1
|
Alzubaidi L, Al-Dulaimi K, Salhi A, Alammar Z, Fadhel MA, Albahri AS, Alamoodi AH, Albahri OS, Hasan AF, Bai J, Gilliland L, Peng J, Branni M, Shuker T, Cutbush K, Santamaría J, Moreira C, Ouyang C, Duan Y, Manoufali M, Jomaa M, Gupta A, Abbosh A, Gu Y. Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion. Artif Intell Med 2024; 155:102935. [PMID: 39079201 DOI: 10.1016/j.artmed.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge, no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice. This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics, including its ability to enhance diagnosis and treatment planning. The review then covers various applications of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis, prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as one of the ways to increase trustworthiness, which have also been used to address the common multimodality in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug Administration to enable the use of DL applications. As such, we aim to have this review function as a guide for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.
Collapse
Affiliation(s)
- Laith Alzubaidi
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia.
| | - Khamael Al-Dulaimi
- Computer Science Department, College of Science, Al-Nahrain University, Baghdad, Baghdad 10011, Iraq; School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Asma Salhi
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Zaenab Alammar
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mohammed A Fadhel
- Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - A S Albahri
- Technical College, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - A H Alamoodi
- Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - O S Albahri
- Australian Technical and Management College, Melbourne, Australia
| | - Amjad F Hasan
- Faculty of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jinshuai Bai
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Luke Gilliland
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Jing Peng
- Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Marco Branni
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Tristan Shuker
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Kenneth Cutbush
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Jose Santamaría
- Department of Computer Science, University of Jaén, Jaén 23071, Spain
| | - Catarina Moreira
- Data Science Institute, University of Technology Sydney, Australia
| | - Chun Ouyang
- School of Information Systems, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ye Duan
- School of Computing, Clemson University, Clemson, 29631, SC, USA
| | - Mohamed Manoufali
- CSIRO, Kensington, WA 6151, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Mohammad Jomaa
- QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; St Andrew's War Memorial Hospital, Brisbane, QLD 4000, Australia
| | - Ashish Gupta
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Research and Development department, Akunah Med Technology Pty Ltd Co, Brisbane, QLD 4120, Australia
| | - Amin Abbosh
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Yuantong Gu
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; QUASR/ARC Industrial Transformation Training Centre-Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Jain M, Sharma V, Sood C, Shyam A. Impact of 3D printing on Orthopedic Surgery in India: Has the Technology Really Arrived! J Orthop Case Rep 2024; 14:1-3. [PMID: 38911002 PMCID: PMC11189093 DOI: 10.13107/jocr.2024.v14.i06.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Indexed: 06/25/2024] Open
Abstract
Surgical innovations have driven advancements in patient care, leading to improved surgical results and decreased patient morbidity. The integration of new technical advancements in orthopedic surgery is linked to the clinical advantages, ethical challenges, financial factors, and its broader influence on the global health-care sector [1]. 3D printing in orthopedic surgery is a developing technique that is rapidly gaining recognition and positively impacting patient results. The widespread influence and usefulness of 3D printing in orthopedics have been confirmed through reports detailing its application in complex trauma, complex hip revision surgeries, and various other areas such as complex spine deformity for pedicle screw trajectory guides, 3D printed implants, and bio-scaffolds [2-5]. The amount of scientific literature on the use of 3D printing in orthopedics has significantly increased in the past decade, both internationally and in India [6]. However, it has this quickly rising trend in the field of orthopedic surgery “really arrived in India.”
Collapse
Affiliation(s)
- Mantu Jain
- Department of Orthopaedics, AIIMS Bhubaneswar, Bhubaneswar, Odisha, India
| | - Vyom Sharma
- Department of Orthopaedics, Military Hospital Khadki and AFMC, Pune, Maharashtra, India
| | - Chetan Sood
- Department of Orthopaedics, Base Hospital Guwahati, Guwahati, Assam, India
| | - Ashok Shyam
- Department of Orthopaedics, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| |
Collapse
|
3
|
Jyoti, Ghosh R. A numerical investigation for the development of functionally graded Ti/HA tibial implant for total ankle replacement: Influence of material gradation law and volume fraction index. J Biomed Mater Res B Appl Biomater 2024; 112:e35417. [PMID: 38742468 DOI: 10.1002/jbm.b.35417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Stress shielding is one of the major concerns for total ankle replacement implants nowadays, because it is responsible for implant-induced bone resorption. The bone resorption contributes to the aseptic loosening and failure of ankle implants in later stages. To reduce the stress shielding, improvements can be made in the implant material by decreasing the elastic mismatch between the implant and the tibia bone. This study proposes a new functionally graded material (FGM) based tibial implant for minimizing the problem of stress shielding. Three-dimensional finite element (FE) models of the intact tibia and the implanted tibiae were created to study the influence of material gradation law and volume fraction index on stress shielding and implant-bone micromotion. Different implant materials were considered that is, cobalt-chromium, titanium (Ti), and FGM with Ti at the bottom and hydroxyapatite (HA) at the top. The FE models of FGM implants were generated by using different volume fractions and the rule of mixtures. The rule of mixtures was used to calculate the FGM properties based on the local volume fraction. The volume fraction was defined by using exponential, power, and sigmoid laws. For the power and sigmoid law varying volume fraction indices (0.1, 0.2, 0.5, 1, 2, and 5) were considered. The geometry resembling STAR® ankle system tibial implant was considered for the present study. The results indicate that FGMs lower stress shielding but also marginally increase implant-bone micromotion; however, the values were within the acceptable limit for bone ingrowth. It is observed that the material gradation law and volume fraction index influence the performance of FGM tibial implants. The tibial implant composed of FGM using power law with a volume fraction index of 0.1 was the preferred option because it showed the least stress shielding.
Collapse
Affiliation(s)
- Jyoti
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
4
|
Li M, Huang S, Willems E, Soete J, Inokoshi M, Van Meerbeek B, Vleugels J, Zhang F. UV-Curing Assisted Direct Ink Writing of Dense, Crack-Free, and High-Performance Zirconia-Based Composites With Aligned Alumina Platelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306764. [PMID: 37986661 DOI: 10.1002/adma.202306764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Additive manufacturing (AM) of high-performance structural ceramic components with comparative strength and toughness as conventionally manufactured ceramics remains challenging. Here, a UV-curing approach is integrated in direct ink writing (DIW), taking advantage from DIW to enable an easy use of high solid-loading pastes and multi-layered materials with compositional changes; while, avoiding drying problems. UV-curable opaque zirconia-based slurries with a solid loading of 51 vol% are developed to fabricate dense and crack-free alumina-toughened zirconia (ATZ) containing 3 wt% alumina platelets. Importantly, a non-reactive diluent is added to relieve polymerization-induced internal stresses, avoid subsequent warping and cracking, and facilitate the de-binding. For the first time, UV-curing assisted DIW-printed ceramic after sintering reveals even better mechanical properties than that processed by a conventional pressing. This is attributed to the aligned alumina platelets, enhancing crack deflection and improving the fracture toughness from 6.8 ± 0.3 MPa m0.5 (compacted) to 7.4 ± 0.3 MPa m0.5 (DIW). The four-point bending strength of the DIW ATZ (1009 ± 93 MPa) is also higher than that of the conventionally manufactured equivalent (861 ± 68 MPa). Besides homogeneous ceramic, laminate structures are demonstrated. This work provides a valuable hybrid approach to additively manufacture tough and strong ceramic components.
Collapse
Affiliation(s)
- Maoyin Li
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
- Department of Oral Health Sciences, KU Leuven, BIOMAT - Biomaterials Research group and UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, Leuven, B-3000, Belgium
| | - Shuigen Huang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
| | - Evita Willems
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
| | - Jeroen Soete
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven, BIOMAT - Biomaterials Research group and UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, Leuven, B-3000, Belgium
| | - Jef Vleugels
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
| | - Fei Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, B-3001, Belgium
- Department of Oral Health Sciences, KU Leuven, BIOMAT - Biomaterials Research group and UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, Leuven, B-3000, Belgium
| |
Collapse
|
5
|
Thakur KK, Lekurwale R, Bansode S, Pansare R. 3D Bioprinting: A Systematic Review for Future Research Direction. Indian J Orthop 2023; 57:1949-1967. [PMID: 38009170 PMCID: PMC10673757 DOI: 10.1007/s43465-023-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/05/2023] [Indexed: 11/28/2023]
Abstract
Purpose 3D bioprinting is capable of rapidly producing small-scale human-based tissue models, or organoids, for pathology modeling, diagnostics, and drug development. With the use of 3D bioprinting technology, 3D functional complex tissue can be created by combining biocompatible materials, cells, and growth factor. In today's world, 3D bioprinting may be the best solution for meeting the demand for organ transplantation. It is essential to examine the existing literature with the objective to identify the future trend in terms of application of 3D bioprinting, different bioprinting techniques, and selected tissues by the researchers, it is very important to examine the existing literature. To find trends in 3D bioprinting research, this work conducted an systematic literature review of 3D bioprinting. Methodology This literature provides a thorough study and analysis of research articles on bioprinting from 2000 to 2022 that were extracted from the Scopus database. The articles selected for analysis were classified according to the year of publication, articles and publishers, nation, authors who are working in bioprinting area, universities, biomaterial used, and targeted applications. Findings The top nations, universities, journals, publishers, and writers in this field were picked out after analyzing research publications on bioprinting. During this study, the research themes and research trends were also identified. Furthermore, it has been observed that there is a need for additional research in this domain for the development of bioink and their properties that can guide practitioners and researchers while selecting appropriate combinations of biomaterials to obtain bioink suitable for mimicking human tissue. Significance of the Research This research includes research findings, recommendations, and observations for bioprinting researchers and practitioners. This article lists significant research gaps, future research directions, and potential application areas for bioprinting. Novelty The review conducted here is mainly focused on the process of collecting, organizing, capturing, evaluating, and analyzing data to give a deeper understanding of bioprinting and to identify potential future research trends.
Collapse
Affiliation(s)
- Kavita Kumari Thakur
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Ramesh Lekurwale
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Sangita Bansode
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Rajesh Pansare
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| |
Collapse
|
6
|
Le C, Kolasangiani K, Nayyeri P, Bougherara H. Experimental and numerical investigation of 3D-Printed bone plates under four-point bending load utilizing machine learning techniques. J Mech Behav Biomed Mater 2023; 143:105885. [PMID: 37192565 DOI: 10.1016/j.jmbbm.2023.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
The fused deposition modeling (FDM) technique is widely used to produce components for various applications and has the potential to revolutionize orthopedic research through the production of custom-fit and readily available biomedical implants. The properties of FDM-produced implants are significantly influenced by processing parameters, with layer thickness being a crucial parameter. This study investigated the effect of layer thickness on the flexural properties of Polylactic Acid (PLA) bone plate implants produced by the FDM technique. Experimental results showed that the flexural strength is inversely proportional to the layer thickness due to the variation of voids in the specimens. A 3D finite element (FE) model was developed using Abaqus/Explicit software by incorporating the Gurson-Tvergaard (GT) porous plasticity model to predict the elastoplastic and damage behavior of specimens with different layer thicknesses. The characterization of the elastoplastic and GT parameters was done using a tensile test and by the calibration of a machine learning algorithm. It was shown that the FE model was able to predict the flexural behavior of 3D-printed solid plates with a maximum error of 6.13% in the maximum load. The optimal layer height was found to be 0.1 mm, providing both high flexural strength and adequate bending stiffness.
Collapse
Affiliation(s)
- Christine Le
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada
| | - Kamal Kolasangiani
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada
| | - Pooyan Nayyeri
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada.
| |
Collapse
|
7
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
8
|
Abstract
Modern and innovative technologies are rapidly penetrating the clinical practices of Orthopaedic Surgeons. The ones that have proved successful for clinical use are Additive Manufacturing/3D printing, Artificial Intelligence, Robotics, Smart sensors, and Orthobiologics. Industry 5.0 revolution has helped provide personalised treatment by integrating machines and human beings. In this special issue, we present a collection of excellent articles on these technologies.
Collapse
Affiliation(s)
- Raju Vaishya
- Department of Orthopaedics & Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, 110076, India
| |
Collapse
|
9
|
Malik A, Rouf S, Ul Haq MI, Raina A, Valerga Puerta AP, Sagbas B, Ruggiero A. Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications. J Orthop 2022; 34:49-60. [PMID: 36016865 PMCID: PMC9396253 DOI: 10.1016/j.jor.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
Background Additive manufacturing (AM) being an integral component of the production offers a wide variety of applications in the production of different components. The medical industry after the introduction of Additive Manufacturing has resulted in several advancements. The production of intricate patient-specific implants is one of such advancements which greatly assist a surgeon during a surgery. Orthopedic implants apart from possessing good mechanical strength are also expected to exhibit good tribological and corrosion behavior. As a result, the development of various orthopaedic implants and tools has become simple with the use of additive manufacturing. Objectives and Rationale In the current paper an effort has been made to discuss actual scientific knowledge on the tribo-corrosive behavior of additive manufactured parts for orthopedic applications. Different studies dealing with the mechanisms of lubrication and friction in synovial joints have also been considered. A special focus has also been laid down to study the corrosive effect of implants on the human body. A section dedicated to texturing of orthopedic implants has also been provided. The paper further elaborates the different research challenges and issues related to the use of additive manufacturing for the production of optimized orthopedic implants. Conclusion The study revealed that additive manufacturing has greatly aided in the manufacture of different orthopaedic implants with enhanced properties. However, a detailed study of the effect of processes like friction, wear, lubrication and corrosion in these implants needs to be done. The performance of these implants in the presence of various synovial fluids also needs to be addressed. However, the lack of more biocompatible materials, scalability and cost issues hinder the widespread use of AM in the different orthopaedic applications.
Collapse
Affiliation(s)
- Abrar Malik
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Saquib Rouf
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, 182320, India
| | | | - Binnur Sagbas
- Yildiz Technical University, Mechanical Engineering Department, 34349, Besiktas Istanbul, Turkiye
| | | |
Collapse
|