
- Faculty of Dentistry, Ege University, Izmir, Izmir, Turkey
| | | |
Collapse
|
19
|
Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines 2021; 10:biomedicines10010071. [PMID: 35052751 PMCID: PMC8773444 DOI: 10.3390/biomedicines10010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Although current treatments can successfully address a wide range of complications in the dentoalveolar region, they often still suffer from drawbacks and limitations, resulting in sub-optimal treatments for specific problems. In recent decades, significant progress has been made in the field of tissue engineering, aiming at restoring damaged tissues via a regenerative approach. Yet, the translation into a clinical product is still challenging. Novel technologies such as bioprinting have been developed to solve some of the shortcomings faced in traditional tissue engineering approaches. Using automated bioprinting techniques allows for precise placement of cells and biological molecules and for geometrical patient-specific design of produced biological scaffolds. Recently, bioprinting has also been introduced into the field of dentoalveolar tissue engineering. However, the choice of a suitable material to encapsulate cells in the development of so-called bioinks for bioprinting dentoalveolar tissues is still a challenge, considering the heterogeneity of these tissues and the range of properties they possess. This review, therefore, aims to provide an overview of the current state of the art by discussing the progress of the research on materials used for dentoalveolar bioprinting, highlighting the advantages and shortcomings of current approaches and considering opportunities for further research.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-30-10-95
| |
Collapse
|
20
|
A Cell-Based Approach to Dental Pulp Regeneration Using Mesenchymal Stem Cells: A Scoping Review. Int J Mol Sci 2021; 22:ijms22094357. [PMID: 33921924 PMCID: PMC8122243 DOI: 10.3390/ijms22094357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the recent explosion of investigations on dental pulp regeneration using various tissue engineering strategies, the translation of the findings from such studies into therapeutic applications has not been properly achieved. The purpose of this scoping review was to systematically review the efficacy of mesenchymal stem cell transplantation for dental pulp regeneration. A literature search was conducted using five electronic databases from their inception to January 2021 and supplemented by hand searches. A total of 17 studies, including two clinical trials and 15 animal studies using orthotopic pulp regeneration models, were included for the review. The risk of bias for the individual studies was assessed. This scoping review demonstrated that the regeneration of vascularized pulp-like tissue was achieved using the stem cell transplantation strategy in animal models. Autologous cell transplantation in two clinical studies also successfully regenerated vascularized vital tissue. Dental pulp stem cell subpopulations, such as mobilized dental pulp stem cells, injectable scaffolds such as atelocollagen, and a granulocyte-colony forming factor, were the most commonly used for pulp regeneration. The overall risk of bias was unclear for animal studies and was moderate or judged to raise some concerns for clinical studies. More high-quality clinical studies are needed to further determine the safety and efficacy of the stem cell transplantation strategy for dental pulp regeneration.
Collapse
|
21
|
Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Sci Rep 2021; 11:5687. [PMID: 33707502 PMCID: PMC7952722 DOI: 10.1038/s41598-021-84405-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration.
Collapse
|
22
|
hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111850. [PMID: 33579484 DOI: 10.1016/j.msec.2020.111850] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
The microsphere system has attracted considerable attention as a stem-cell delivery vehicle in regeneration medicine owing to its injectability, fast substance transfer ability, and mimicry of the three-dimensional native environment. However, suitable biomaterials for preparation of microspheres optimal for endodontic regeneration are still being explored. Owing to its excellent bioactivity and biodegradability, gelatin methacryloyl (GelMA) was used to fabricate hydrogel microspheres by the electrostatic microdroplet method, and the potential of GelMA microspheres applied in endodontic regeneration was studied. The average size of GelMA microspheres encapsulating human dental pulp stem cells (hDPSCs) was ~200 μm, and the Young's modulus was approximately 582.8 ± 66.0 Pa, which was close to that of the natural human dental pulp. The encapsulated hDPSCs could effectively adhere, spread, proliferate, and secrete extracellular matrix proteins in the microspheres, and tended to occupy the outer layer. Moreover, the cell-laden GelMA microsphere system could withstand cryopreservation, and the thawed cells exhibited normal functions. After subcutaneous implantation in a nude mouse model, more vascularized pulp-like tissues were generated in the cell-laden GelMA microsphere group compared with that in the cell-laden bulk GelMA group, and this was accompanied by a suitable degradation rate. The GelMA microspheres showed remarkable performances and great potential as cell delivery vehicles in endodontic regeneration.
Collapse
|
23
|
Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, Liu Y, Han X, Guo W, He M, Liu S, Tian W. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 2020; 113:305-316. [PMID: 32663663 DOI: 10.1016/j.actbio.2020.07.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023]
Abstract
Considering the complicated and irregular anatomical structure of root canal systems, injectable microspheres have received considerable attention as cell carriers in endodontic regeneration. Herein, we developed injectable hybrid RGD-alginate/laponite (RGD-Alg/Lap) hydrogel microspheres, co-encapsulating human dental pulp stem cells (hDPSCs) and vascular endothelial growth factor (VEGF). These microspheres were prepared by the electrostatic microdroplet method with an average size of 350~450 μm. By adjusting the content of laponite, the rheological properties and the degradation rate of the microspheres in vitro could be conditioned. The release of VEGF from the RGD-Alg/0.5%Lap microspheres was in a sustained manner for 28 days while the bioactivity of VEGF was preserved. In addition, the encapsulated hDPSCs were evenly distributed in microspheres with a cell viability exceeding 85%. The deposition of abundant extracellular matrix such as fibronectin (FN) and collagen type I (Col-I) was shown in microspheres after 7 days. The laponite in the system significantly up-regulated the expression of odontogenic-related genes of hDPSCs at day 7. Furthermore, after subcutaneous implantation with tooth slices in a nude mouse model for 1 month, the hDPSCs-laden RGD-Alg/0.5%Lap+VEGF microspheres significantly promoted the regeneration of pulp-like tissues as well as the formation of new micro-vessels. These results demonstrated the great potential of laponite-enhanced hydrogel microspheres in vascularized dental pulp regeneration. STATEMENT OF SIGNIFICANCE: Injectable cell-laden microspheres have recently gained great attention in endodontic regeneration. Here we first developed hybrid alginate/laponite hydrogel microspheres (size about 350~450 μm) by electrostatic microdroplet method, which exhibited tunability in mechanical property and sustained release ability. The incorporation of laponite and the sustained release of VEGF supported not only dental pulp stem cells differentiation in vitro but neotissue regeneration in vivo. These features combined with the simplicity in preparation, made the microspheres ideally suited to simultaneous cells and growth factors delivery in dental pulp regeneration and even other tissue regeneration application.
Collapse
Affiliation(s)
- Ruitao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hao Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingyuan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
24
|
Jang JH, Moon JH, Kim SG, Kim SY. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep 2020; 10:12536. [PMID: 32719323 PMCID: PMC7385085 DOI: 10.1038/s41598-020-69437-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Control of blood clotting in root canal systems is one of the most critical and difficult concerns for regenerative endodontics therapy (RET). The purpose of this study was to investigate the effects of using gelatin- and fibrin-based hemostatic hydrogels as a scaffold on pulp regeneration in a minipig model. Cell viability of human dental pulp stem cells cultured three-dimensionally in gelatin-based and fibrin-based scaffolds was evaluated by MTT and live/dead assay. RET was performed on 24 immature premolars with an autologous blood clot (PC), gelatin-based and fibrin-based hemostatic matrices (GM and FM), or without the insertion of a scaffold (NC). The follow-up period was 12 weeks. Radiographic and histologic assessments for pulp regeneration were performed. Gelatin-based scaffolds exhibited significantly higher cell viability than fibrin-based scaffolds after 15 days (P < 0.05). The PC and GM groups showed favorable root development without inflammation and newly mineralized tissue deposited in the root canal system, while FM group presented inflammatory changes with the continuation of root development. The NC group exhibited internal root resorption with periapical lesions. The application of GM in RET led to favorable clinical outcomes of root development without inflammatory changes compared to conventional RET. Our results suggest that GM may serve as a viable regenerative scaffold for pulp regeneration.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Joung-Ho Moon
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Sahng Gyoon Kim
- Division of Endodontics, College of Dental Medicine, Columbia University, New York, NY, USA.
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
25
|
Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1478. [PMID: 30127246 PMCID: PMC6120038 DOI: 10.3390/ma11081478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress in stem cell biology has resulted in a major current focus on effective modalities to promote directed cellular behavior for clinical therapy. The fundamental principles of tissue engineering are aimed at providing soluble and insoluble biological cues to promote these directed biological responses. Better understanding of extracellular matrix functions is ensuring optimal adhesive substrates to promote cell mobility and a suitable physical niche to direct stem cell responses. Further, appreciation of the roles of matrix constituents as morphogen cues, termed matrikines or matricryptins, are also now being directly exploited in biomaterial design. These insoluble topological cues can be presented at both micro- and nanoscales with specific fabrication techniques. Progress in development and molecular biology has described key roles for a range of biological molecules, such as proteins, lipids, and nucleic acids, to serve as morphogens promoting directed behavior in stem cells. Controlled-release systems involving encapsulation of bioactive agents within polymeric carriers are enabling utilization of soluble cues. Using our efforts at dental craniofacial tissue engineering, this narrative review focuses on outlining specific biomaterial fabrication techniques, such as electrospinning, gas foaming, and 3D printing used in combination with polymeric nano- or microspheres. These avenues are providing unprecedented therapeutic opportunities for precision bioengineering for regenerative applications.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Malvika Nagrath
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Sasikumar Ponnusamy
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| | - Praveen R Arany
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
26
|
Cai S, Zhang W, Chen W. PDGFRβ +/c-kit + pulp cells are odontoblastic progenitors capable of producing dentin-like structure in vitro and in vivo. BMC Oral Health 2016; 16:113. [PMID: 27793148 PMCID: PMC5086066 DOI: 10.1186/s12903-016-0307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Background Successful pulp regeneration depends on identification of pulp stem cells capable of differentiation under odontoblastic lineage and producing pulp-dentinal like structure. Recent studies demonstrate that platelet-derived growth factor (PDGF) plays an important role in damage repair and tissue regeneration. The aim of this study was to identify a subpopulation of dental pulp cells responsive to PDGF and with dentin regeneration potential. Methods Pulp tissues were isolated from 12 freshly extracted human impacted third molars. Pulp cells were sorted by their expression of PDGFRβ and stem cell marker genes via flow cytometry. For the selected cells, proliferation was analyzed by a colorimetric cell proliferation assay, differentiation was assessed by real time PCR detection the expression of odontoblast marker genes, and mineralization was evaluated by Alizarin Red S staining. GFP marked PDGFRβ+/c-kit+ pulp cells were transplanted into emptied root canals of nude rat lower left incisors. Pulp-dentinal regeneration was examined by immunohistochemistry. Results PDGFRβ+/c-kit+ pulp cells proliferated significantly faster than whole pulp cells. In mineralization media, PDGFRβ+/c-kit+ pulp cells were able to develop under odontoblastic linage as demonstrated by a progressively increased expression of DMP1, DSPP, and osteocalcin. BMP2 seemed to enhance whereas PDGF-BB seemed to inhibit odontoblastic differentiation and mineralization of PDGFRβ+/c-kit+ pulp cells. In vivo root canal transplantation study revealed globular dentin and pulp-like tissue formation by PDGFRβ+/c-kit+ cells. Conclusions PDGFRβ+/c-kit+ pulp cells appear to have pulp stem cell potential capable of producing dentinal like structure in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12903-016-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiwei Cai
- Department of Endodontics, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA
| | - Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA.
| | - Wei Chen
- Department of Endodontics, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA
| |
Collapse
|
27
|
|
28
|
Ozcan B, Bayrak E, Erisken C. Characterization of Human Dental Pulp Tissue Under Oscillatory Shear and Compression. J Biomech Eng 2016; 138:061006. [DOI: 10.1115/1.4033437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/08/2022]
Abstract
Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1–100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1±20.4 kPa and 5.5±2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.
Collapse
Affiliation(s)
- Burak Ozcan
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Ece Bayrak
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Cevat Erisken
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Sogutozu Avenue No. 43, Sogutozu, Ankara 06560, Turkey e-mail:
| |
Collapse
|