1
|
Tan Y, He Y, Xu Y, Qiu X, Liu G, Liu L, Jiang Y, Li M, Sun W, Xie Z, Huang Y, Chen X, Yang X. Identification of pain-related long non-coding RNAs for pulpitis prediction. Clin Oral Investig 2025; 29:75. [PMID: 39841251 DOI: 10.1007/s00784-025-06164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVES We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction. MATERIALS AND METHODS Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA). Then the hypergeometric test was utilized to screen pain-related core modules. The functional enrichment analysis was performed on the up- and down-regulated genes in the core module of pulpitis pain to explore the underlying mechanisms. A pain-related lncRNA-based classification model was constructed using LASSO. Consensus clustering and gene set variation analysis (GSVA) on the infiltrating immunocytes was used for pulpitis subtyping. miRanda predicts miRNA-target relationship, which was filtered by expression correlation. Hallmark pathway and enrichment analysis was performed to investigate the candidate target pathways of the lncRNAs. RESULTS A total of 1830 differential RNAs were identified in pulpitis. WGCNA explored seven co-expressed modules, among which the turquoise module is pain-related with hypergeometric test. The up-regulated genes were significantly enriched in immune response related pathways. Down-regulated genes were significantly enriched in differentiation pathways. Eight lncRNAs in the pain-related module were related to inflammation. Among them, MIR181A2HG was downregulated while other seven lncRNAs were upregulated in pulpitis. The LASSO classification model revealed that MIR181A2HG and LINC00426 achieved outstanding predictive performances with perfect ROC-AUC score (AUC = 1). We differentiated the pulpitis samples into two progression subtypes and MIR181A2HG is a progressive marker for pulpitis. The miRNA-mRNA-lncRNA regulatory network of pulpitis pain was constructed, with GATA3 as a key transcription factor. NF-kappa B signaling pathway is a candidate pathway impacted by these lncRNAs. CONCLUSIONS PCED1B-AS1, MIAT, MIR181A2HG, LINC00926, LINC00861, LINC00528, LINC00426 and ITGB2-AS1 may be potential markers of pulpitis pain. A two-lncRNA signature of LINC00426 and MIR181A2HG can accurately predict pulpitis, which could facilitate the molecular diagnosis of pulpitis. GATA3 might regulate these lncRNAs and downstream NF-kappa B signaling pathway. CLINICAL RELEVANCE This study identified potential pain-related lncRNAs with underlying molecular mechanism analysis for the prediction of pulpitis. The classification model based on lncRNAs will facilitate the early diagnosis of pulpitis.
Collapse
Affiliation(s)
- Yongjie Tan
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Ying He
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuexuan Xu
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Xilin Qiu
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Guanru Liu
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Lingxian Liu
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Ye Jiang
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingyue Li
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Weijun Sun
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
- Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, Guangzhou, China
| | - Ziqiang Xie
- Department of Science and Technology, Nanchang University College of Science and Technology, Jiujiang, China
| | - Yonghui Huang
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China
| | - Xin Chen
- School of Automation, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road Panyu District, Guangzhou, 510006, China.
| | - Xuechao Yang
- Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, No. 195 Dongfeng West Road Yuexiu District, Guangzhou, 510182, China.
| |
Collapse
|
2
|
Fuchen-Ramos DM, Leija-Montoya AG, González-Ramírez J, Isiordia-Espinoza M, García-Arévalo F, Pitones-Rubio V, Olvera-Sandoval C, Mateos-Corral I, Serafín-Higuera N. Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. Int J Mol Sci 2024; 25:13603. [PMID: 39769365 PMCID: PMC11677139 DOI: 10.3390/ijms252413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Pulpitis, an inflammation of the dental pulp, is generated by bacterial invasion through different ways as caries. In the establishment and development of this disease, different biological processes are involved. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are transcripts with regulatory capacity participating in different biological functions and have been implicated in different diseases. The aim of this narrative review is to critically analyze available evidence on the biological role of lncRNAs and circRNAs in pulpitis and discuss possible new research prospects. LncRNAs and circRNAs involved in pulpitis were explored, addressing their expression, molecular mechanisms, targets and biological effects studied in animal and in vitro models, as well as in studies in human patients. LncRNAs and circRNAs are emerging as key regulators of diverse biological functions in pulpitis including apoptosis, proliferation, differentiation, oxidative stress, autophagy, ferroptosis, inflammation and immune response. The molecular mechanisms performed by these non-coding RNAs (ncRNAs) involved interactions with miRNAs and the formation of regulatory networks in the context of pulpitis. Further studies more deeply analyzing the participation of lncRNAs and circRNAs in pulpitis will reveal the potential applications of these ncRNAs as biomarkers or their use in therapeutic strategies in pulp inflammation.
Collapse
Affiliation(s)
- Dulce Martha Fuchen-Ramos
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Mario Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fernando García-Arévalo
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Viviana Pitones-Rubio
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Carlos Olvera-Sandoval
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Isis Mateos-Corral
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| |
Collapse
|
3
|
Liu L, Wang T, Duan C, Mao S, Wu B, Chen Y, Huang D, Cao Y. Genetically Supported Drug Targets and Dental Traits: A Mendelian Randomization Study. J Dent Res 2024; 103:1271-1280. [PMID: 39370703 DOI: 10.1177/00220345241272045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Current interventions for oral/dental diseases heavily rely on operative/surgical procedures, while the discovery of novel drug targets may enable access to noninvasive pharmacotherapy. Therefore, this study aims to leverage large-scale data and Mendelian randomization (MR) techniques, utilizing genetic variants as instruments, to identify potential therapeutic targets for oral and dental diseases supported by genetic evidence. By intersecting 4,302 druggable genes with expression quantitative trait loci from 31,684 blood samples, we identified 2,580 druggable targets as exposures. Single nucleotide polymorphisms associated with dental disease/symptom traits were collected from FinnGen R9, the Gene-Lifestyle Interactions in Dental Endpoints consortium, and the UK Biobank to serve as outcomes for both discovery and replication purposes. Through MR analysis, we identified 43 druggable targets for various dental disease/symptom traits. To evaluate the viability of these targets, we replicated the analysis using circulating protein quantitative trait loci as exposures. Additionally, we conducted sensitivity, colocalization, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes annotation, protein-protein interaction analyses, and validated dental trait-associated druggable gene expression in animal models. Among these targets, IL12RB1 (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.01-1.01) and TNF (OR, 0.98; 95% CI, 0.97-0.99) exhibited therapeutic promise for oral ulcers, whereas CXCL10 (OR, 0.84; 95% CI, 0.76-0.91) was for periodontitis. Through a rigorous quality control and validation pipeline, our study yields compelling evidence for these druggable targets, which may enhance the clinical prognosis by developing novel drugs or repurposing existing ones.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Mao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Evidence-Based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu L, Fang T, Miao C, Li X, Zeng Y, Wang T, Cao Y, Huang D, Song D. DLX6-AS1 regulates odonto/osteogenic differentiation in dental pulp cells under the control of BMP9 via the miR-128-3p/MAPK14 axis: A laboratory investigation. Int Endod J 2024; 57:1623-1638. [PMID: 38973098 DOI: 10.1111/iej.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
AIM The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanglin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wu H, Wang L, Qiu C. Causal relationship, shared genes between rheumatoid arthritis and pulp and periapical disease: evidence from GWAS and transcriptome data. Front Immunol 2024; 15:1440753. [PMID: 39346909 PMCID: PMC11427265 DOI: 10.3389/fimmu.2024.1440753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Patients with rheumatoid arthritis (RA) have an increased risk of developing pulp and periapical disease (PAP), but the causal relationship and shared genetic factors between these conditions have not been explored. This study aimed to investigate the bidirectional causal relationship between RA and PAP and to analyze shared genes and pathogenic pathways. Methods We utilized GWAS data from the IEU Open GWAS Project and employed five Mendelian randomization methods (MR Egger, weighted median, inverse variance weighted, simple mode, and weighted mode) to investigate the bidirectional causal relationship between RA and PAP. Transcriptome data for RA and irreversible pulpitis (IRP) were obtained from the GEO database. Hub genes were identified through differential analysis, CytoHubba, machine learning (ML), and other methods. The immune infiltration of both diseases was analyzed using the ssGSEA method. Finally, we constructed a regulatory network for miRNAs, transcription factors, chemicals, diseases, and RNA-binding proteins based on the identified hub genes. Results RA was significantly associated with an increased risk of PAP (OR = 1.1284, 95% CI 1.0674-1.1929, p < 0.001). However, there was insufficient evidence to support the hypothesis that PAP increased the risk of RA. Integrating datasets and differential analysis identified 84 shared genes primarily involved in immune and inflammatory pathways, including the IL-17 signaling pathway, Th17 cell differentiation, and TNF signaling pathway. Using CytoHubba and three ML methods, we identified three hub genes (HLA-DRA, ITGAX, and PTPRC) that are significantly correlated and valuable for diagnosing RA and IRP. We then constructed a comprehensive regulatory network using the miRDB, miRWalk, ChipBase, hTFtarget, CTD, MalaCards, DisGeNET, and ENCORI databases. Conclusion RA may increase the risk of PAP. The three key genes, HLA-DRA, ITGAX, and PTPRC, have significant diagnostic value for both RA and IRP.
Collapse
Affiliation(s)
- Huili Wu
- Department of Endodontics, Changzhou Stomatological Hospital,
Changzhou, China
| | - Lijuan Wang
- Department of Endodontics, Changzhou Stomatological Hospital,
Changzhou, China
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese
Medicine, Changzhou, China
| |
Collapse
|
6
|
Peng C, Huang J, Li M, Liu G, Liu L, Lin J, Sun W, Liu H, Huang Y, Chen X. Uncovering periodontitis-associated markers through the aggregation of transcriptomics information from diverse sources. Front Genet 2024; 15:1398582. [PMID: 38919957 PMCID: PMC11196414 DOI: 10.3389/fgene.2024.1398582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Periodontitis, a common chronic inflammatory disease, significantly impacted oral health. To provide novel biological indicators for the diagnosis and treatment of periodontitis, we analyzed public microarray datasets to identify biomarkers associated with periodontitis. Method The Gene Expression Omnibus (GEO) datasets GSE16134 and GSE106090 were downloaded. We performed differential analysis and robust rank aggregation (RRA) to obtain a list of differential genes. To obtain the core modules and core genes related to periodontitis, we evaluated differential genes through enrichment analysis, correlation analysis, protein-protein interaction (PPI) network and competing endogenous RNA (ceRNA) network analysis. Potential biomarkers for periodontitis were identified through comparative analysis of dual networks (PPI network and ceRNA network). PPI network analysis was performed in STRING. The ceRNA network consisted of RRA differentially expressed messenger RNAs (RRA_DEmRNAs) and RRA differentially expressed long non-coding RNAs (RRA_DElncRNAs), which regulated each other's expression by sharing microRNA (miRNA) target sites. Results RRA_DEmRNAs were significantly enriched in inflammation-related biological processes, osteoblast differentiation, inflammatory response pathways and immunomodulatory pathways. Comparing the core ceRNA module and the core PPI module, C1QA, CENPK, CENPU and BST2 were found to be the common genes of the two core modules, and C1QA was highly correlated with inflammatory functionality. C1QA and BST2 were significantly enriched in immune-regulatory pathways. Meanwhile, LINC01133 played a significant role in regulating the expression of the core genes during the pathogenesis of periodontitis. Conclusion The identified biomarkers C1QA, CENPK, CENPU, BST2 and LINC01133 provided valuable insight into periodontitis pathology.
Collapse
Affiliation(s)
- Chujun Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jinhang Huang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
| | - Mingyue Li
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Guanru Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Lingxian Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Jiechun Lin
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Weijun Sun
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Hongtao Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Yonghui Huang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Xin Chen
- School of Automation, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Chen L, Zhu M, Zhang C, Wang Z, Lyu X, Xu W, Wu B. Osteopontin interacts with dendritic cells and macrophages in pulp inflammation: Comprehensive transcriptomic analysis and laboratory investigations. Int Endod J 2024; 57:464-476. [PMID: 38279773 DOI: 10.1111/iej.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
AIM To investigate novel diagnostic markers for pulpitis and validate by clinical samples from normal and inflamed pulp. To explore the relationship between diagnostic markers and immune cells or their phenotypes during pulp inflammation. METHODOLOGY Two microarray datasets, GSE77459 and GSE92681, and identified differential expression genes were integrated. To understand immune features, gene functions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO) and ImmuneSigDB Gene Set Enrichment Analysis (GSEA) were analysed. For predictive purposes, machine learning techniques were applied to detect diagnostic markers. Immune infiltration in inflamed pulp was studied using CIBERSORT. The relationship between diagnostic markers and immune cells was investigated and validated their gene expression in clinical samples from the normal or inflamed pulp by qRT-PCR. Finally, the correlation between one marker, secreted phosphoprotein 1 (SPP1), encoding osteopontin (OPN), and dendritic cells (DCs)/macrophages was identified via HE staining and multiplex immunohistochemistry. An in vitro inflammatory dental pulp microenvironment model of THP-1 macrophages cocultured with dental pulp cells derived conditioned media (DPCs-CM) to investigate OPN production and macrophage phenotypes was established. RESULTS Analysis revealed unique immunologic features in inflamed pulp. Three diagnostic markers for pulpitis: endothelin-1 (EDN1), SPP1, and purine nucleoside phosphorylase (PNP), and validated them using qRT-PCR were predicted. Multiplex immunohistochemistry demonstrated OPN co-localized with activated DCs and M2 macrophages during pulp inflammation. In vitro experiments showed that THP-1 macrophages produced the highest levels of OPN when stimulated with DPCs-CM derived from the 20 μg/mL LPS pre-conditioned group, suggesting an M2b-like phenotype by increasing surface marker CD86 and expression of IL6, TNFα, IL10, and CCL1 but not CCL17 and MerTK. Levels of CCL1 and IL10 elevated significantly in the macrophages' supernatant from the 20 μg/mL LPS pre-conditioned CM group. OPN was proven co-localizing with CD86 in the inflamed pulp by immunofluorescence. CONCLUSIONS The current findings suggest that OPN can serve as a promising biomarker for pulpitis, correlated with DCs and macrophages. OPN+ macrophages in the inflamed pulp are associated with M2b-like phenotypes. These insights offer the potential for improved diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Leyi Chen
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqi Zhu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuhan Zhang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Ziting Wang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaolin Lyu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Wenan Xu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Buling Wu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Khijmatgar S, Bellucci G, Creminelli L, Tartaglia GM, Tumedei M. Systemic Antibiotic Use in Acute Irreversible Pulpitis: Evaluating Clinical Practices and Molecular Insights. Int J Mol Sci 2024; 25:1357. [PMID: 38279358 PMCID: PMC10816036 DOI: 10.3390/ijms25021357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024] Open
Abstract
This scoping review systematically evaluates the use of systemic antibiotics in treating acute irreversible pulpitis, integrating clinical practice patterns with recent molecular insights. We analyzed clinical evidence on antibiotic prescription trends among dental professionals and examined molecular research advancements in relation to pulpitis. This review is intended to bridge the gap between clinical practice and molecular research, guiding more evidence-based approaches to treating acute irreversible pulpitis. Electronic databases were searched for relevant articles published in English based on the objective of the review. A second search using all identified keywords and index terms was undertaken across all the included databases. In addition, a reference list of identified articles was searched. Studies including original research, systematic reviews, meta-analyses, clinical trials, and observational and retrospective studies, all written in English and published from 2010 onwards, were included, and an analysis of the text words contained in the titles and abstracts of the retrieved papers and of the index terms used to describe the articles was performed. A total of N = 53 articles were selected. Altogether, N = 43 (76.79%) articles were cross-sectional studies, N = 4 (11.11%) were systematic reviews, and N = 3 (5.36%) were guidelines. The most frequent level of evidence was level VI (N = 43 (76.79%). The mean percentage of dentists who prescribed antibiotics to treat acute irreversible pulpitis was 23.89 ± 23.74% (range: 0.05-75.7). Similarly, for specialists, it was 22.41 ± 15.64 (range 2.2-50.4), and the percentage for undergraduates was 17.52 ± 20.59 (range 0-62.6). The significant developments in research models for pulpitis research and the characterisation of biomarkers have led to better management strategies. Concurrently, significant advancements in molecular research provide new understandings of pulpitis, suggesting alternative therapeutic approaches. Although there are guidelines available, increased rates of antibiotic prescription are still prevalent around the globe.
Collapse
Affiliation(s)
- Shahnawaz Khijmatgar
- Complex Structure of Surgical Maxillofacial and Odontostomatology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.B.); (L.C.)
| | - Gionata Bellucci
- Complex Structure of Surgical Maxillofacial and Odontostomatology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.B.); (L.C.)
| | - Luca Creminelli
- Complex Structure of Surgical Maxillofacial and Odontostomatology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.B.); (L.C.)
| | | | - Margherita Tumedei
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
9
|
Chi Y, Liu T, Jin Q, Liu H. Extracellular Vesicles Carrying RUNX3 Promote Differentiation of Dental Pulp Stem Cells. Tissue Eng Regen Med 2024; 21:111-122. [PMID: 37684540 PMCID: PMC10764680 DOI: 10.1007/s13770-023-00578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND This study aims to clarify the mechanism underlying dental pulp cells-extracellular vesicles (DPC-EVs) carrying runt-related transcription factor 3 (RUNX3) in mediating odontogenic differentiation of dental pulp stem cells (DPSCs) with the involvement of miR-30a-5p-regulated NOTCH1. METHODS Extracellular vesicles (EVs) were isolated from human DPSCs, and identified using transmission electron microscopy, and nanoparticle tracking analysis. PBS, EVs, or EV inhibitor GW4869 was added to DPSCs for co-culture, whilst odontogenic differentiation was assessed in terms of ratio of mineralized nodules and expression odontoblast differentiation markers. Dual luciferase reporter gene assay and chromatin immunoprecipitation for binding relation among RUNX3, miR-30a-5p and NOTCH1were employed to evaluate their roles in odontogenic differentiation was determined. Animal experiment was established to confirm the effect of DPC-EVs-loaded RUNX3 on dental pulp. RESULTS In vitro finding demonstrated that EVs delivered RUNX3 to DPSCs, thereby activated miR-30a-5p expression and inhibited NOTCH1 expression, which was reversed by addition of GW4869. RUNX3 upregulation promoted miR-30a-5p while miR-30a-5p targeted and inhibited NOTCH1. Silencing of RUNX3 in EVs decreased expression of those differentiation markers, downregulated miR-30a-5p and upregulated NOTCH1. CONCLUSION DPSC-EVs can carry RUNX3 to the DPSCs, promote the transcription of miR-30a-5p, and then inhibit the expression of NOTCH1, and finally promote the odontogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Yuhong Chi
- Department of Stomatology, The People's Hospital of Suzhou New District, 16-502, Dongbang Xinyuan, Fengqiao Street, Huqiu District, Suzhou, Jiangsu Province, People's Republic of China
| | - Tingzhong Liu
- Department of Stomatology, The People's Hospital of Suzhou New District, 16-502, Dongbang Xinyuan, Fengqiao Street, Huqiu District, Suzhou, Jiangsu Province, People's Republic of China
| | - Qingsong Jin
- Department of Oral and Maxillofacial Surgery, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar, People's Republic of China
| | - Hao Liu
- Department of Stomatology, The People's Hospital of Suzhou New District, 16-502, Dongbang Xinyuan, Fengqiao Street, Huqiu District, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Xie Q, Yu H, Zhou B, Guo X, Wu B, Hu J. Establishment and validation of the autophagy-related ceRNA network in irreversible pulpitis. BMC Genomics 2023; 24:268. [PMID: 37208635 DOI: 10.1186/s12864-023-09363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The molecular mechanisms underlying the onset and progression of irreversible pulpitis have been studied for decades. Many studies have indicated a potential correlation between autophagy and this disease. Against the background of the competing endogenous RNA (ceRNA) theory, protein-coding RNA functions are linked with long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). This mechanism has been widely studied in various fields but has rarely been reported in the context of irreversible pulpitis. The hub genes selected under this theory may represent the key to the interaction between autophagy and irreversible pulpitis. RESULTS Filtering and differential expression analyses of the GSE92681 dataset, which contains data from 7 inflamed and 5 healthy pulp tissue samples, were conducted. The results were intersected with autophagy-related genes (ARGs), and 36 differentially expressed ARGs (DE-ARGs) were identified. Functional enrichment analysis and construction of the protein‒protein interaction (PPI) network of DE-ARGs were performed. Coexpression analysis was conducted between differentially expressed lncRNAs (DElncRNAs) and DE-ARGs, and 151 downregulated and 59 upregulated autophagy-related DElncRNAs (AR-DElncRNAs) were identified. StarBase and multiMiR were then used to predict related microRNAs of AR-DElncRNAs and DE-ARGs, respectively. We established ceRNA networks including 9 hub lncRNAs (HCP5 and AC112496.1 ↑; FENDRR, AC099850.1, ZSWIM8-AS1, DLX6-AS1, LAMTOR5-AS1, TMEM161B-AS1 and AC145207.5 ↓), which were validated by a qRT‒PCR analysis of pulp tissue from patients with irreversible pulpitis. CONCLUSION We constructed two networks consisting of 9 hub lncRNAs based on the comprehensive identification of autophagy-related ceRNAs. This study may provide novel insights into the interactive relationship between autophagy and irreversible pulpitis and identifies several lncRNAs that may serve as potential biological markers.
Collapse
Affiliation(s)
- Ye Wang
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bangyi Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiao Hu
- Changsha Stomatological Hospital, Changsha, 410000, China.
| |
Collapse
|
11
|
Wang J, Qiao J, Ma L, Li X, Wei C, Tian X, Liu K. Identification of the characteristics of infiltrating immune cells in pulpitis and its potential molecular regulation mechanism by bioinformatics method. BMC Oral Health 2023; 23:287. [PMID: 37179325 PMCID: PMC10182635 DOI: 10.1186/s12903-023-03020-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVE The inflammation of dental pulp will also trigger an immune response. The purpose of this study is to demonstrate the immune cell's function and explore their regulatory molecules and signal pathways in pulpitis. METHOD The CIBERSORTx method was used to quantitatively analyze 22 types of immune cells infiltrating in the GSE77459 dataset of dental pulp tissues. The immune-related differential genes (IR-DEGs) were further screened and enriched for the GO and KEGG pathways. Protein-protein interaction (PPI) networks were constructed and the hub IR-DEGs were screened. Finally, we constructed the regulatory network of hub genes. RESULTS The GSE77459 dataset screened 166 IR-DEGs and was enriched for three signal pathways involved in pulpitis development: chemokine signaling, TNF signaling, and NF-κB signaling. Significant differences in immune cell infiltration were observed between normal and inflamed dental pulp. The proportions of M0 macrophages, neutrophils, and follicular helper T cells were significantly higher than that of the normal dental pulp, while the proportions of resting mast cells, resting dendritic cells, CD8 T cells, and monocytes were significantly lower. The random forest algorithm concluded that M0 macrophages and neutrophils were the two most important immune cells. We identified five immune-related hub genes IL-6, TNF-α, IL-1β, CXCL8, and CCL2. In addition, IL-6, IL-1β, and CXCL8 are highly correlated with M0 macrophages and neutrophils, and the five hub genes have many shared regulatory molecules: four miRNAs and two lncRNAs, three transcription factors. CONCLUSION Immune cell infiltration plays an important role in pulpitis among which M0 macrophages and neutrophils are the most significant immune cells. IL-6, TNF-α, IL-1, CXCL8, and CCL2 may be essential molecule of the immune response regulation network in pulpitis. This will help us understand the immune regulatory network in pulpitis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Junxia Qiao
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Lili Ma
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Xin Li
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Chengshi Wei
- Department of Endodontics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, P.R. China
| | - Xiufen Tian
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| | - Kun Liu
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| |
Collapse
|
12
|
Gong W, Hong L, Qian Y. Identification and Experimental Validation of LINC00582 Associated with B Cell Immune and Development of Pulpitis: Bioinformatics and In Vitro Analysis. Diagnostics (Basel) 2023; 13:diagnostics13101678. [PMID: 37238161 DOI: 10.3390/diagnostics13101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pulpitis is a common oral disease. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) can regulate the immune response in pulpitis. This study focused on finding the key immune-related lncRNAs that regulate the development of pulpitis. METHODS Differentially expressed lncRNAs were analyzed. Enrichment analysis was performed to explore the function of differentially expressed genes. Immune cell infiltration was evaluated with Immune Cell Abundance Identifier. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase release assays were conducted to measure the viability of human dental pulp cells (HDPCs) and BALL-1 cells. Transwell assay was processed to prove migration and invasion of BALL-1 cells. RESULTS Our results revealed that 17 lncRNAs were significantly upregulated. Pulpitis-related genes were mainly enriched in inflammatory relative signal pathways. The abundance of various immune cells was significantly abnormal in pulpitis tissues, among which the expression of eight lncRNAs was significantly correlated with the expression of B cell marker protein CD79B. As the most relevant lncRNA for B cells, LINC00582 could regulate the proliferation, migration, invasion, and CD79B expression of BALL-1 cells. CONCLUSIONS Our study identified eight B cell immune-related lncRNAs. Meanwhile, LINC00582 has a positive effect on B cell immunity in the development of pulpitis.
Collapse
Affiliation(s)
- Wenting Gong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Lilin Hong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Yi Qian
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| |
Collapse
|
13
|
A review on the role of ADAMTS9-AS2 in different disorders. Pathol Res Pract 2023; 243:154346. [PMID: 36746036 DOI: 10.1016/j.prp.2023.154346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Recent decade has seen a tremendous progress in identification of the role of different long non-coding RNAs (lncRNAs) in human pathologies. ADAMTS9-AS2 is an example of lncRNAs with different roles in human disorders. It is mostly acknowledged as a tumor suppressor lncRNA in different types of cancers. However, it has been reported to be up-regulated in tongue squamous cell carcinoma, salivary adenoid cystic carcinoma and glioblastoma. Moreover, ADAMTS9-AS2 is possibly involved in the pathoetiology of pulpitis, acute ischemic stroke, type 2 diabetes and its complications. This lncRNA sponges miR-196b-5p, miR-223-3p, miR-130a-5p, miR-600, miR-223-3p, miR-27a-3p, miR-32, miR-143-3p, miR-143-3p and miR-182-5p in order to regulate downstream mRNAs. This review aims at summarization of the role of ADAMTS9-AS2 in different disorders with a particular focus on its diagnostic and prognostic values.
Collapse
|
14
|
Huang P, Wang F, Wang X, Meng X, Qiao W, Meng L. RNA-sequencing analysis reveals the potential molecular mechanism of RAD54B in the proliferation of inflamed human dental pulp cells. Int Endod J 2023; 56:39-52. [PMID: 36196684 DOI: 10.1111/iej.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
AIM To investigate the role of RAD54B in the proliferation of inflamed human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODOLOGY Normal, carious and pulpitic human dental pulp tissues were collected. Total RNA was subjected to RNA-sequencing (seq) and gene expression profiles were studied by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differentially expressed genes (DEGs) in homologous recombination repair (HRR) were validated with qRT-PCR. The expression of RAD54B and TNF-α in human dental pulp tissues was detected using immunohistochemistry. HDPCs were cultured and RAD54B level in hDPCs was detected after LPS stimulation using western blot. CCK-8 was used to investigate the proliferation of hDPCs transfected with negative control (Nc) small interfering RNA (siRNA), RAD54B siRNA, P53 siRNA or both siRNAs with or without LPS stimulation. Flow cytometry was used to detect the cell cycle distribution, and western blot and immunofluorescence were used to analyse the expression of RAD54B, P53 and P21 under the above treatments. One-way and two-way anova followed by least significant difference posttest were used for statistical analysis. RESULTS RNA-seq results identified DEGs amongst the three groups. KEGG pathway analysis revealed enrichment of DEGs in the replication and repair pathway. HRR and non-homologous end joining (NHEJ) components were further verified and qRT-PCR results were basically consistent with the sequencing data. RAD54B, an HRR accessory factor highly expressed in carious and pulpitic tissues as compared to that in normal pulps, was chosen as our gene of interest. High RAD54B expression was confirmed in inflamed human dental pulp tissues and LPS-stimulated hDPCs. Upon RAD54B knockdown, P53 and P21 expressions in hDPCs were upregulated whereas the proliferation was significantly downregulated, accompanied by increased G2/M phase arrest. After inhibiting P53 expression in RAD54B-knockdown hDPCs, P21 expression and cell proliferation were reversed. CONCLUSIONS Gene expression profiles of normal, carious and pulpitic human dental pulp tissues were revealed. HRR components were elucidated to function in dental pulp inflammation. Amongst the DEGs in HRR, RAD54B regulated the proliferation of inflamed hDPCs via P53/P21 signalling. This research deepens our understanding of dental pulp inflammation and provides new insight to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fushi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiujiao Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Al Gashaamy ZJ, Alomar T, Al-Sinjary L, Wazzan M, Saeed MH, Al-Rawi NH. MicroRNA expression in apical periodontitis and pulpal inflammation: a systematic review. PeerJ 2023; 11:e14949. [PMID: 36890871 PMCID: PMC9987318 DOI: 10.7717/peerj.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Background The aim of this systematic review is to determine microRNAs (miRs) that are differently expressed between diseased pulpal and periapical tissues. Design This systematic review used PubMed, Scopus, EBSCO, ProQuest, Cochrane database as well as manual searching to extract studies from January 2012 up to February 2022. Results A total of 12 studies met the eligibility criteria were included. All selected studies were of case-control type. Twenty-four miRNAs associated with apical periodontitis, 11 were found to be upregulatedand 13 were downregulated. Four out of the 44 miRs associated with pulpal inflammation were upregulated, whereas forty were downregulated. Six miRs, namely hsa-miR-181b, hsa-miR-181c,hsa-miR-455-3p,hsa-miR-128-3p, hsa-miR199a-5p, and hsa-miR-95, exhibited considerable downregulation in both periapical and pulp tissues. Conclusion MiRs have been investigated for their role in pulpal and periapical biology and may be utilised in diagnostic and therapeutic purposes. Further investigations are required to determine why certain irreversible pulpitis situations progress to apical periodontitis and others do not, based on the various miR expressions. Moreover, clinical and laboratory trials are needed to support this theory.
Collapse
Affiliation(s)
- Zainab Jamal Al Gashaamy
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tiba Alomar
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Linah Al-Sinjary
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Wazzan
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Science, College of Dentistry, Ajman University, Ajman, United Arab Emirates.,Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Natheer H Al-Rawi
- Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Li Y, Li S, Li R, Xu H. LncRNA PVT1 upregulates FBN1 by sponging miR-30b-5p to aggravate pulpitis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Identification of Immune-Related lncRNA Regulatory Network in Pulpitis. DISEASE MARKERS 2022; 2022:7222092. [PMID: 35711564 PMCID: PMC9194960 DOI: 10.1155/2022/7222092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Background. Long noncoding RNAs (lncRNAs) are emerging as critical regulators of various biological processes, including immune regulation. Methods. Due to the critical significance of immunological responses in the development and progression of pulpitis, we used an integrated algorithm to identify immune-related lncRNAs and then examined the lncRNA-immunity regulation network in pulpitis. Before identifying immune-related lncRNAs, the data from GEO datasets were precleaned. ConsensusClusterPlus was used to differentiate immune-related pulpitis subgroups. Enrichment analysis using GO and MSigDB databases was employed to determine the differences in molecular function, cellular component, and biological process between the two pulpitis subtypes. Results. An integrated algorithm was designed to filtrate immune-related lncRNAs accurately. 790 immune-related lncRNAs were found in 17 immunological categories, with 38 of them perturbated in pulpitis. The Cytoscape software was used to visualize the relationship between representative immune regulatory pathways and immune-related lncRNAs. Two immune-related pulpitis subtypes were discovered using differentially expressed immune-related lncRNAs. Subtype 2 has a stronger association with immune-related pathways than subtype 1 does. Conclusions. Our study identified many immune-related lncRNAs and investigated potential lncRNA regulation networks; meanwhile, the molecular subtypes of pulpitis were identified, all of which will be relevant for further research into inflammatory and immunological processes in pulpitis.
Collapse
|
18
|
Liu L, Chen Y, Wang L, Yang F, Li X, Luo S, Yang L, Wang T, Song D, Huang D. Dissecting B/Plasma Cells in Periodontitis at Single-Cell/Bulk Resolution. J Dent Res 2022; 101:1388-1397. [PMID: 35620808 DOI: 10.1177/00220345221099442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent decades, our understanding of periodontitis has evolved from that based on a gross/histologic level to one on a cellular/molecular level. Previous landscape studies have explored molecular subtyping, diagnosis, and gingival tissue cell decomposition in periodontitis, and meaningful results have been obtained at a transcriptomic level. However, current periodontitis transcriptomic studies lack a finer dissection of the intercommunication between immune cells and the biological processes of specific immune cell subtypes. In this study, we classified 15 immune cell types in periodontitis at a single-cell level and conducted a cell communication analysis based on a multicenter integrated single-cell transcriptome profile, in which plasma cell-generated macrophage migration inhibitory factor can communicate with most other immune cells in periodontitis. A pseudotime analysis focusing on B/plasma cell infiltration in periodontitis revealed 2 distinct cell fates (CFs) for B/plasma cells. In addition, at a bulk tissue level, a single-sample gene set enrichment analysis showed a similar immune cell infiltration trend, and a weighted gene coexpression network analysis identified an immune-related gene module. Combined with the above findings, we used machine learning methods to further narrow down potential gene candidates for developing and validating molecular diagnostic models of periodontitis. Multivariable logistic regression of a large public cohort (68 healthy vs. 235 periodontitis) and an independent validation cohort (12 healthy vs. 7 periodontitis) showed the CF1 signature provides a good discrimination and calibration performance with clinical benefits at a proper threshold probability. Furthermore, quantitative real-time polymerase chain reaction validation of the gene candidates was performed in both snap-frozen gingival tissues and gingival crevicular fluids. Our transcriptomic landscape analysis at both single-cell and bulk tissue resolutions thereby illustrates the B/plasma cell infiltration process in periodontitis and reveals a gene signature that may assist in molecular diagnosis of the disease.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - F Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Emerging roles of lncRNAs in the pathogenesis, diagnosis, and treatment of trigeminal neuralgia. Biochem Soc Trans 2022; 50:1013-1023. [PMID: 35437600 DOI: 10.1042/bst20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Trigeminal neuralgia (TN) is one of the most common neuropathic pain disorders and is often combined with other comorbidities if managed inadequately. However, the present understanding of its pathogenesis at the molecular level remains lacking. Long noncoding RNAs (lncRNAs) play crucial roles in neuropathic pain, and many studies have reported that specific lncRNAs are related to TN. This review summarizes the current understanding of lncRNAs in the pathogenesis, diagnosis, and treatment of TN. Recent studies have shown that the lncRNAs uc.48+, Gm14461, MRAK009713 and NONRATT021972 are potential candidate loci for the diagnosis and treatment of TN. The current diagnostic system could be enhanced and improved by a workflow for selecting transcriptomic biomarkers and the development of lncRNA-based molecular diagnostic systems for TN. The discovery of lncRNAs potentially impacts drug selection for TN; however, the current supporting evidence is limited to preclinical studies. Additional studies are needed to further test the diagnostic and therapeutic value of lncRNAs in TN.
Collapse
|
20
|
Richert R, Ducret M, Alliot-Licht B, Bekhouche M, Gobert S, Farges JC. A critical analysis of research methods and experimental models to study pulpitis. Int Endod J 2022; 55 Suppl 1:14-36. [PMID: 35034368 DOI: 10.1111/iej.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Pulpitis is the inflammatory response of the dental pulp to a tooth insult, whether it is microbial, chemical, or physical in origin. It is traditionally referred to as reversible or irreversible, a classification for therapeutic purposes that determines the capability of the pulp to heal. Recently, new knowledge about dental pulp physiopathology led to orientate therapeutics towards more frequent preservation of pulp vitality. However, full adoption of these vital pulp therapies by dental practitioners will be achieved only following better understanding of cell and tissue mechanisms involved in pulpitis. The current narrative review aimed to discuss the contribution of the most significant experimental models developed to study pulpitis. Traditionally, in vitro two(2D)- or three(3D)-dimensional cell cultures or in vivo animal models were used to analyse the pulp response to pulpitis inducers at cell, tissue or organ level. In vitro 2D cell cultures were mainly used to decipher the specific roles of key actors of pulp inflammation such as bacterial by-products, pro-inflammatory cytokines, odontoblasts or pulp stem cells. However, these simple models did not reproduce the 3D organisation of the pulp tissue and, with rare exceptions, did not consider interactions between resident cell types. In vitro tissue/organ-based models were developed to better reflect the complexity of the pulp structure. Their major disadvantage is that they did not allow the analysis of blood supply and innervation participation. On the contrary, in vivo models have allowed researchers to identify key immune, vascular and nervous actors of pulpitis and to understand their function and interplay in the inflamed pulp. However, inflammation was mainly induced by iatrogenic dentine drilling associated with simple pulp exposure to the oral environment or stimulation by individual bacterial by-products for short periods. Clearly, these models did not reflect the long and progressive development of dental caries. Lastly, the substantial diversity of the existing models makes experimental data extrapolation to the clinical situation complicated. Therefore, improvement in the design and standardization of future models, for example by using novel molecular biomarkers, databased models and artificial intelligence, will be an essential step in building an incremental knowledge of pulpitis in the future.
Collapse
Affiliation(s)
- Raphaël Richert
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Mécanique des Contacts et Structures, UMR 5259, Villeurbanne, France
| | - Maxime Ducret
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Brigitte Alliot-Licht
- Université de Nantes, Faculté d'Odontologie, Nantes, France.,CHU de Nantes, Odontologie Conservatrice et Pédiatrique, Service d, Nantes, France
| | - Mourad Bekhouche
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Stéphanie Gobert
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Jean-Christophe Farges
- Hospices Civils de Lyon, Service d'Odontologie, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305, CNRS, Université, UMS, Claude Bernard Lyon 1, 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| |
Collapse
|
21
|
Aminoshariae A, Azarpazhooh A, Diogenes AR, Fouad AF, Glickman GN, Kishen A, Letra AM, Levin L, Roda RS, Setzer FC, Tay FR, Hargreaves KM. Insights into the September 2021 Issue of the JOE. J Endod 2021; 47:1337-1339. [PMID: 34429215 DOI: 10.1016/j.joen.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Amir Azarpazhooh
- Faculty of Dentistry University of Toronto, Toronto, Ontario, Canada
| | - Anibal R Diogenes
- University of Texas Health San Antonio School of Dentistry, San Antonio, Texas
| | - Ashraf F Fouad
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Anil Kishen
- Faculty of Dentistry University of Toronto, Toronto, Ontario, Canada
| | - Ariadne M Letra
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas
| | | | | | - Frank C Setzer
- University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, Georgia
| | | |
Collapse
|