1
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
2
|
Three-dimensional radiographic and histological tracking of rat mandibular defect repair after inferior alveolar nerve axotomy. Arch Oral Biol 2021; 131:105252. [PMID: 34500260 DOI: 10.1016/j.archoralbio.2021.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To sequentially track mandibular defect repair by using radiographic and histological techniques, so as to compare repair patterns of sensory denervated versus innervated mandibles. DESIGN Forty Sprague-Dawley rats were subjected to unilateral inferior alveolar nerve (IAN) axotomy and bilateral 3 mm full-thickness circular osteotomy of their mandibles. Micro-CT and histological staining were applied to track the repair process of the mandibular defects at 1, 2, 4, and 8 weeks after surgery. RESULTS The bone volume of both sides increased by 2 weeks post-operation, and then gradually decreased. The new bone volumes of the axotomy side were significantly less than that of the sham side at 1, 2, and 4 weeks post-surgery, whereas no significant differences were detected at 8 weeks post-surgery. Meanwhile, there were no significant differences in bone mineral density between the two sides during repair. Noteworthy, the repaired bone remained more vertically than horizontally aligned throughout the repair process. CONCLUSION IAN axotomy decreases the quantity of bone calluses during the early stage of mandibular defect repair, but with no effect on the degree of mineralization. The shape of the defect area appeared to be aligned with the direction of local mechanical force produced by masticatory muscles.
Collapse
|
3
|
Ito T, Toriumi T, Otake K, Okuwa Y, Tanaka S, Arai Y, Kurita K, Honda M. Performance of Schwann cell transplantation into extracted socket after inferior alveolar nerve injury in a novel rat model. J Oral Sci 2020; 62:402-409. [PMID: 32863317 DOI: 10.2334/josnusd.19-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An inferior alveolar nerve (IAN) injury is a common clinical problem that can affect a patients' quality of life. Cellular therapy has been proposed as a promising treatment for this injury. However, the current experimental models for IAN injury require surgery to create bone windows that expose the nerve, and these models do not accurately mimic human IAN injuries. Therefore, in this study, a novel experimental model for IAN injury has been established in rats. Using this model, the effects of Schwann cells and their role in the recovery from IAN injuries were investigated. Schwann cells were isolated from rat sciatic nerves and cultured. The first molar in the mandible was extracted and the IAN was immediately injured for 30 min by inserting an insect pin. Then, the Schwann cells or culture medium were transplanted into the extracted sockets of the cell and injury groups, respectively. After the surgery, the cell group displayed significantly increased sensory reflexes in response to mechanical stimulation, regenerated IAN width, and myelin basic protein-positive myelin sheaths when compared with the injury group. In conclusion, a novel animal experimental model for IAN injury has been developed that does not require the creation of a bone window to evaluate the impacts of cell transplantation and demonstrates that Schwann cell transplantation facilitates the regeneration of injured IANs.
Collapse
Affiliation(s)
- Tatsuaki Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Keita Otake
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yuta Okuwa
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Sho Tanaka
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
4
|
Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020; 131:115109. [PMID: 31715336 PMCID: PMC6934100 DOI: 10.1016/j.bone.2019.115109] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Neuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.
Collapse
Affiliation(s)
- Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Nicklaus H Diggins
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
5
|
Shen H, Wang S, Zhi Y, Si J, Shi J. Effects of inferior alveolar nerve rupture on bone remodeling of the mandible: A preliminary study. Medicine (Baltimore) 2019; 98:e16897. [PMID: 31464921 PMCID: PMC6736463 DOI: 10.1097/md.0000000000016897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although various animal studies have indicated that sensory nerves played an important role in bone metabolism and nerve injury could impair the process of bone remodeling, the actual effect of sensory nerve rupture on human bones remains unclear. The aim of this preliminary study was to investigate the effect of inferior alveolar nerve (IAN) rupture on mandibular bone remodeling of patients underwent bilateral sagittal split ramus osteotomy (BSSRO).Ten patients with unilateral IAN rupture during BSSRO were involved in this study. Neurosensory examinations were employed to assess the sensory function of bilateral IAN. The remodeling process of the post-operational mandible was evaluated by panoramic radiographs and computed tomography (CT) scans.Neurosensory examinations indicated that nerve rupture resulted in significant hypoesthesia at the IAN-rupture side. Assessment of panoramic radiographs showed no evident alterations of bone structure at the IAN-rupture side of mandible. Evaluation of CT images also indicated no statistical difference in bone density and thickness between IAN-rupture side and contralateral side.Accordingly, our study indicated that IAN rupture may not significantly impair the short-term bone remodeling process of human mandible.
Collapse
|
6
|
Němec I, Smrčka V, Pokorný J. The Effect of Sensory Innervation on the Inorganic Component of Bones and Teeth; Experimental Denervation - Review. Prague Med Rep 2019; 119:137-147. [PMID: 30779698 DOI: 10.14712/23362936.2019.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The effect of the nervous system on bone remodelling has been described by many studies. Sensory and autonomic nerves are present in the bone. Immunohistochemical analysis of the bone have indicated the presence of neuropeptides and neurotransmitters that act on bone cells through receptors. Besides carrying sensory information, sensory neurons produce various neuropeptides playing an important role in maintaining bone and tooth pulp homeostasis, and dentin formation. Bone tissue and teeth contain organic and inorganic components. Bone cells enable bone mineralization and ensure its formation and resorption. Studies focused on the effects of the nervous system on the bone are proceeded using various ways. Sensory denervation itself can be achieved using capsaicin causing chemical lesion to the nerve. Surgical ways of causing only sensory lesion to nerves are substantially limited because many peripheral nerves are mixed and contain a motor component as well. From this point of view, the experimental model with transection of inferior alveolar nerve is appropriate. This nerve provides sensory innervation of the bone and teeth of the mandible. The purpose of our paper is to provide an overview of the effects exerted by the nervous system on the inorganic component of the bone and teeth, and also to present an overview of the used experimental models. As we assume, the transection of inferior alveolar nerve could be reflected in changed contents and distribution of chemical elements in the bone and teeth of rat mandible. This issue has not been studied so far.
Collapse
Affiliation(s)
- Ivo Němec
- Department of Otorhinolaryngology and Maxillofacial Surgery, Third Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic.
| | - Václav Smrčka
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Prague, Czech Republic.,Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Pokorný
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Wang Y, Tang Q, Zhu L, Huang R, Huang L, Koleini M, Zou D. Effects of Treatment of Treadmill Combined with Electro-Acupuncture on Tibia Bone Mass and Substance PExpression of Rabbits with Sciatic Nerve Injury. PLoS One 2016; 11:e0164652. [PMID: 27880769 PMCID: PMC5120789 DOI: 10.1371/journal.pone.0164652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
The peripheral nervous system may play an important role in normal bone maintenance and remodeling. Substance P (SP) is a neuropeptide associated with bone loss and formation that may mediate the effects of the nervous system. The purpose of this study is to determine if treadmill running combined with electro-acupuncture at Jiaji acupoints (Jiaji-EA) affects tibial bone mass and SP expression in rabbits with sciatic nerve injury. Twenty-four juvenile male New Zealand white rabbits were randomly assigned to one of 4 groups: sham injury control (sham), sciatic never crush control (SNCr), treadmill running (treadmill), and Jiaji-EA combined with treadmill running (ET group). The SNCr, treadmill, and ET groups all had an induced sciatic never crush injury of approximately 2mm. Control groups received no intervention; the treadmill and ET groups were trained by treadmill; the ET group also received Jiaji-EA. After the 4 weeks of treatment, toe-spreading index (TSI), BMD, bone strength, and SP expression in the tibia were significantly lower in the nerve injury groups (SNCr, treadmill, and ET) compared to the sham groups (p<0.05). Treatment (treadmill and ET groups) increased all measures compared to the SNCr group (p<0.05). Further, TSI, BMD, bone strength, and SP expression in the ET group were higher than the treadmill group (p<0.05). Our results indicate that treadmill therapy combined with electro-acupuncture at Jiaji acupoints prevents bone loss in rabbit tibias after sciatic nerve injury. This may occur in two ways: indirectly in association with axon regeneration and directly via loading on the bone mediated through increased SP expression. This study provides important evidence for the clinical treatment of bone loss after peripheral nerve injury.
Collapse
Affiliation(s)
- Yan Wang
- The 2nd affiliated hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
- * E-mail:
| | - Qiang Tang
- The 2nd affiliated hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- The 2nd affiliated hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruyi Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lei Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Melanie Koleini
- HRPO, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dequan Zou
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Yu X, Lv L, Zhang J, Zhang T, Xiao C, Li S. Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats. J Mol Histol 2015; 46:195-203. [DOI: 10.1007/s10735-015-9611-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
|