1
|
Takafuji K, Oyamada Y, Hatakeyama W, Kihara H, Shimazaki N, Fukutoku A, Satoh H, Kondo H. Quantitative analysis of change in bone volume 5 years after sinus floor elevation using plate-shaped bone substitutes: a prospective observational study. Int J Implant Dent 2024; 10:9. [PMID: 38372934 PMCID: PMC10876503 DOI: 10.1186/s40729-023-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/09/2023] [Indexed: 02/20/2024] Open
Abstract
PURPOSE Tricalcium phosphate (TCP) has osteoconductive ability and reportedly offers similar clinical results as autogenous bone grafts in dental implant treatment. However, few reports quantify temporal changes in augmented bone volume after sinus augmentation. We aimed to establish a three-dimensional (3D) quantification method to assess bone volume after sinus augmentation and to evaluate biocompatibility of the TCP plate. METHODS Maxillary sinus floor augmentation was performed employing the lateral window technique, and plate-shaped β-TCP (TCP plate) was used instead of granular bone grafting materials. After lifting the sinus membrane, the TCP plate was inserted and supported by dental implants or micro-screws. The changes in bone volumes in the maxillary sinus before and after surgery were recorded using cone-beam computed tomography, saved as Digital Imaging and Communications in Medicine-formatted files, and transformed to Standard Triangle Language (STL)-formatted files. Pre- and post-operative STL data of bone volume were superimposed, and the augmented bone volume was calculated. Moreover, changes in bone volumes, TCP plate resorption rates, and bone heights surrounding the implants were three dimensionally quantified. RESULTS Fifteen implants in nine subjects were included in this study. TCP plates secured long-term space making, with results similar to those of granular bone substitutes. Newly formed bone was identified around the implant without bone graft material. TCP plate was absorbed and gradually disappeared. CONCLUSIONS A novel 3D quantification method was established to evaluate changes in bone volume. Clinical application of TCP plate in sinus augmentation could be a better procedure in terms of prognosis and safety.
Collapse
Affiliation(s)
- Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
- Department of Fixed Prosthodontics and Oral Implantology, Aichi Gakuin University, Nagoya, Japan
| | - Yutaro Oyamada
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Hidemichi Kihara
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Nobuko Shimazaki
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Akihiro Fukutoku
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Hiroaki Satoh
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, 020-8505, Japan.
- Department of Fixed Prosthodontics and Oral Implantology, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
2
|
Choi YJ, Chang HJ, Kim MJ, Lee JH, Lee BK. Efficacy of pure beta tricalcium phosphate graft in dentoalveolar surgery: a retrospective evaluation based on serial radiographic images. Maxillofac Plast Reconstr Surg 2023; 45:25. [PMID: 37495896 PMCID: PMC10371935 DOI: 10.1186/s40902-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The use of beta-tricalcium phosphate (beta-TCP) in dental surgery is limited owing to its rapid absorption compared to mixed formulations of hydroxyapatite. However, newly developed pure beta-TCP crystals have demonstrated slow absorption; hence, they last longer within the defect and act as a scaffold until new bone formation. The oral environment is unique and can prove unfavorable for bone grafts due to the high infection rate in the oral cavity and the fragile condition of the oral mucosa. The aim of this study was to evaluate the feasibility of using pure beta-TCP bone grafts in various dental treatments. METHODS Panoramic X-ray images of 25 patients who underwent bone grafting during dental surgery were analyzed. A specially treated pure beta-TCP crystal, Neo Bone® (Neo Bone®, SN Biologics Co., Ltd, Seoul, Korea), was used in this study. The bone density at the graft site was compared with that of the surrounding bone using the ImageJ software (Wayne Rasband, NIH USA). RESULTS Six months after surgery, the bone graft density was similar to that of the surrounding bone in 20 patients and increased in 5 patients. No adverse effects, such as infection, dehiscence, or graft failure, were observed. CONCLUSION The newly developed pure beta-TCP crystal was slowly absorbed and served as support until new bone formation at the defect site, thus demonstrating its potential for use in various oral conditions requiring bone grafting.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Oral and Maxillofacial Surgery, College of Medicine, Asan Medical Center, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Hoon-Je Chang
- Department of Oral and Maxillofacial Surgery, College of Medicine, Asan Medical Center, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Min Jae Kim
- Department of Oral and Maxillofacial Surgery, College of Medicine, Asan Medical Center, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Jee-Ho Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, Asan Medical Center, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, Asan Medical Center, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, South Korea.
| |
Collapse
|
3
|
Schwartz A, Kossenko A, Zinigrad M, Danchuk V, Sobolev A. Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4624. [PMID: 37444937 DOI: 10.3390/ma16134624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
The effect of various cleaning methods on coating morphology and their effectiveness in removing organic contaminants has been studied in this research. Bioactive coatings containing titanium oxides and hydroxyapatite (HAP) were obtained through plasma electrolytic oxidation in aqueous electrolytes and molten salts. The cleaning procedure for the coated surface was performed using autoclave (A), ultraviolet light (UV), radio frequency (RF), air plasma (P), and UV-ozone cleaner (O). The samples were characterized using scanning electron microscopy (SEM) with an EDS detector, X-ray photoelectron spectroscopy (XPS), X-ray phase analysis (XRD), and contact angle (CA) measurements. The conducted studies revealed that the samples obtained from molten salt exhibited a finer crystalline structure morphology (275 nm) compared to those obtained from aqueous electrolytes (350 nm). After applying surface cleaning methods, the carbon content decreased from 5.21 at.% to 0.11 at.% (XPS), which directly corresponds to a reduction in organic contaminations and a decrease in the contact angle as follows: A > UV > P > O. This holds true for both coatings obtained in molten salt (25.3° > 19.5° > 10.5° > 7.5°) and coatings obtained in aqueous electrolytes (35.2° > 28.3° > 26.1° > 16.6°). The most effective and moderate cleaning method is ozone treatment.
Collapse
Affiliation(s)
- Avital Schwartz
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Alexey Kossenko
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Michael Zinigrad
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Viktor Danchuk
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel 4076414, Israel
| | - Alexander Sobolev
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
4
|
Parsaee F, Alizadeh A, Rezaee M, Alavi O, Alipour H. Evaluation of the osteoconductive properties of scaffold containing platete-enriched-fibrin (PRF) with three calcium phosphate (TCP) in the alveolar socket repair after tooth extraction: An animal study. J Biomater Appl 2023; 37:1789-1800. [PMID: 37122094 DOI: 10.1177/08853282231170346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bone regeneration can be accomplished through osteogenesis, osteoinduction, and osteoconduction mechanisms. This study aimed to investigate the properties of the PRF scaffold with tricalcium phosphate nanoparticles in socket preservation in an animal model. Fabrication of PRF performed. In this experimental study, 18 rats were divided into three negative control, PRF, and PRF/TCP groups. The mechanical and chemical tests including swelling rate, degradation time, and MTT tests were applied to the scaffolds. In each animal, the first maxillary right molar was extracted, and extraction sites of test groups were filled with a resorbable biocompatible biomaterial in situ hardening bone substitute. After 2 and 4 weeks all animals were sacrificed and examined histopathologically and with qRT-PCR. Histological results showed TCP in combination with PRF accelerates bone regeneration with the highest amount of lamellar bone and collagen formation compared to the control and PRF alone. Mechanical and chemical tests on the scaffolds showed the addition of TCP to the PRF scaffold decreases the swelling rate and increases the degradation time. qRT-PCR showed expression of osteogenic genes increased significantly (p < 0.05) in PRF/TCP and PRF, respectively. In conclusion, the gelatin hydrogel containing PRF/TCP scaffold led to more bone formation after tooth extraction. Therefore, the injectable PRF\TCP hydrogel is a promising candidate for bone repair and regeneration.
Collapse
Affiliation(s)
- Fatemeh Parsaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Rezaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Alipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Ngo ST, Lee WF, Wu YF, Salamanca E, Aung LM, Chao YQ, Tsao TC, Hseuh HW, Lee YH, Wang CC, Chang WJ. Fabrication of Solvent-Free PCL/β-TCP Composite Fiber for 3D Printing: Physiochemical and Biological Investigation. Polymers (Basel) 2023; 15:polym15061391. [PMID: 36987176 PMCID: PMC10053981 DOI: 10.3390/polym15061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Manufacturing three-dimensional (3D) objects with polymers/bioceramic composite materials has been investigated in recent years. In this study, we manufactured and evaluated solvent-free polycaprolactone (PCL) and beta-tricalcium phosphate (β-TCP) composite fiber as a scaffold material for 3D printing. To investigate the optimal ratio of feedstock material for 3D printing, the physical and biological characteristics of four different ratios of β-TCP compounds mixed with PCL were investigated. PCL/β-TCP ratios of 0 wt.%, 10 wt.%, 20 wt.%, and 30 wt.% were fabricated, with PCL melted at 65 °C and blended with β-TCP with no solvent added during the fabrication process. Electron microscopy revealed an even distribution of β-TCP in the PCL fibers, while Fourier transform infrared spectroscopy demonstrated that the biomaterial compounds remained intact after the heating and manufacturing process. In addition, adding 20% β-TCP into the PCL/β-TCP mixture significantly increased hardness and Young’s Modulus by 10% and 26.5%, respectively, suggesting that PCL-20 has better resistance to deformation under load. Cell viability, alkaline phosphatase (ALPase) activity, osteogenic gene expression, and mineralization were also observed to increase according to the amount of β-TCP added. Cell viability and ALPase activity were 20% higher with PCL-30, while upregulation for osteoblast-related gene expression was better with PCL-20. In conclusion, PCL-20 and PCL-30 fibers fabricated without solvent exhibited excellent mechanical properties, high biocompatibility, and high osteogenic ability, making them promising materials for 3D printing customized bone scaffolds promptly, sustainably, and cost-effectively.
Collapse
Affiliation(s)
- Sin Ting Ngo
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Lwin Moe Aung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yan-Qiao Chao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ting-Chia Tsao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hao-Wen Hseuh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Huan Lee
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
- Correspondence: (Y.-H.L.); (C.-C.W.); (W.-J.C.)
| | - Ching-Chiung Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (Y.-H.L.); (C.-C.W.); (W.-J.C.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Dental Department, Taipei Medical University, Shuang Ho Hospital, New Taipei 235, Taiwan
- Correspondence: (Y.-H.L.); (C.-C.W.); (W.-J.C.)
| |
Collapse
|
6
|
Costa FO, Costa AM, Ferreira SD, Lima RPE, Pereira GHM, Cyrino RM, Oliveira AMSD, Oliveira PAD, Cota LOM. Long‐term impact of patients' compliance to peri‐implant maintenance therapy on the incidence of peri‐implant diseases: An 11‐year prospective follow‐up clinical study. Clin Implant Dent Relat Res 2022; 25:303-312. [PMID: 36519351 DOI: 10.1111/cid.13169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To prospectively evaluate the incidence of peri-implant diseases and the associated risk factors during 11 years of peri-implant maintenance therapy (PIMT). MATERIAL AND METHODS A sample of 80 partially edentulous individuals rehabilitated with dental implants was invited to participate in a PIMT program (T1-prior to entering the PIMT program). After 11 years, 51 individuals remained regularly or irregularly adherent to PIMT (T2-last recall after 11 years) and were classified as regular (RC; n = 27) or irregular (IC; n = 24) compliers. Data of interest were analyzed using univariate and multivariate logistic regression analyses. RESULTS The incidence of peri-implant mucositis and peri-implantitis observed at T2 in the IC group (70.8% and 37.5%, respectively) were significantly higher than those observed in the RC group (37.0% and 11.1%, respectively). The incidence of peri-implant diseases was mostly attributable to potentially modifiable risk factors, as such: RC group-PM (p = 0.013); IC group-high plaque index (p < 0.001), irregular compliance (p < 0.001), the presence of PM (p = 0.015) and periodontitis (p < 0.039). CONCLUSION Regular compliance during PIMT had a strong effect in minimizing the incidence of peri-implant diseases. Increasing regular dental visits and improving oral hygiene would provide benefits for preventing peri-implant diseases.
Collapse
|
7
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
8
|
Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, Ngeow WC. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? MATERIALS 2021; 14:ma14206123. [PMID: 34683712 PMCID: PMC8537464 DOI: 10.3390/ma14206123] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Alloplasts are synthetic, inorganic, biocompatible bone substitutes that function as defect fillers to repair skeletal defects. The acceptance of these substitutes by host tissues is determined by the pore diameter and the porosity and inter-connectivity. This narrative review appraises recent developments, characterization, and biological performance of different synthetic materials for bone, periodontal, and dental tissue regeneration. They include calcium phosphate cements and their variants β-tricalcium phosphate (β-TCP) ceramics and biphasic calcium phosphates (hydroxyapatite (HA) and β-TCP ceramics), calcium sulfate, bioactive glasses and polymer-based bone substitutes which include variants of polycaprolactone. In summary, the search for synthetic bone substitutes remains elusive with calcium compounds providing the best synthetic substitute. The combination of calcium sulphate and β-TCP provides improved handling of the materials, dispensing with the need for a traditional membrane in guided bone regeneration. Evidence is supportive of improved angiogenesis at the recipient sites. One such product, (EthOss® Regeneration, Silesden, UK) has won numerous awards internationally as a commercial success. Bioglasses and polymers, which have been used as medical devices, are still in the experimental stage for dental application. Polycaprolactone-TCP, one of the products in this category is currently undergoing further randomized clinical trials as a 3D socket preservation filler. These aforementioned products may have vast potential for substituting human/animal-based bone grafts.
Collapse
Affiliation(s)
- Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Nisreen Mohammed Al-Namnam
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK;
| | - May Nak Lau
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Ghee Seong Lim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Renukanth Raman
- Oral Health Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia;
| | - Peter Fairbairn
- Department of Periodontology and Implant Dentistry, School of Dentistry, University of Detroit Mercy, 2700 Martin Luther King, Jr. Boulevard, Detroit, MI 48208, USA;
| | - Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
- Correspondence: ; Tel.: +60-3-79674962; Fax: +60-3-79674534
| |
Collapse
|
9
|
Surface Modified β-Tricalcium phosphate enhanced stem cell osteogenic differentiation in vitro and bone regeneration in vivo. Sci Rep 2021; 11:9234. [PMID: 33927241 PMCID: PMC8084957 DOI: 10.1038/s41598-021-88402-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
A major number of studies have demonstrated Beta-tricalcium phosphate (β-TCP) biocompatibility, bioactivity, and osteoconductivity characteristics in bone regeneration. The aim of this research was to enhance β-TCP's biocompatibility, and evaluate its physicochemical properties by argon glow discharge plasma (GDP) plasma surface treatment without modifying its surface. Treated β-TCP was analyzed by scanning electron microscopy (SEM), energy-dispersive spectrometry, X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis, and Fourier transform infrared spectroscopy characterization. To evaluate treated β-TCP biocompatibility and osteoblastic differentiation, water-soluble tetrazolium salts-1 (WST-1), immunofluorescence, alkaline phosphatase (ALP) assay, and quantitative real-time polymerase chain reaction (QPCR) were done using human mesenchymal stem cells (hMSCs). The results indicated a slight enhancement of the β-TCP by GDP sputtering, which resulted in a higher Ca/P ratio (2.05) than the control. Furthermore, when compared with control β-TCP, we observed an improvement of WST-1 on all days (p < 0.05) as well as of ALP activity (day 7, p < 0.05), with up-regulation of ALP, osteocalcin, and Osteoprotegerin osteogenic genes in cells cultured with the treated β-TCP. XPS and SEM results indicated that treated β-TCP’s surface was not modified. In vivo, micro-computed tomography and histomorphometric analysis indicated that the β-TCP test managed to regenerate more new bone than the untreated β-TCP and control defects at 8 weeks (p < 0.05). Argon GDP treatment is a viable method for removing macro and micro particles of < 7 μm in size from β-TCP bigger particles surfaces and therefore improving its biocompatibility with slight surface roughness modification, enhancing hMSCs proliferation, osteoblastic differentiation, and stimulating more new bone formation.
Collapse
|
10
|
Nascimento JRB, Sartoretto SC, Alves ATNN, Mourão CFAB, Martinez-Zelaya VR, Uzeda MJ, Granjeiro JM, Montemezzi P, Calasans-Maia MD, Calasans-Maia JA. In Vitro and In Vivo Evaluation of Nanostructured Biphasic Calcium Phosphate in Granules and Putty Configurations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E533. [PMID: 33440647 PMCID: PMC7826908 DOI: 10.3390/ijerph18020533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Synthetic biphasic calcium phosphate (BCP) granules and powder are biocompatible biomaterials with a well-known capacity for osteoconduction, presenting very satisfactory clinical and histological results. It remains unanswered if the putty configuration impacts the biological response to the material. In this study, we aimed to compare the cytocompatibility and biocompatibility of nanostructured BCP in the putty configuration (moldable nanostructured calcium phosphate, MnCaP) on the healing of critical-sized bone defects (8 mm) in rat calvaria. Cytocompatibility was determined through the viability of fibroblast cells (V-79) to the extracts of different concentrations of MnCaP. Forty-five Wistar rats were randomly divided into three groups (n = 15)-clot, MnCaP, and commercial biphasic calcium phosphate in granules configurations (Nanosynt®)-and subdivided into three experimental periods (1, 3, and 6 months). Histological, histomorphometric, and microtomographic analyses allowed the evaluation of newly formed bone, residual biomaterial, and connective tissue. The in vitro evaluation showed that MnCaP was cytocompatible. The histomorphometric results showed that the Nanosynt® group granted the highest new-formed bone values at six months (p < 0.05), although the biomaterial volume did not differ between groups. The putty configuration was easier to handle, and both configurations were biocompatible and osteoconductive, presented similar biosorption rates, and preserved the calvaria architecture.
Collapse
Affiliation(s)
- Jhonathan R. B. Nascimento
- Graduate Program, Dentistry School, Universidade Federal Fluminense, Niteroi 24020-140, Brazil; (J.R.B.N.); (C.F.A.B.M.)
| | - Suelen C. Sartoretto
- Oral Surgery Department, Dentistry School, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, Brazil;
| | - Adriana T. N. N. Alves
- Oral Diagnosis Department, Dentistry School, Universidade Federal Fluminense, Niteroi 24020-140, Brazil;
| | - Carlos F. A. B. Mourão
- Graduate Program, Dentistry School, Universidade Federal Fluminense, Niteroi 24020-140, Brazil; (J.R.B.N.); (C.F.A.B.M.)
| | - Victor R. Martinez-Zelaya
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil;
| | - Marcelo J. Uzeda
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, Brazil;
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, Brazil;
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias 25250-020, Brazil;
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, Brazil
| | | | - Monica D. Calasans-Maia
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, Brazil;
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, Brazil
| | | |
Collapse
|
11
|
Dos Santos Trento G, Hassumi JS, Buzo Frigério P, Farnezi Bassi AP, Okamoto R, Gabrielli MAC, Pereira-Filho VA. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material. Int J Implant Dent 2020; 6:80. [PMID: 33258065 PMCID: PMC7704835 DOI: 10.1186/s40729-020-00279-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Objective The aim of this study is to evaluate through gene expression, immunohistochemical and microtomographic (micro-CT) analysis the response of peri-implant bone tissue around titanium implants with different surface treatments, placed in bone defects filled or not with bone substitute materials. In addition, to investigate the hypothesis that porous-hydrophilic surface induces a faster bone formation. Materials and methods Twenty-six animals were divided into two groups according to implant surface treatment. In each tibia, a bone defect was created followed by the placement of one implant. On the left tibia, the defect was filled with blood clot (BC), and on the right tibia, the defect was filled with biphasic hydroxyapatite/β-tricalcium-phosphate (HA/TCP) generating four subgroups: BC-N: bone defect filled with blood clot and porous surface titanium implant installed; BC-A: bone defect filled with blood clot and porous-hydrophilic surface titanium implant installed; HA/TCP-N: bone defect filled with bone substitute material and porous surface titanium implant installed; and HA/TCP-A: bone defect filled with bone substitute material and porous-hydrophilic surface titanium implant installed. The animals were submitted to euthanasia at 15, 30, and 60 days after implant installation. The expression of two genes was evaluated: RUNX2 and BSP. Immunohistochemical analyses were performed for detection of RUNX2, OPN, OCN, OPG, and RANKL antibodies and bone matrix proteins. Finally, four parameters were chosen for micro-CT analysis: trabecular number, separation and thickness, and connectivity density. Results Descriptive analysis showed similar findings among the experimental groups. Moreover, porous-hydrophilic surfaces presented a higher expression of RUNX2, which is probably an indicative of better osteogenesis; although the data from this study may be considered an insufficient support for a concrete statement. Conclusion Porous hydrophilic surface can improve and accelerate protein expression and bone formation.
Collapse
Affiliation(s)
- Guilherme Dos Santos Trento
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil.
| | - Jaqueline Suemi Hassumi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Paula Buzo Frigério
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Paula Farnezi Bassi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Roberta Okamoto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Marisa Aparecida Cabrini Gabrielli
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Valfrido Antonio Pereira-Filho
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| |
Collapse
|
12
|
Leventis M, Tsetsenekou E, Kalyvas D. Treatment of Osseous Defects after Mandibular Third Molar Removal with a Resorbable Alloplastic Grafting Material: A Case Series with 1- to 2-Year Follow-Up. MATERIALS 2020; 13:ma13204688. [PMID: 33096766 PMCID: PMC7588932 DOI: 10.3390/ma13204688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Mandibular third molar (M3) surgical extraction may cause periodontal complications on the distal aspect of the root of the adjacent mandibular second molar (M2). Patients older than 26 years with periodontal pathology on the distal surface of the M2 and a horizontal/mesioangular impacted M3 may benefit from bone regenerative therapy at the time of surgery. In this prospective case series, an alloplastic fully resorbable bone grafting material, consisting of beta-tricalcium phosphate (β-TCP) and calcium sulfate (CS), was used for the treatment of the osseous defects after the removal of horizontal or mesioangular M3s in 4 patients older than 26 years. On presentation, the main radiological finding in all patients, indicating periodontal pathology, was the absence of bone between the crown of the M3 and the distal surface of the root of the M2. To evaluate the treatment outcome, bone gain (BG) was assessed by recording the amount of bone defect (BD) at the time of surgical removal (T0) and at the time of final follow-up (T1) 1 or 2 years post-operatively. The healing in all cases was uneventful, with no complications associated with the use of the alloplastic grafting material. Clinical and radiological examination at T1 revealed that all extraction sites were adequately restored, with significant BG of 6.07 ± 0.28 mm. No residual pathological pockets on the distal surface of the M2 were detected. Pocket depth (PD) at T1 was 2 ± 0.71 mm. Within the limitations of this case series, the results suggest that β-TCP/CS can support new bone formation at M3 post-extraction sites where bone regeneration methods are indicated, thus reducing the risk of having persistent or developing new periodontal problems at the adjacent M2.
Collapse
|
13
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
14
|
V M, Iyer S, Menon D, Nair SV, Nair MB. Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109864. [DOI: 10.1016/j.msec.2019.109864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
|
15
|
Rösing CK, Fiorini T, Haas AN, Muniz FWMG, Oppermann RV, Susin C. The impact of maintenance on peri-implant health. Braz Oral Res 2019; 33:e074. [PMID: 31576958 DOI: 10.1590/1807-3107bor-2019.vol33.0074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Most of the literature evaluating dental implants focuses on implant survival, which is a limited proxy for the successful rehabilitation of patients with missing teeth. Success should include not only survival but also lack of mechanical, biological, and esthetics problems. A comprehensive review of local and systemic risk factors prior to implant placement will allow the tailoring of treatment planning and maintenance protocols to the patient's profile in order to achieve longitudinal success of the therapy. This review discusses the role of controlling different risk factors and prevention/treatment of peri-implant mucositis in order to avoid peri-implantitis. Although the literature addressing the topic is still scarce, the existing evidence shows that performing optimal plaque control and regular visits to the dentist seem to be adequate to prevent peri-implant lesions. Due to impossibility of defining a probing depth associate with peri-implant health, radiographic evaluations may be considered in the daily practice. So far, there is a strong evidence linking a past history of periodontal disease to peri-implant lesions, but this is not so evident for other factors including smoking and diabetes. The prevention of biological complications starts even before implant placement and include a broader analysis of the patient risk profile and tailoring the rehabilitation and maintenance protocols accordingly. It should be highlighted that the installation of implants does not modify the patient profile, since it does not modify genetics, microbiology or behavioral habits of any individual.
Collapse
Affiliation(s)
- Cassiano Kuchenbecker Rösing
- Universidade Federal do Rio Grande do Sul - UFRS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Tiago Fiorini
- Universidade Federal do Rio Grande do Sul - UFRS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | | | - Rui Vicente Oppermann
- Universidade Federal do Rio Grande do Sul - UFRS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Cristiano Susin
- University of North Carolina, School of Dentistry, Department of Periodontology, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Ku JK, Hong I, Lee BK, Yun PY, Lee JK. Dental alloplastic bone substitutes currently available in Korea. J Korean Assoc Oral Maxillofac Surg 2019; 45:51-67. [PMID: 31106133 PMCID: PMC6502751 DOI: 10.5125/jkaoms.2019.45.2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980–2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.
Collapse
Affiliation(s)
- Jeong-Kui Ku
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Inseok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju, Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Jeong Keun Lee
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
17
|
Mendoza-Azpur G, Olaechea A, Padial-Molina M, Gutiérrez-Garrido L, O'Valle F, Mesa F, Galindo-Moreno P. Composite Alloplastic Biomaterial vs. Autologous Platelet-Rich Fibrin in Ridge Preservation. J Clin Med 2019; 8:E223. [PMID: 30744095 PMCID: PMC6406621 DOI: 10.3390/jcm8020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
AIM The aim of this study was to examine the clinical and histological differences of using a combination of alloplastic beta triphasic calcium phosphate (β-TCP) and a cross-linked collagen membrane versus autologous platelet-rich fibrin (PRF-L) in ridge preservation after dental extraction. MATERIAL AND METHODS Fifty-one patients were included in this observational case-series study. Dental extractions were performed, after which 25 patients were grafted with β-TCP and 26 with PRF-L. After four months of healing, clinical, radiological, histomorphometric and histological evaluations were performed. RESULTS A significantly higher percentage of mineralized tissue was observed in samples from the PRF-L grafted areas. Cellularity was higher in PRF-L grafted areas (osteocytes in newly formed bone per mm² = 123.25 (5.12) vs. 84.02 (26.53) for PRF-L and β-TCP, respectively, p = 0.01). However, sockets grafted with PRF-L showed a higher reduction in the bucco-lingual dimension after four months of healing (2.19 (0.80) vs. 1.16 (0.55) mm, p < 0.001), as well as a higher alteration in the final position of the mid muco-gingival junction (1.73 (1.34) vs. 0.88 (0.88) mm, p < 0.01). CONCLUSION PRF-L concentrate accelerates wound healing in post-extraction sockets in terms of new mineralized tissue component. However, the use of β-TCP biomaterial appears to be superior to maintain bucco-lingual volume and the final position of the muco-gingival junction.
Collapse
Affiliation(s)
- Gerardo Mendoza-Azpur
- Department of Periodontology, School of Dentistry, Cientifica del Sur University, 15067 Lima, Peru.
| | - Allinson Olaechea
- Department of Periodontology, School of Dentistry, Cientifica del Sur University, 15067 Lima, Peru.
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain.
| | - Lourdes Gutiérrez-Garrido
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain.
| | - Francisco O'Valle
- Department of Pathology & Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain.
| | - Francisco Mesa
- Department of Periodontology, School of Dentistry, University of Granada, 18071 Granada, Spain.
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
18
|
Bone Healing in Rabbit Calvaria Defects Using a Synthetic Bone Substitute: A Histological and Micro-CT Comparative Study. MATERIALS 2018; 11:ma11102004. [PMID: 30336544 PMCID: PMC6213059 DOI: 10.3390/ma11102004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 01/13/2023]
Abstract
Bioactive alloplastic materials, like beta-tricalcium phosphate (β-TCP) and calcium sulfate (CS), have been extensively researched and are currently used in orthopedic and dental bone regenerative procedures. The purpose of this study was to compare the performance of EthOss versus a bovine xenograft and spontaneous healing. The grafting materials were implanted in standardized 8 mm circular bicortical bone defects in rabbit calvariae. A third similar defect in each animal was left empty for natural healing. Six male rabbits were used. After eight weeks of healing, the animals were euthanized and the bone tissue was analyzed using histology and micro-computed tomography (micro-CT). Defects treated with β-TCP/CS showed the greatest bone regeneration and graft resorption, although differences between groups were not statistically significant. At sites that healed spontaneously, the trabecular number was lower (p < 0.05) and trabecular separation was higher (p < 0.05), compared to sites treated with β-TCP/CS or xenograft. Trabecular thickness was higher at sites treated with the bovine xenograft (p < 0.05) compared to sites filled with β-TCP/CS or sites that healed spontaneously. In conclusion, the novel β-TCP/CS grafting material performed well as a bioactive and biomimetic alloplastic bone substitute when used in cranial defects in this animal model.
Collapse
|
19
|
Augmentation versus No Augmentation for Immediate Postextraction Implants. Int J Dent 2018; 2018:5209108. [PMID: 30410541 PMCID: PMC6206521 DOI: 10.1155/2018/5209108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/20/2018] [Accepted: 09/16/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To assess the effects of augmentation versus no augmentation in patients restored with immediate postextraction single-tooth implants on implant failure and patient satisfaction. Materials and methods We searched the Cochrane Oral Health Group Trial Register, Cochrane Central Register of Controlled Trials, MEDLINE, and the WHO International Clinical Trial Registry Platform (22 March 2017). Two reviewers independently assessed trials for inclusion and risk of bias, extracted data, and checked for accuracy. We have expressed results as risk ratio or mean differences, together with their 95% confidence intervals. Results We included six studies (287 participants). Two trials compared no augmentation versus bone graft augmentation and reported no implant failures in both groups after a follow-up period of 6 months (20 implants) and 1 year (34 implants). One trial compared bone graft augmentation versus membrane augmentation and reported no difference in implant failure between both groups after 6 months (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.06 to 15.31) or 1 year of follow-up (RR 0.33, 95% CI 0.01 to 7.86), and no implants were lost after 3 years. Three trials compared membrane augmentation versus combined bone graft and membrane augmentation, and there was no difference between the groups after six months of follow-up in implant failure (RR 5.13, 95% CI 0.63 to 41.93) or after 1 year (RR 0.38, 95% CI 0.02 to 9.05). There was insufficient evidence regarding patient satisfaction in all the included trials. Conclusions In patients restored with immediate postextraction single-tooth implants, there is insufficient evidence to recommend simultaneous augmentation or a certain augmentation protocol to enhance implant survival and patient satisfaction. This trial is registered with PROSPERO (CRD42017054439).
Collapse
|
20
|
Gallucci GO, Hamilton A, Zhou W, Buser D, Chen S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin Oral Implants Res 2018; 29 Suppl 16:106-134. [PMID: 30328194 DOI: 10.1111/clr.13276] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To systematically review the evidence for the clinical outcome of fixed implant prostheses treated with different combinations of implant placement and loading protocols in partially edentulous patients. MATERIALS AND METHODS An electronic search was performed in Medline, Embase, and Central to identify studies investigating the outcome of implants subjected to immediate placement + immediate restoration/loading (Type 1A), immediate placement + early loading (Type 1B), immediate placement + conventional loading (Type 1C), early placement + immediate restoration/loading (Type 2-3A), early placement + early loading (Type 2-3B), early placement + conventional loading (Type 2-3C), late placement + immediate restoration/loading (Type 4A), late placement + early loading (Type 4B), late placement + conventional loading (Type 4C) with implant-supported fixed dental prostheses (IFDPs) in partially edentulous patients. Only human studies with at least 10 cases and a minimum follow-up time of 12 months, reporting on solid-screw-type implants with rough surfaces and an intra-osseous diameter between 3 and 6 mm, were included. A cumulative survival rate for each type of the implant placement and loading protocols was weighted by the duration of follow-up and number of implants. RESULTS The search provided 5,248 titles from which 2,362 abstracts and 449 full-text articles were screened. A total of 69 publications that comprised 23 comparative studies (15 randomized controlled trials, 7 controlled clinical trials) and 47 noncomparative studies (34 prospective cohort studies, 13 retrospective cohort studies) were included for analysis. Considerable heterogeneity in study design was found, and therefore, a meta-analysis of controlled studies was not possible. The weighted cumulative survival rate of each type of placement and loading protocol was 98.4% (Type 1A), 98.2% (Type 1B), 96.0% (Type 1C), 100% (Type 2-3B), 96.3% (Type 2-3C), 97.9% (Type 4A), 98.3% (Type 4B), and 97.7% (Type 4C). Type 1C, Type 2-3C, Type 4B, and Type 4C were scientifically and clinically validated (SCV). Type 1A, Type 1B, and Type 4A were clinically documented (CD), and Type 2-3A and Type 2-3B were clinically insufficiently documented (CID). CONCLUSIONS Evaluating outcomes in oral implantology by combining the placement and loading protocols are paramount. The selected loading protocol appears to influence the outcome of immediate implant placement.
Collapse
Affiliation(s)
- German O Gallucci
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Adam Hamilton
- Division of Regenerative and Implant Sciences, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Wenjie Zhou
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
- Second Dental Clinic, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Stephen Chen
- Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
21
|
Is Bone Graft or Guided Bone Regeneration Needed When Placing Immediate Dental Implants? A Systematic Review. IMPLANT DENT 2018; 26:936-944. [PMID: 29095788 DOI: 10.1097/id.0000000000000689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To systematically review the effect and type of bone graft and guided bone regeneration around immediate implants on hard and soft tissue changes. METHODS Three electronic databases were searched up to June 2015. Outcomes consisted of hard and soft tissue dimensional changes. RESULTS Eight studies were included according to inclusion criteria. Immediate implants with bone grafting had superior soft tissue stability and preserved horizontal ridge dimension and buccal plate thickness, when compared to no grafting. The use of a barrier alone significantly decreased buccal plate resorption and the remaining defects around the implants, and the use of both bone graft and membrane aided in soft tissue preservation. The optimal type of bone graft material was a combination of cortical autogenous and synthetic particulate when compared to each separately, whereas no difference was found between demineralized allograft and hydroxyapatite in decreasing bone loss. CONCLUSIONS Quantitative data analysis was not possible due to heterogeneity of the included studies. Further randomized clinical trials with homogenous samples and proper controls are needed to support the results of this report.
Collapse
|
22
|
Evaluation of an In Situ Hardening β-Tricalcium Phosphate Graft Material for Alveolar Ridge Preservation. A Histomorphometric Animal Study in Pigs. Dent J (Basel) 2018; 6:dj6030027. [PMID: 30004400 PMCID: PMC6162455 DOI: 10.3390/dj6030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the effectiveness of a resorbable alloplastic in situ hardening bone grafting material for alveolar ridge preservation in a swine model. Seven Landrace pigs were used. In each animal, the maxillary left and right deciduous second molars were extracted, and extraction sites were either grafted with a resorbable alloplastic in situ hardening bone substitute, composed of beta-tricalcium phosphate (β-TCP) granules coated with poly(lactic-co-glycolic) acid (PLGA), or left unfilled to heal spontaneously. Animals were euthanized after 12 weeks, and the bone tissue was analyzed histologically and histomorphometrically. Linear changes of ridge width were also clinically measured and analyzed. Pronounced bone regeneration was found in both experimental and control sites, with no statistically significant differences. At the experimental sites, most of the alloplastic grafting material was resorbed and remnants of the graft particles were severely decreased in size. Moreover, experimental sites showed, in a statistically nonsignificant way, less mean horizontal dimensional reduction of the alveolar ridge (7.69%) compared to the control sites (8.86%). In conclusion, the β-TCP/PLGA biomaterial performed well as a biocompatible resorbable in situ hardening bone substitute when placed in intact extraction sockets in this animal model.
Collapse
|
23
|
Jun SH, Park CJ, Hwang SH, Lee YK, Zhou C, Jang HS, Ryu JJ. The influence of bone graft procedures on primary stability and bone change of implants placed in fresh extraction sockets. Maxillofac Plast Reconstr Surg 2018; 40:8. [PMID: 29725586 PMCID: PMC5915983 DOI: 10.1186/s40902-018-0148-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background This study was to evaluate the effect of bone graft procedure on the primary stability of implants installed in fresh sockets and assess the vertical alteration of peri-implant bone radiographically. Methods Twenty-three implants were inserted in 18 patients immediately after tooth extraction. The horizontal gap between the implant and bony walls of the extraction socket was grafted with xenografts. The implant stability before and after graft procedure was measured by Osstell Mentor as implant stability quotient before bone graft (ISQ bbg) and implant stability quotient after bone graft (ISQ abg). Peri-apical radiographs were taken to measure peri-implant bone change immediately after implant surgery and 12 months after implant placement. Data were analyzed by independent t test; the relationships between stability parameters (insertion torque value (ITV), ISQ abg, and ISQ bbg) and peri-implant bone changes were analyzed according to Pearson correlation coefficients. Results The increase of ISQ in low primary stability group (LPSG) was 6.87 ± 3.62, which was significantly higher than the increase in high primary stability group (HPSG). A significant correlation between ITV and ISQ bbg (R = 0.606, P = 0.002) was found; however, age and peri-implant bone change were not found significantly related to implant stability parameters. It was presented that there were no significant peri-implant bone changes at 1 year after bone graft surgery. Conclusions Bone graft procedure is beneficial for increasing the primary stability of immediately placed implants, especially when the ISQ of implants is below 65 and that bone grafts have some effects on peri-implant bone maintenance.
Collapse
Affiliation(s)
- Sang Ho Jun
- 1Department of Dentistry, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chang-Joo Park
- 2Division of Oral and Maxillofacial Surgery, Department of Dentistry, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Suk-Hyun Hwang
- 3Department of Medicine, Korea University Graduate School, Seoul, Republic of Korea
| | - Youn Ki Lee
- 3Department of Medicine, Korea University Graduate School, Seoul, Republic of Korea
| | - Cong Zhou
- 3Department of Medicine, Korea University Graduate School, Seoul, Republic of Korea
| | - Hyon-Seok Jang
- 4Department of Dentistry, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Jae-Jun Ryu
- 5Department of Advanced Prosthodontics, Korea University Anam Hospital, Inchon-ro 73, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
24
|
Alveolar Ridge Preservation Using a Novel Synthetic Grafting Material: A Case with Two-Year Follow-Up. Case Rep Dent 2018; 2018:6412806. [PMID: 29487751 PMCID: PMC5816876 DOI: 10.1155/2018/6412806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
This case report highlights the use of a novel in situ hardening synthetic (alloplastic), resorbable, bone grafting material composed of beta tricalcium phosphate and calcium sulfate, for alveolar ridge preservation. A 35-year-old female patient was referred by her general dentist for extraction of the mandibular right first molar and rehabilitation of the site with a dental implant. The nonrestorable tooth was “atraumatically” extracted without raising a flap, and the socket was immediately grafted with the synthetic biomaterial and covered with a hemostatic fleece. No membrane was used, and the site was left uncovered without obtaining primary closure, in order to heal by secondary intention. After 12 weeks, the architecture of the ridge was preserved, and clinical observation revealed excellent soft tissue healing without loss of attached gingiva. At reentry for placement of the implant, a bone core biopsy was obtained, and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological analysis revealed pronounced bone regeneration while high levels of primary implant stability were recorded. The implant was successfully loaded 12 weeks after placement. Clinical and radiological follow-up examination at two years revealed stable and successful results regarding biological, functional, and esthetic parameters.
Collapse
|
25
|
Uzeda MJ, de Brito Resende RF, Sartoretto SC, Alves ATNN, Granjeiro JM, Calasans-Maia MD. Randomized clinical trial for the biological evaluation of two nanostructured biphasic calcium phosphate biomaterials as a bone substitute. Clin Implant Dent Relat Res 2017; 19:802-811. [DOI: 10.1111/cid.12516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Marcelo José Uzeda
- Dentistry School, Postgraduate Program in Dentistry; Fluminense Federal University; Niteroi Rio de Janeiro Brazil
| | | | - Suelen Cristina Sartoretto
- Dentistry School, Postgraduate Program in Dentistry; Fluminense Federal University; Niteroi Rio de Janeiro Brazil
| | | | - José Mauro Granjeiro
- Bioengineering Program, National Institute of Metrology; Quality and Technology; Duque de Caxias Rio de Janeiro Brazil
- Dentistry School; Fluminense Federal University; Niteroi Rio de Janeiro Brazil
| | - Mônica Diuana Calasans-Maia
- Dental Clinical Research Center, Oral Surgery Department, Dentistry School; Fluminense Federal University; Niteroi Rio de Janeiro Brazil
| |
Collapse
|
26
|
Doornewaard R, Christiaens V, De Bruyn H, Jacobsson M, Cosyn J, Vervaeke S, Jacquet W. Long-Term Effect of Surface Roughness and Patients' Factors on Crestal Bone Loss at Dental Implants. A Systematic Review and Meta-Analysis. Clin Implant Dent Relat Res 2016; 19:372-399. [PMID: 27860171 DOI: 10.1111/cid.12457] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Publications from 2011 to 2015 were selected to evaluate effect of implant surface roughness on long-term bone loss as surrogate for peri-implantitis risk. 87 out of 2,566 papers reported the mean bone loss after at least 5 years of function. Estimation of the proportion of implants with bone loss above 1, 2, and 3 mm as well as analysis the effect of implant surface roughness, smoking, and history of periodontitis was performed. By means of the provided statistical information of bone loss (mean and standard deviation) the prevalence of implants with bone loss ranging from 1 to 3 mm was estimated. The bone loss was used as a surrogate parameter for "peri-implantitis" given the fact that "peri-implantitis" prevalence was not reported in most studies or when reported, the diagnostic criteria were unclear or of dubious quality. The outcome of this review suggests that peri-implant bone loss around minimally rough implant systems was statistically significant less in comparison to the moderately rough and rough implant systems. No statistically significant difference was observed between moderately rough and rough implant systems. The studies that compared implants with comparable design and different surface roughness, showed less average peri-implant bone loss around the less rough surfaces in the meta-analysis. However, due to the heterogeneity of the papers and the multifactorial cause for bone loss, the impact of surface roughness alone seems rather limited and of minimal clinical importance. Irrespective of surface topography or implant brand, the average weighted implant survival rate was 97.3% after 5 years or more of loading. If considering 3 mm bone loss after at least 5 years to represent the presence of "peri-implantitis," less than 5% of the implants were affected. The meta-analysis indicated that periodontal history and smoking habits yielded more bone loss.
Collapse
Affiliation(s)
- Ron Doornewaard
- Specialist in training, Master student Periodontology, Department Periodontology & Oral Implantology, Dental School, Faculty Medicine and Health Sciences, Ghent University Belgium
| | - Véronique Christiaens
- PhD student, Department Periodontology & Oral Implantology, Dental School, Faculty Medicine and Health Sciences, Ghent University Belgium
| | - Hugo De Bruyn
- full professor and chairman, Department Periodontology & Oral Implantology, Dental School, Faculty Medicine and Health Sciences, Ghent University Belgium, visiting professor, Department of Prosthodontics, Malmö University, Sweden
| | - Magnus Jacobsson
- adjunct professor, Department of Prosthodontics, Malmö University, Sweden
| | - Jan Cosyn
- professor, Department Periodontology & Oral Implantology, Dental School, Faculty Medicine and Health Sciences, Ghent University Belgium, professor, Faculty of Medicine and Health Sciences, Oral Health Research Group ORHE, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stijn Vervaeke
- assistant professor, Department Periodontology & Oral Implantology, Dental School, Faculty Medicine and Health Sciences, Ghent University Belgium
| | - Wolfgang Jacquet
- professor, Faculty of Medicine and Pharmacy, Department of Educational Sciences EDWE-LOCI, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium, professor, Faculty of Medicine and Health Sciences, Oral Health Research Group ORHE, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Salem D, Natto Z, Elangovan S, Karimbux N. Usage of Bone Replacement Grafts in Periodontics and Oral Implantology and Their Current Levels of Clinical Evidence — A Systematic Assessment. J Periodontol 2016; 87:872-9. [DOI: 10.1902/jop.2016.150512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening β-Tricalcium Phosphate Bone Substitute: A Multicenter Case Series. Int J Dent 2016; 2016:5406736. [PMID: 27190516 PMCID: PMC4848413 DOI: 10.1155/2016/5406736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Ridge preservation measures, which include the filling of extraction sockets with bone substitutes, have been shown to reduce ridge resorption, while methods that do not require primary soft tissue closure minimize patient morbidity and decrease surgical time and cost. In a case series of 10 patients requiring single extraction, in situ hardening beta-tricalcium phosphate (β-TCP) granules coated with poly(lactic-co-glycolic acid) (PLGA) were utilized as a grafting material that does not necessitate primary wound closure. After 4 months, clinical observations revealed excellent soft tissue healing without loss of attached gingiva in all cases. At reentry for implant placement, bone core biopsies were obtained and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological and histomorphometrical analysis revealed pronounced bone regeneration (24.4 ± 7.9% new bone) in parallel to the resorption of the grafting material (12.9 ± 7.7% graft material) while high levels of primary implant stability were recorded. Within the limits of this case series, the results suggest that β-TCP coated with polylactide can support new bone formation at postextraction sockets, while the properties of the material improve the handling and produce a stable and porous bone substitute scaffold in situ, facilitating the application of noninvasive surgical techniques.
Collapse
|
29
|
Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study. Int J Dent 2015; 2015:589135. [PMID: 26858757 PMCID: PMC4672140 DOI: 10.1155/2015/589135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose. To present a novel protocol for alveolar bone regeneration in parallel to early implant placement. Methods. 497 patients in need of extraction and early implant placement with simultaneous bone augmentation were treated in a period of 10 years. In all patients the same specific method was followed and grafting was performed utilizing in situ hardening fully resorbable alloplastic grafting materials consisting of β-tricalcium phosphate and calcium sulfate. The protocol involved atraumatic extraction, implant placement after 4 weeks with simultaneous bone augmentation, and loading of the implant 12 weeks after placement and grafting. Follow-up periods ranged from 6 months to 10 years (mean of 4 years). Results. A total of 601 postextraction sites were rehabilitated in 497 patients utilizing the novel protocol. Three implants failed before loading and three implants failed one year after loading, leaving an overall survival rate of 99.0%. Conclusions. This standardized protocol allows successful long-term functional results regarding alveolar bone regeneration and implant rehabilitation. The concept of placing the implant 4 weeks after extraction, augmenting the bone around the implant utilizing fully resorbable, biomechanically stable, alloplastic materials, and loading the implant at 12 weeks seems to offer advantages when compared with traditional treatment modalities.
Collapse
|
30
|
Cheng TL, Murphy CM, Ravarian R, Dehghani F, Little DG, Schindeler A. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering. J Tissue Eng 2015; 6:2041731415609448. [PMID: 26668709 PMCID: PMC4669987 DOI: 10.1177/2041731415609448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022] Open
Abstract
Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.
Collapse
Affiliation(s)
- Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ciara M Murphy
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Roya Ravarian
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Gorla LFDO, Spin-Neto R, Boos FBDJ, Pereira RDS, Garcia-Junior IR, Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective, randomized, volumetric computed tomography study. Int J Oral Maxillofac Surg 2015; 44:1486-91. [PMID: 26232120 DOI: 10.1016/j.ijom.2015.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/21/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022]
Abstract
The correction of bone defects can be performed using autogenous or alloplastic materials, such as beta-tricalcium phosphate (β-TCP). This study compared the changes in bone volume (CBV) after maxillary sinus lifting using autogenous bone (n = 12), autogenous bone associated with β-TCP 1:1 (ChronOS; DePuy Synthes, Paoli, CA, USA) (n = 9), and β-TCP alone (n = 11) as grafting material, by means of cone beam computed tomography (CBCT). CBV was evaluated by comparing CBCT scans obtained in the immediate postoperative period (5-7 days) and at 6 months postoperative in each group using OsiriX software (OsiriX Foundation, Geneva, Switzerland). The results showed an average resorption of 45.7 ± 18.6% for the autogenous bone group, 43.8 ± 18.4% for the autogenous bone+β-TCP group, and 38.3 ± 16.6% for the β-TCP group. All bone substitute materials tested in this study presented satisfactory results for maxillary sinus lifting procedures regarding the maintenance of graft volume during the healing phase before the insertion of implants, as assessed by means of CBCT.
Collapse
Affiliation(s)
- L F de O Gorla
- Department of Oral and Maxillofacial Surgery, Dental School at Araraquara, UNESP, Araraquara, São Paulo, Brazil
| | - R Spin-Neto
- Department of Oral Radiology, School of Dentistry, Aarhus University, Aarhus, Denmark
| | - F B D J Boos
- Department of Oral and Maxillofacial Surgery, Dental School at Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - R dos S Pereira
- Department of Oral and Maxillofacial Surgery, Dental School at Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - I R Garcia-Junior
- Department of Oral and Maxillofacial Surgery, Dental School at Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - E Hochuli-Vieira
- Department of Oral and Maxillofacial Surgery, Dental School at Araraquara, UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
32
|
Hasturk H, Kantarci A, Ghattas M, Dangaria SJ, Abdallah R, Morgan EF, Diekwisch TGH, Ashman A, Van Dyke T. The use of light/chemically hardened polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide graft material in combination with polyanhydride around implants and extraction sockets in minipigs: Part II: histologic and micro-CT evaluations. J Periodontol 2014; 85:1230-9. [PMID: 24502615 DOI: 10.1902/jop.2014.120424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. METHODS A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). RESULTS Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. CONCLUSION Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant-bone interface and is useful in crestal augmentation during immediate implant placement.
Collapse
Affiliation(s)
- Hatice Hasturk
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biological Response to β-Tricalcium Phosphate/Calcium Sulfate Synthetic Graft Material. IMPLANT DENT 2014; 23:37-43. [DOI: 10.1097/id.0000000000000030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|