1
|
Alyami MH. The Applications of 3D-Printing Technology in Prosthodontics: A Review of the Current Literature. Cureus 2024; 16:e68501. [PMID: 39364461 PMCID: PMC11447575 DOI: 10.7759/cureus.68501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Prosthodontics has become increasingly popular because of its cosmetic attractiveness. 3D printing has revolutionized prosthodontics, enabling the creation of high-quality dental prostheses. It creates detailed restorations, such as crowns, bridges, implant-supported frameworks, surgical templates, dentures, and orthodontic models. In addition, it saves production time but faces challenges such as elevated expenses and the requirement for innovative materials and technologies. This review gives insights into the uses of 3D printing in prosthodontics, presenting how it has significantly changed clinical practices. This article discusses different materials and techniques. Additionally, it showcases the capacity of 3D printing to improve prosthodontic practice and proposes prospects for future investigation.
Collapse
|
2
|
Guttridge C, Shannon A, O'Sullivan A, O'Sullivan KJ, O'Sullivan LW. Effects of post-curing duration on the mechanical properties of complex 3D printed geometrical parts. J Mech Behav Biomed Mater 2024; 156:106585. [PMID: 38795405 DOI: 10.1016/j.jmbbm.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
This study aims to assess the efficacy of post-curing guidance supplied by 3D printing resin manufacturers. Current guidance applies generically to all geometries with the caveat that post-curing should be extended for 'large' or 'complex' geometries but specific guidance is not provided. Two vat-polymerisation 3D printers (Form3B, Figure 4 Standalone) were used to print test models in 6 biocompatible resins (Pro Black, Med White, Med Amber, Biomed Black, Biomed White, Biomed Amber). The test model is of a complex geometry whilst also housing ISO 527 test specimens in concentric layers. Two separate intervals of curing were applied (100%, 500% stated guidance) creating different curing treatments of the specimens throughout the model. Post processed test models were disassembled and pull testing performed on each of the specimens to assess the mechanical properties. The analysis showed that extending the curing duration had significant effects on the mechanical properties of some materials but not all. The layers of the model had a significant effect except for elongation at break for the Med Amber material. This research demonstrates that generic post-curing guidance regarding UV exposures is not sufficient to achieve homogenous material strength properties for complex geometries. Large variations in mechanical properties throughout the models suggest some material was not fully-cured. This raises a query if such materials as originally marketed as biocompatible are fully cured and therefore safe to use for medical applications involving complex geometries.
Collapse
Affiliation(s)
- Callum Guttridge
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Alice Shannon
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Aidan O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Kevin J O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Leonard W O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
3
|
Singh TS, Bhola N, Reche A. The Utility of 3D Printing for Surgical Planning and Patient-Specific Implant Design in Maxillofacial Surgery: A Narrative Review. Cureus 2023; 15:e48242. [PMID: 38054128 PMCID: PMC10695083 DOI: 10.7759/cureus.48242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Maxillofacial reconstructive implants are typically created in standard shapes and have a widespread application in head and neck surgery. During surgical procedures, the implant must be correctly bent according to the architecture of the particular bones. Bending takes practice, especially for untrained surgeons. Furthermore, repeated bending may increase internal stress, resulting in fatigue in vivo under masticatory loading and an array of consequences, including implant failure. There is a risk of fracture, screw loosening, and bone resorption. Resorption, infection, and displacement are usually associated with the use of premade alloplastic implants and autogenous grafts. Recent technological breakthroughs have led to the use of patient-specific implants (PSIs) developed by computer-designed additive manufacturing in reconstructive surgery. The use of computer-designed three-dimensional (3D)-printed PSI allows for more precise restoration of maxillofacial deformities, avoiding the common difficulties associated with premade implants and increasing patient satisfaction. Additive manufacturing is something that refers to a group of additive manufacturing methods. This technique has been quickly used in a variety of surgical procedures. The exponential expansion of this technology can be attributed to its enormous surgical value. Adding 3D printing to a medical practice can be a rewarding experience with stunning results.
Collapse
Affiliation(s)
- Tanvi S Singh
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| |
Collapse
|
4
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Subash P, Nerurkar SA, Krishnadas A, Vinay V, Iyer S, Manju V. Patient Specific Alloplastic Implant Reconstruction of Mandibular Defects-Safe Practice Recommendations and Guidelines. J Maxillofac Oral Surg 2023; 22:28-36. [PMID: 37041956 PMCID: PMC10082692 DOI: 10.1007/s12663-023-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Mandibular continuity defects are commonly seen after tumor resection, osteomyelitis or maxillofacial trauma. Three-dimensional reconstruction of these mandibular segmental defects is critical for proper mandibular functioning and esthetics. Various methods used to reconstruct such defects include bridging reconstruction plates, modular endoprosthesis, non-vascularized and vascularized bone grafting with stock reconstruction plate or patient specific implants (PSI) and tissue engineering bone transfer. But in the recent years, literature documents use of PSI only alloplastic reconstruction as an alternate to microvascular bone flap reconstruction. Representative cases enumerate current practice of 'patient specific implant only' mandibular reconstruction and its pitfalls. This article discusses current status of literature on PSI's, choice of indications for 'PSI only' mandibular reconstruction and also proposes guidelines for safe practice of patient specific implant reconstruction of mandible.
Collapse
Affiliation(s)
- Pramod Subash
- Department of Cleft and Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| | - Shibani A. Nerurkar
- Department of Cleft and Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| | - Arjun Krishnadas
- Department of Cleft and Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| | - Vinanthi Vinay
- Department of Cleft and Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| | - Subramania Iyer
- Department of Head and Neck Surgery, Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| | - V. Manju
- Department of Prosthodontics and Implantology, Amrita Institute of Medical Sciences, Kochi, Kerala 41 India
| |
Collapse
|
6
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Mehrabi M, Gardy J, Talebi FA, Farshchi A, Hassanpour A, Bayly AE. An investigation of the effect of powder flowability on the powder spreading in additive manufacturing. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Kermavnar T, Shannon A, O'Sullivan KJ, McCarthy C, Dunne CP, O'Sullivan LW. Three-Dimensional Printing of Medical Devices Used Directly to Treat Patients: A Systematic Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:366-408. [PMID: 36655011 PMCID: PMC9828627 DOI: 10.1089/3dp.2020.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Until recently, three-dimensional (3D) printing/additive manufacturing has not been used extensively to create medical devices intended for actual clinical use, primarily on patient safety and regulatory grounds. However, in recent years there have been advances in materials, printers, and experience, leading to increased clinical use. The aim of this study was to perform a structured systematic review of 3D-printed medical devices used directly in patient treatment. A search of 13 databases was performed to identify studies of 3D-printed medical devices, detailing fabrication technology and materials employed, clinical application, and clinical outcome. One hundred and ten papers describing one hundred and forty medical devices were identified and analyzed. A considerable increase was identified in the use of 3D printing to produce medical devices directly for clinical use in the past 3 years. This is dominated by printing of patient-specific implants and surgical guides for use in orthopedics and orthopedic oncology, but there is a trend of increased use across other clinical specialties. The prevailing material/3D-printing technology used were titanium alloy/electron beam melting for implants, and polyamide/selective laser sintering or polylactic acid/fused deposition modeling for surgical guides and instruments. A detailed analysis across medical applications by technology and materials is provided, as well as a commentary regarding regulatory aspects. In general, there is growing familiarity with, and acceptance of, 3D printing in clinical use.
Collapse
Affiliation(s)
| | - Alice Shannon
- School of Design, University of Limerick, Limerick, Ireland
| | | | - Conor McCarthy
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Colum P. Dunne
- Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Leonard W. O'Sullivan
- School of Design, University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Kim JW. Keys for successful reconstruction of mandibular defects using three-dimensionally printed patient-specific titanium implants. J Korean Assoc Oral Maxillofac Surg 2021; 47:237-238. [PMID: 34462380 PMCID: PMC8408646 DOI: 10.5125/jkaoms.2021.47.4.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
10
|
Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021; 7:e06892. [PMID: 34027149 PMCID: PMC8120950 DOI: 10.1016/j.heliyon.2021.e06892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Additive Manufacturing (AM) or rapid prototyping technologies are presented as one of the best options to produce customized prostheses and implants with high-level requirements in terms of complex geometries, mechanical properties, and short production times. The AM method that has been more investigated to obtain metallic implants for medical and biomedical use is Electron Beam Melting (EBM), which is based on the powder bed fusion technique. One of the most common metals employed to manufacture medical implants is titanium. Although discovered in 1790, titanium and its alloys only started to be used as engineering materials for biomedical prostheses after the 1950s. In the biomedical field, these materials have been mainly employed to facilitate bone adhesion and fixation, as well as for joint replacement surgeries, thanks to their good chemical, mechanical, and biocompatibility properties. Therefore, this study aims to collect relevant and up-to-date information from an exhaustive literature review on EBM and its applications in the medical and biomedical fields. This AM method has become increasingly popular in the manufacturing sector due to its great versatility and geometry control.
Collapse
Affiliation(s)
- José A. Tamayo
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Mateo Riascos
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Carlos A. Vargas
- Grupo Materiales Avanzados y Energía (Matyer), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Libia M. Baena
- Grupo de Química Básica, Aplicada y Ambiente (Alquimia), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
11
|
The Role of Epigenetic Functionalization of Implants and Biomaterials in Osseointegration and Bone Regeneration-A Review. Molecules 2020; 25:molecules25245879. [PMID: 33322654 PMCID: PMC7763898 DOI: 10.3390/molecules25245879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The contribution of epigenetic mechanisms as a potential treatment model has been observed in cancer and autoimmune/inflammatory diseases. This review aims to put forward the epigenetic mechanisms as a promising strategy in implant surface functionalization and modification of biomaterials, to promote better osseointegration and bone regeneration, and could be applicable for alveolar bone regeneration and osseointegration in the future. Materials and Methods: Electronic and manual searches of the literature in PubMed, MEDLINE, and EMBASE were conducted, using a specific search strategy limited to publications in the last 5 years to identify preclinical studies in order to address the following focused questions: (i) Which, if any, are the epigenetic mechanisms used to functionalize implant surfaces to achieve better osseointegration? (ii) Which, if any, are the epigenetic mechanisms used to functionalize biomaterials to achieve better tissue regeneration? Findings from several studies have emphasized the role of miRNAs in functionalizing implants surfaces and biomaterials to promote osseointegration and bone regeneration, respectively. However, there are scarce data on the role of DNA methylation and histone modifications for these specific applications, despite being commonly applied in cancer research. Studies over the past few years have demonstrated that biomaterials are immunomodulatory rather than inert materials. In this context, epigenetics can act as next generation of advanced treatment tools for future regenerative techniques. Yet, there is a need to evaluate the efficacy/cost effectiveness of these techniques in comparison to current standards of care.
Collapse
|
12
|
Martinez-Marquez D, Delmar Y, Sun S, Stewart RA. Exploring Macroporosity of Additively Manufactured Titanium Metamaterials for Bone Regeneration with Quality by Design: A Systematic Literature Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4794. [PMID: 33121025 PMCID: PMC7662257 DOI: 10.3390/ma13214794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Additive manufacturing facilitates the design of porous metal implants with detailed internal architecture. A rationally designed porous structure can provide to biocompatible titanium alloys biomimetic mechanical and biological properties for bone regeneration. However, increased porosity results in decreased material strength. The porosity and pore sizes that are ideal for porous implants are still controversial in the literature, complicating the justification of a design decision. Recently, metallic porous biomaterials have been proposed for load-bearing applications beyond surface coatings. This recent science lacks standards, but the Quality by Design (QbD) system can assist the design process in a systematic way. This study used the QbD system to explore the Quality Target Product Profile and Ideal Quality Attributes of additively manufactured titanium porous scaffolds for bone regeneration with a biomimetic approach. For this purpose, a total of 807 experimental results extracted from 50 different studies were benchmarked against proposed target values based on bone properties, governmental regulations, and scientific research relevant to bone implants. The scaffold properties such as unit cell geometry, pore size, porosity, compressive strength, and fatigue strength were studied. The results of this study may help future research to effectively direct the design process under the QbD system.
Collapse
Affiliation(s)
| | | | | | - Rodney A. Stewart
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4222, Australia; (D.M.-M.); (Y.D.); (S.S.)
| |
Collapse
|
13
|
Abstract
Additive manufacturing (AM) processes have undergone significant progress in recent years, having been implemented in sectors as diverse as automotive, aerospace, electrical component manufacturing, etc. In the medical sector, different devices are printed, such as implants, surgical guides, scaffolds, tissue engineering, etc. Although nowadays some implants are made of plastics or ceramics, metals have been traditionally employed in their manufacture. However, metallic implants obtained by traditional methods such as machining have the drawbacks that they are manufactured in standard sizes, and that it is difficult to obtain porous structures that favor fixation of the prostheses by means of osseointegration. The present paper presents an overview of the use of AM technologies to manufacture metallic implants. First, the different technologies used for metals are presented, focusing on the main advantages and drawbacks of each one of them. Considered technologies are binder jetting (BJ), selective laser melting (SLM), electron beam melting (EBM), direct energy deposition (DED), and material extrusion by fused filament fabrication (FFF) with metal filled polymers. Then, different metals used in the medical sector are listed, and their properties are summarized, with the focus on Ti and CoCr alloys. They are divided into two groups, namely ferrous and non-ferrous alloys. Finally, the state-of-art about the manufacture of metallic implants with AM technologies is summarized. The present paper will help to explain the latest progress in the application of AM processes to the manufacture of implants.
Collapse
|
14
|
Li J, Cui X, Hooper GJ, Lim KS, Woodfield TB. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater 2020; 105:103671. [DOI: 10.1016/j.jmbbm.2020.103671] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
|
15
|
An In Vivo Evaluation of Biocompatibility and Implant Accuracy of the Electron Beam Melting and Commercial Reconstruction Plates. METALS 2019. [DOI: 10.3390/met9101065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of additive manufacturing in medical applications has become more prevalent over the last decade. Studies have proved that reconstruction plates with a mesh structure enhance the biocompatibility and bone-ingrowth formation. However, limited studies have been reported in the customization and in vivo clinical assessment of mesh implants. The purpose of this study was to investigate the surgical treatment and implant fitting accuracy using three different reconstruction plates. Fifteen goats were divided into one control and three experimental groups (Groups 1, 2, and 3) with five in each group. An experimental segmental defect was created on these animals and was adopted with customized electron beam melting reconstruction titanium plates with mesh in Group 1 and without mesh in Group 2 and commercial reconstruction plate in Group 3. All the animals were subjected to radiographic analysis before and after surgery. The subjected animals were sacrificed after 3 months and the electron beam melting reconstruction plates were compared with the commercial plate based on clinical and histology analysis and implant fitting accuracy. Both the electron beam melting reconstruction plates (with mesh and without mesh) and commercial plates survived the three months post-operation, revealing good wound-healing with new bone formation and without any foreign-body reaction. The electron beam melting reconstructed plate with mesh (Group 1) was found to have a better implant fitting when compared to the other two groups. The average discrepancy between Groups 2 and 3 was not significant. Certainly, the commercial plate (Group 3) was found to have the least accuracy as compared to other electron beam melting reconstruction plates (Group 1 and Group 2). Custom design electron beam melting fabricated reconstruction plates possessed better functionality, aesthetic outcome, and long-term biocompatibility when compared to commercial plates. Animal results indicated that the electron beam melting plates with mesh (Group 1) were superior in comparison to the other two groups due to its ability to provide better bone-in-growth and osseointegration on its porous microstructure.
Collapse
|
16
|
Goodson AM, Kittur MA, Evans PL, Williams EM. Patient-specific, printed titanium implants for reconstruction of mandibular continuity defects: A systematic review of the evidence. J Craniomaxillofac Surg 2019; 47:968-976. [PMID: 30885527 DOI: 10.1016/j.jcms.2019.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexander Mc Goodson
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 1DL, United Kingdom
| | - Madhav A Kittur
- Morriston Hospital, Heol Maes Eglwys, Swansea, SA6 6NL, United Kingdom
| | - Peter L Evans
- Morriston Hospital, Heol Maes Eglwys, Swansea, SA6 6NL, United Kingdom
| | - E Mark Williams
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
17
|
Jazayeri HE, Kang S, Masri RM, Kuhn L, Fahimipour F, Vanevenhoven R, Thompson G, Gheisarifar M, Tahriri M, Tayebi L. Advancements in craniofacial prosthesis fabrication: A narrative review of holistic treatment. J Adv Prosthodont 2018; 10:430-439. [PMID: 30584472 PMCID: PMC6302084 DOI: 10.4047/jap.2018.10.6.430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
The treatment of craniofacial anomalies has been challenging as a result of technological shortcomings that could not provide a consistent protocol to perfectly restore patient-specific anatomy. In the past, wax-up and impression-based maneuvers were implemented to achieve this clinical end. However, with the advent of computer-aided design and computer-aided manufacturing (CAD/CAM) technology, a rapid and cost-effective workflow in prosthetic rehabilitation has taken the place of the outdated procedures. Because the use of implants is so profound in different facets of restorative dentistry, their placement for craniofacial prosthesis retention has also been widely popular and advantageous in a variety of clinical settings. This review aims to effectively describe the well-rounded and interdisciplinary practice of craniofacial prosthesis fabrication and retention by outlining fabrication, osseointegrated implant placement for prosthesis retention, a myriad of clinical examples in the craniofacial complex, and a glimpse of the future of bioengineering principles to restore bioactivity and physiology to the previously defected tissue.
Collapse
Affiliation(s)
- Hossein E Jazayeri
- Oral and Maxillofacial Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Steve Kang
- Oral and Maxillofacial Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Radi M Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Lauren Kuhn
- Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Rabecca Vanevenhoven
- Division of Oral and Maxillofacial Surgery and Dentistry, New York Presbyterian Weill Cornell Medical Center, New York City, NY, USA
| | - Geoffrey Thompson
- Department of Prosthodontics, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Maryam Gheisarifar
- Department of Prosthodontics, Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
18
|
3D Culture of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) Could Improve Bone Regeneration in 3D-Printed Porous Ti6Al4V Scaffolds. Stem Cells Int 2018; 2018:2074021. [PMID: 30254680 PMCID: PMC6145055 DOI: 10.1155/2018/2074021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Mandibular bone defect reconstruction is an urgent challenge due to the requirements for daily eating and facial aesthetics. Three-dimensional- (3D-) printed titanium (Ti) scaffolds could provide patient-specific implants for bone defects. Appropriate load-bearing properties are also required during bone reconstruction, which makes them potential candidates for mandibular bone defect reconstruction implants. However, in clinical practice, the insufficient osteogenesis of the scaffolds needs to be further improved. In this study, we first encapsulated bone marrow-derived mesenchymal stem cells (BMSCs) into Matrigel. Subsequently, the BMSC-containing Matrigels were infiltrated into porous Ti6Al4V scaffolds. The Matrigels in the scaffolds provided a 3D culture environment for the BMSCs, which was important for osteoblast differentiation and new bone formation. Our results showed that rats with a full thickness of critical mandibular defects treated with Matrigel-infiltrated Ti6Al4V scaffolds exhibited better new bone formation than rats with local BMSC injection or Matrigel-treated defects. Our data suggest that Matrigel is able to create a more favorable 3D microenvironment for BMSCs, and Matrigel containing infiltrated BMSCs may be a promising method for enhancing the bone formation properties of 3D-printed Ti6Al4V scaffolds. We suggest that this approach provides an opportunity to further improve the efficiency of stem cell therapy for the treatment of mandibular bone defects.
Collapse
|
19
|
Aldaadaa A, Owji N, Knowles J. Three-dimensional Printing in Maxillofacial Surgery: Hype versus Reality. J Tissue Eng 2018; 9:2041731418770909. [PMID: 29774140 PMCID: PMC5949934 DOI: 10.1177/2041731418770909] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing technology is getting more attention recently, especially in the craniofacial region. This is a review of literature enlightening the materials that have been used to date and the application of such technology within the scope of maxillofacial surgery.
Collapse
Affiliation(s)
| | | | - Jonathan Knowles
- Jonathan Knowles, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK.
| |
Collapse
|
20
|
Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS One 2018; 13:e0195291. [PMID: 29649231 PMCID: PMC5896968 DOI: 10.1371/journal.pone.0195291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework.
Collapse
Affiliation(s)
| | - Ali Mirnajafizadeh
- Molecular Cell Biomechanics Laboratory, University of California, Berkeley, California, United States of America
| | - Christopher P. Carty
- School of Allied Health Sciences and Innovations in Health Technology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Queensland Children's Gait Laboratory, Queensland Paediatric Rehabilitation Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia
| | - Rodney A. Stewart
- School of Engineering, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
21
|
Shah FA, Jergéus E, Chiba A, Palmquist A. Osseointegration of 3D printed microalloyed CoCr implants-Addition of 0.04% Zr to CoCr does not alter bone material properties. J Biomed Mater Res A 2018; 106:1655-1663. [DOI: 10.1002/jbm.a.36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy; Göteborg Sweden
| | - Edvin Jergéus
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
| | - Akihiko Chiba
- Institute for Materials Research, Tohoku University; Sendai Japan
| | - Anders Palmquist
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy; Göteborg Sweden
| |
Collapse
|
22
|
Harun W, Kamariah M, Muhamad N, Ghani S, Ahmad F, Mohamed Z. A review of powder additive manufacturing processes for metallic biomaterials. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.058] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron 2016; 94:1-8. [PMID: 27960108 DOI: 10.1016/j.micron.2016.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/10/2023]
Abstract
This paper investigates the application of X-ray micro-computed tomography (micro-CT) to accurately evaluate bone formation within 3D printed, porous Ti6Al4V implants manufactured using Electron Beam Melting (EBM), retrieved after six months of healing in sheep femur and tibia. All samples were scanned twice (i.e., before and after resin embedding), using fast, low-resolution scans (Skyscan 1172; Bruker micro-CT, Kontich, Belgium), and were analysed by 2D and 3D morphometry. The main questions posed were: (i) Can low resolution, fast scans provide morphometric data of bone formed inside (and around) metal implants with a complex, open-pore architecture?, (ii) Can micro-CT be used to accurately quantify both the bone area (BA) and bone-implant contact (BIC)?, (iii) What degree of error is introduced in the quantitative data by varying the threshold values?, and (iv) Does resin embedding influence the accuracy of the analysis? To validate the accuracy of micro-CT measurements, each data set was correlated with a corresponding centrally cut histological section. The results show that quantitative histomorphometry corresponds strongly with 3D measurements made by micro-CT, where a high correlation exists between the two techniques for bone area/volume measurements around and inside the porous network. On the contrary, the direct bone-implant contact is challenging to estimate accurately or reproducibly. Large errors may be introduced in micro-CT measurements when segmentation is performed without calibrating the data set against a corresponding histological section. Generally, the bone area measurement is strongly influenced by the lower threshold limit, while the upper threshold limit has little or no effect. Resin embedding does not compromise the accuracy of micro-CT measurements, although there is a change in the contrast distributions and optimisation of the threshold ranges is required.
Collapse
|