1
|
Tang CY, Gao C, Prasai K, Li T, Dash S, McElroy JA, Hang J, Wan XF. Prediction models for COVID-19 disease outcomes. Emerg Microbes Infect 2024; 13:2361791. [PMID: 38828796 PMCID: PMC11182058 DOI: 10.1080/22221751.2024.2361791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
SARS-CoV-2 has caused over 6.9 million deaths and continues to produce lasting health consequences. COVID-19 manifests broadly from no symptoms to death. In a retrospective cross-sectional study, we developed personalized risk assessment models that predict clinical outcomes for individuals with COVID-19 and inform targeted interventions. We sequenced viruses from SARS-CoV-2-positive nasopharyngeal swab samples between July 2020 and July 2022 from 4450 individuals in Missouri and retrieved associated disease courses, clinical history, and urban-rural classification. We integrated this data to develop machine learning-based predictive models to predict hospitalization, ICU admission, and long COVID.The mean age was 38.3 years (standard deviation = 21.4) with 55.2% (N = 2453) females and 44.8% (N = 1994) males (not reported, N = 4). Our analyses revealed a comprehensive set of predictors for each outcome, encompassing human, environment, and virus genome-wide genetic markers. Immunosuppression, cardiovascular disease, older age, cardiac, gastrointestinal, and constitutional symptoms, rural residence, and specific amino acid substitutions were associated with hospitalization. ICU admission was associated with acute respiratory distress syndrome, ventilation, bacterial co-infection, rural residence, and non-wild type SARS-CoV-2 variants. Finally, long COVID was associated with hospital admission, ventilation, and female sex.Overall, we developed risk assessment models that offer the capability to identify patients with COVID-19 necessitating enhanced monitoring or early interventions. Of importance, we demonstrate the value of including key elements of virus, host, and environmental factors to predict patient outcomes, serving as a valuable platform in the field of personalized medicine with the potential for adaptation to other infectious diseases.
Collapse
Affiliation(s)
- Cynthia Y. Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Cheng Gao
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| | - Kritika Prasai
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shreya Dash
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jane A. McElroy
- Family and Community Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
2
|
Mukherjee S, Vagha S, Gadkari P. Navigating the Future: A Comprehensive Review of Artificial Intelligence Applications in Gastrointestinal Cancer. Cureus 2024; 16:e54467. [PMID: 38510911 PMCID: PMC10953838 DOI: 10.7759/cureus.54467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/22/2024] Open
Abstract
This comprehensive review explores the transformative role of artificial intelligence (AI) in the realm of gastrointestinal cancer. Gastrointestinal cancers present unique challenges, necessitating precise diagnostic tools and personalized treatment strategies. Leveraging AI, particularly machine learning and deep learning algorithms, has demonstrated remarkable potential in revolutionizing early detection, treatment planning, prognosis, and drug development. The analysis of current research and technological advancements underscores the capacity of AI to unravel intricate patterns within extensive datasets, providing actionable insights that enhance diagnostic accuracy and treatment efficacy. The transformative impact of AI on the landscape of gastrointestinal cancer is emphasized, signaling a paradigm shift towards more precise and targeted cancer care. The conclusion emphasizes the need for sustained research efforts and collaborative initiatives among AI researchers, healthcare professionals, and policymakers. By fostering interdisciplinary collaboration, we can navigate the evolving field of gastrointestinal cancer care, embracing the potential of AI to improve patient outcomes and contribute to a more effective and personalized approach to cancer management.
Collapse
Affiliation(s)
- Sreetama Mukherjee
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunita Vagha
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pravin Gadkari
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Niazkar HR, Moshari J, Khajavi A, Ghorbani M, Niazkar M, Negari A. Application of multi-gene genetic programming to the prognosis prediction of COVID-19 using routine hematological variables. Sci Rep 2024; 14:2043. [PMID: 38263446 PMCID: PMC10806074 DOI: 10.1038/s41598-024-52529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Identifying patients who may develop severe COVID-19 has been of interest to clinical physicians since it facilitates personalized treatment and optimizes the allocation of medical resources. In this study, multi-gene genetic programming (MGGP), as an advanced artificial intelligence (AI) tool, was used to determine the importance of laboratory predictors in the prognosis of COVID-19 patients. The present retrospective study was conducted on 1455 patients with COVID-19 (727 males and 728 females), who were admitted to Allameh Behlool Gonabadi Hospital, Gonabad, Iran in 2020-2021. For each patient, the demographic characteristics, common laboratory tests at the time of admission, duration of hospitalization, admission to the intensive care unit (ICU), and mortality were collected through the electronic information system of the hospital. Then, the data were normalized and randomly divided into training and test data. Furthermore, mathematical prediction models were developed by MGGP for each gender. Finally, a sensitivity analysis was performed to determine the significance of input parameters on the COVID-19 prognosis. Based on the achieved results, MGGP is able to predict the mortality of COVID-19 patients with an accuracy of 60-92%, the duration of hospital stay with an accuracy of 53-65%, and admission to the ICU with an accuracy of 76-91%, using common hematological tests at the time of admission. Also, sensitivity analysis indicated that blood urea nitrogen (BUN) and aspartate aminotransferase (AST) play key roles in the prognosis of COVID-19 patients. AI techniques, such as MGGP, can be used in the triage and prognosis prediction of COVID-19 patients. In addition, due to the sensitivity of BUN and AST in the estimation models, further studies on the role of the mentioned parameters in the pathophysiology of COVID-19 are recommended.
Collapse
Affiliation(s)
- Hamid Reza Niazkar
- Gonabad University of Medical Sciences, Gonabad, Iran.
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jalil Moshari
- Pediatric Department, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdoljavad Khajavi
- Community Medicine Department, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory hematology and Transfusion medicine, Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Niazkar
- Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Aida Negari
- Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Huyut MT, Huyut Z. Effect of ferritin, INR, and D-dimer immunological parameters levels as predictors of COVID-19 mortality: A strong prediction with the decision trees. Heliyon 2023; 9:e14015. [PMID: 36919085 PMCID: PMC9985543 DOI: 10.1016/j.heliyon.2023.e14015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/25/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Background and objective A hyperinflammatory environment is thought to be the distinctive characteristic of COVID-19 infection and an important mediator of morbidity. This study aimed to determine the effect of other immunological parameter levels, especially ferritin, as a predictor of COVID-19 mortality via decision-trees analysis. Material and method This is a retrospective study evaluating a total of 2568 patients who died (n = 232) and recovered (n = 2336) from COVID-19 in August and December 2021. Immunological laboratory data were compared between two groups that died and recovered from patients with COVID-19. In addition, decision trees from machine learning models were used to evaluate the performance of immunological parameters in the mortality of the COVID-19 disease. Results Non-surviving from COVID-19 had 1.75 times higher ferritin, 10.7 times higher CRP, 2.4 times higher D-dimer, 1.14 times higher international-normalized-ratio (INR), 1.1 times higher Fibrinogen, 22.9 times higher procalcitonin, 3.35 times higher troponin, 2.77 mm/h times higher erythrocyte-sedimentation-rate (ESR), 1.13sec times longer prothrombin time (PT) when compared surviving patients. In addition, our interpretable decision tree, which was constructed with only the cut-off values of ferritin, INR, and D-dimer, correctly predicted 99.7% of surviving patients and 92.7% of non-surviving patients. Conclusions This study perfectly predicted the mortality of COVID-19 with our interpretable decision tree constructed with INR and D-dimer, especially ferritin. For this reason, we think that it may be important to include ferritin, INR, and D-dimer parameters and their cut-off values in the scoring systems to be planned for COVID-19 mortality.
Collapse
Affiliation(s)
- Mehmet Tahir Huyut
- Erzincan Binali Yıldırım University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Erzincan, Turkey
| | - Zübeyir Huyut
- Van Yuzuncu Yıl University, Faculty of Medicine, Department of Biochemistry, Van, Turkey
| |
Collapse
|
5
|
Velichko A, Huyut MT, Belyaev M, Izotov Y, Korzun D. Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:7886. [PMID: 36298235 PMCID: PMC9610709 DOI: 10.3390/s22207886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
Healthcare digitalization requires effective applications of human sensors, when various parameters of the human body are instantly monitored in everyday life due to the Internet of Things (IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an important option for IoT application in healthcare and ambient assisted living (AAL). Determining a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and the LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB) (accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL, cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 features and their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.
Collapse
Affiliation(s)
- Andrei Velichko
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, 24000 Erzincan, Türkiye
| | - Maksim Belyaev
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Yuriy Izotov
- Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| | - Dmitry Korzun
- Department of Computer Science, Institute of Mathematics and Information Technology, Petrozavodsk State University, 33 Lenin Ave., 185910 Petrozavodsk, Russia
| |
Collapse
|
6
|
Rostami M, Oussalah M. A novel explainable COVID-19 diagnosis method by integration of feature selection with random forest. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100941. [PMID: 35399333 PMCID: PMC8985417 DOI: 10.1016/j.imu.2022.100941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Several Artificial Intelligence-based models have been developed for COVID-19 disease diagnosis. In spite of the promise of artificial intelligence, there are very few models which bridge the gap between traditional human-centered diagnosis and the potential future of machine-centered disease diagnosis. Under the concept of human-computer interaction design, this study proposes a new explainable artificial intelligence method that exploits graph analysis for feature visualization and optimization for the purpose of COVID-19 diagnosis from blood test samples. In this developed model, an explainable decision forest classifier is employed to COVID-19 classification based on routinely available patient blood test data. The approach enables the clinician to use the decision tree and feature visualization to guide the explainability and interpretability of the prediction model. By utilizing this novel feature selection phase, the proposed diagnosis model will not only improve diagnosis accuracy but decrease the execution time as well.
Collapse
Affiliation(s)
- Mehrdad Rostami
- Centre for Machine Vision and Signal Processing, Faculty of Information Technology, University of Oulu, Oulu, Finland
| | - Mourad Oussalah
- Centre for Machine Vision and Signal Processing, Faculty of Information Technology, University of Oulu, Oulu, Finland
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Finland
| |
Collapse
|