1
|
Steiner L, Dupé A, Kirchner K, Mösch-Zanetti NC. The Effect of Selenium-Based Ligands on Tungsten Acetylene Complexes. Inorg Chem 2024; 63:12255-12267. [PMID: 38898818 PMCID: PMC11220754 DOI: 10.1021/acs.inorgchem.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Bioinspired tungsten acetylene complexes containing pyridine-2-selenolato (PySe) or 6-methyl-pyridine-2-selenolato (6-MePySe) ligands were synthesized. 77Se NMR spectroscopy allowed for an assessment of the resonance structures in the pyridine-2-selenolato ligands and the rationalization of chemoselectivity observed in regard to 1,2 migratory insertion of HC≡CH. [W(CO)(C2H2)(CHCH-PySe)(PySe)] is formed exclusively via insertion of HC≡CH into the W-N bond, while the use of bulkier 6-MePySe allows for the isolation of [W(CO)(C2H2)(6-MePySe)2], which only partially reacts with excess HC≡CH to give [W(CO)(C2H2)(CHCH-6-MePySe)(6-MePySe)]. Oxidation of [W(CO)(C2H2)(6-MePySe)2] with pyridine-N-oxide gave the tungsten(IV) complex [WO(C2H2)(6-MePySe)2]. Complexes [W(CO)(C2H2)(6-MePySe)2] and [WO(C2H2)(6-MePySe)2] react with trimethyl phosphine to carbyne complex [W(CO)(CCH2PMe3)(PMe3)2(6-MePySe)]Cl and alkylidene complex [WO(CHCHPMe3)(PMe3)2(6-MePySe)]Cl, respectively. The addition of substituted alkynes to [W(CO)3(PySe)2] via thermal decarbonylation gave complexes [W(CO)(MeC≡CMe)(PySe)2] and [W(CO)(HC≡Ct-Bu)(PySe)2], respectively. The here presented complexes are relevant for the modeling of the active site of acetylene hydratase from Pelobacter acetylenicus, in which a tungsten atom is enclosed in a sulfur-rich coordination sphere. A recently published theoretical study concluded that the exchange of sulfur for selenium would increase the activity of the enzyme. Our findings contrast this claim as comparative analysis concludes negligible structural and electronic differences between the selenium-based and previously published sulfur-based complexes.
Collapse
Affiliation(s)
- Lorenz Steiner
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, 8010 Graz, Austria
| | - Antoine Dupé
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, 8010 Graz, Austria
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology, 1060 Vienna, Austria
| | | |
Collapse
|
2
|
Kushwah N, Chopade SM, Wadawale A, Sharma P, Kedarnath G. One-pot synthesis of unsubstituted and methyl substituted-pyrazinyl diselenides and monoselenides: structural, optical property characterization and DFT calculations. RSC Adv 2023; 13:36392-36402. [PMID: 38099256 PMCID: PMC10719717 DOI: 10.1039/d3ra06591j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Organoselenium compounds have long been fascinated researchers owing to their wide range of applications, such as in anticancer, in catalysis, and as molecular precursors for metal selenides. In this view, herein, the one-pot synthesis of dimethyl substituted and unsubstituted dipyrazinyl monoselenides, [(2-pyz)2Se] and [(2,5-Me2-3-pyz)2Se], and the corresponding dipyrazinyl disenides, [(2-pyzSe)2] and [(2,5-Me2-3-pyzSe)2], is demonstrated by the reduction of selenium metal using sodium borohydride at room temperature and a subsequent alkylation using the corresponding pyrazinyl halide in ethanol. All the diselenides and monoselenides were characterized using IR, UV-vis, photoluminescence, and NMR (1H, 13C{1H}, and 77Se{1H}) spectroscopy. The molecular structures of the diselenides and monoselenides were unambiguously determined by single-crystal X-ray diffraction (SC-XRD). The optical properties, including absorption, excitation, emission, and quantum yield, of these organoselenium compounds were examined. Additionally, DFT calculations were performed to determine the HOMO and LUMO orbitals, band gap, and oscillator strength of these ligands.
Collapse
Affiliation(s)
- Nisha Kushwah
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400 085 India +91-22-2550-5151 +91-22-2559-3816
| | - Suresh M Chopade
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400 085 India +91-22-2550-5151 +91-22-2559-3816
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400 085 India +91-22-2550-5151 +91-22-2559-3816
| | - P Sharma
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400 085 India +91-22-2550-5151 +91-22-2559-3816
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400 085 India +91-22-2550-5151 +91-22-2559-3816
- Homi Bhabha National Institute Anushaktinagar Mumbai 400 094 India
| |
Collapse
|
3
|
Gandhi VV, Bihani SC, Phadnis PP, Kunwar A. Diselenide-derivative of 3-pyridinol targets redox enzymes leading to cell cycle deregulation and apoptosis in A549 cells. Biol Chem 2022; 403:891-905. [PMID: 36002994 DOI: 10.1515/hsz-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
The aim of present study was to understand the mechanism of action of 2,2'-diselenobis(3-pyridinol) or DISPOL in human lung cancer (A549) cells. A549 cells were treated with 10 µM (∼IC50) of DISPOL for varying time points to corelate the intracellular redox changes with its cytotoxic effect. The results indicated that DISPOL treatment led to a time dependant decrease in the basal level of reactive oxygen species (ROS). Additionally, DISPOL treatment elevated the ratio of reduced (GSH) and oxidised (GSSG) glutathione by upregulating gamma-glutamylcysteine ligase (γ-GCL) involved in GSH biosynthesis and inhibiting the activities of redox enzymes responsible for GSH utilization and recycling, such as glutathione-S-transferase (GST) and glutathione reductase (GR). Molecular docking analysis suggests putative interactions of DISPOL with GST and GR which could account for its inhibitory effect on these enzymes. Further, DISPOL induced reductive environment preceded G1 arrest and apoptosis as evidenced by decreased expression of cell cycle genes (Cyclin D1 and Cyclin E1) and elevation of p21 and apoptotic markers (cleaved caspase 3 and cleaved PARP). The combinatorial experiments involving DISPOL and redox modulatory agents such as N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) indeed confirmed the role of reductive stress in DISPOL-induced cell death. Finally, Lipinski's rule suggests attributes of drug likeness in DISPOL. Taken together, DISPOL exhibits a novel mechanism of reductive stress-mediated cell death in A549 cells that warrants future exploration as anticancer agent.
Collapse
Affiliation(s)
- Vishwa V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasad P Phadnis
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Shin NH, Lim YJ, Kim C, Kim YE, Jeong YR, Cho H, Park MS, Lee SH. An Efficient Method for Selective Syntheses of Sodium Selenide and Dialkyl Selenides. Molecules 2022; 27:molecules27165224. [PMID: 36014475 PMCID: PMC9414418 DOI: 10.3390/molecules27165224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The studies on the selective synthesis of dialkyl selenide compounds 1 were presented. Overcoming the complexity and difficulty of selenides (R-Se-R) and/or multiselenides (R-Sen-R; n ≥ 2), we aimed to optimize the reaction condition for the tolerable preparation of sodium selenide (Na2Se) by reducing Se with NaBH4, and then to achieve selective syntheses of dialkyl selenides 1 by subsequently treating the obtained sodium selenide with alkyl halides (RX). Consequently, various dialkyl selenides 1 were efficiently synthesized in good-to-moderate yields. The investigations on reaction pathways and solvent studies were also described.
Collapse
|
5
|
Kumar R, Bhasin K, Dhau JS, Singh A. Synthesis and characterization of 3-pyridylchalcogen compounds. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Gujral G, Bhasin AKK, Bhasin KK, Gulati S. Syntheses, characterization, and single crystal X-ray analysis of 2-pyridyl aryl selenium (IV) bromides and chlorides. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1987898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gurjeet Gujral
- Department of Chemistry, Post Graduate Government College for Girls, Chandigarh, Punjab, India
| | | | - K. K. Bhasin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, Punjab, India
| | - Shivani Gulati
- Department of Chemistry, D.A.V. College, Chandigarh, Punjab, India
| |
Collapse
|
7
|
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214254] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Dhau JS, Singh A, Brandão P, Felix V. Synthesis, characterization, X-ray crystal structure and antibacterial activity of bis[3-(4-chloro-N,N-diethylpyridine-2-carboxamide)] diselenide. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Cargnelutti R, Schumacher RF, Belladona AL, Kazmierczak JC. Coordination chemistry and synthetic approaches of pyridyl-selenium ligands: A decade update. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213537] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Dias RDS, Cervo R, Siqueira FDS, Campos MMA, Lang ES, Tirloni B, Schumacher RF, Cargnelutti R. Synthesis and antimicrobial evaluation of coordination compounds containing 2,2′‐bis(3‐aminopyridyl) diselenide as ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Renne de Sousa Dias
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Rodrigo Cervo
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Fallon dos Santos Siqueira
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Marli Matiko Anraku Campos
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ernesto Schulz Lang
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Bárbara Tirloni
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ricardo Frederico Schumacher
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| |
Collapse
|
11
|
Ouahine H, Hasnaoui A, Hdoufane I, Idouhli R, Abouelfida A, Ait Ali M, El Firdoussi L. Benzo[c][1,2,5]selenadiazole organoselenium derivatives: Synthesis, X-ray, DFT, Fukui analysis and electrochemical behavior. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Mruk J, Pazderski L, Ścianowski J, Wojtczak A. Structural and NMR spectroscopic studies of 2-phenylsulfanylpyridine and its analogues or derivatives, and their Au(III) chloride complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Gandhi VV, Phadnis PP, Kunwar A. 2,2′-Dipyridyl diselenide (Py2Se2) induces G1 arrest and apoptosis in human lung carcinoma (A549) cells through ROS scavenging and reductive stress. Metallomics 2020; 12:1253-1266. [DOI: 10.1039/d0mt00106f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the cytotoxic activity and the underlying mechanisms of a synthetic organoselenium compound containing pyridine and diselenide moieties.
Collapse
Affiliation(s)
- V. V. Gandhi
- Radiation and Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Prasad P. Phadnis
- Homi Bhabha National Institute
- Mumbai-400 094
- India
- Chemistry Division
- Bhabha Atomic Research Centre
| | - A. Kunwar
- Radiation and Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
14
|
Abstract
Internally functionalized multifaceted organochalcogen compounds have been designed and their ligand chemistry has been developed. The palladium complexes show remarkable homogeneous catalytic activity.
Collapse
Affiliation(s)
- Vimal K. Jain
- UM-DAE Centre for Excellence in Basic Sciences
- Nalanda Building
- University of Mumbai
- Mumbai-400 098
- India
| |
Collapse
|
15
|
Tiezza MD, Ribaudo G, Orian L. Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180803123137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organodiselenides are an important class of compounds characterized by the
presence of two adjacent covalently bonded selenium nuclei. Among them,
diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest
in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and
biochemistry. A search in SCOPUS database has revealed that in the last three years 105
papers have been published on the archetypal diphenyl diselenide and its use in organic
catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium
make diselenides efficient catalysts for numerous organic reactions, such as Bayer-
Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols
and nitrogen containing compounds. In addition, organodiselenides might find application
as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions,
regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic
and reactivity aspects of organoselenides are collected and rationalized using the results of accurate
computational studies, which have been carried out mainly in the last two decades. The results obtained in
silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their
ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic
activity of the GPx, inspiring novel elements for rational catalyst and drug design.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Universita degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
16
|
|
17
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Chaudhari KR, Paluru DK, Wadawale AP, Dey S. Allylpalladium complexes of pyridylselenolates as precursors for palladium selenides. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Rishi P, Thakur R, Kaur UJ, Singh H, Bhasin KK. Potential of 2, 2'-dipyridyl diselane as an adjunct to antibiotics to manage cadmium-induced antibiotic resistance in Salmonella enterica serovar Typhi Ty2 strain. J Microbiol 2017; 55:737-744. [PMID: 28779338 DOI: 10.1007/s12275-017-7040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
One of the reasons for increased antibiotic resistance in Salmonella enterica serovar Typhi Ty2 is the influx of heavy metal ions in the sewage, from where the infection is transmitted. Therefore, curbing these selective agents could be one of the strategies to manage the emergence of multidrug resistance in the pathogen. As observed in our earlier study, the present study also confirmed the links between cadmium accumulation and antibiotic resistance in Salmonella. Therefore, the potential of a chemically-synthesised compound 2, 2'-dipyridyl diselane (DPDS) was explored to combat the metal-induced antibiotic resistance. Its metal chelating and antimicrobial properties were evidenced by fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and microbroth dilution method. Owing to these properties of DPDS, further, this compound was evaluated for its potential to be used in combination with conventional antibiotics. The data revealed effective synergism at much lower concentrations of both the agents. Thus, it is indicated from the study that the combination of these two agents at their lower effective doses might reduce the chances of emergence of antibiotic resistance, which can be ascribed to the multi-pronged action of the agents.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harjit Singh
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Kuldip K Bhasin
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Sharma N, Kumar S, Maurya IK, Bhasin KK, Verma A, Wangoo N, Bhasin AKK, Mehta SK, Kumar S, Sharma RK. Synthesis, structural analysis, antimicrobial evaluation and synergistic studies of imidazo[1,2-a]pyrimidine chalcogenides. RSC Adv 2016. [DOI: 10.1039/c6ra24020h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and structural analysis of novel imidazo[1,2-a]pyrimidine chalcogenides exhibiting effective antimicrobial activity and synergistic effects with known antibiotics have been reported.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ajay Verma
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Nishima Wangoo
- Department of Applied Sciences
- University Institute of Engineering and Technology (UIET)
- Panjab University
- Chandigarh
- India
| | - Aman K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Rohit K. Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
21
|
Gujral G, Gulati SD, Bhasin KK, Potapov VA, Amosova SV. Synthesis and Characterization of Unsymmetric 4-Picolyl Selenides. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1085041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurjeet Gujral
- Department of Chemistry, G.C.G.-11, Chandigarh, 160 011, India
| | - Shivani D. Gulati
- Department of Chemistry, D. A. V. College, Sector-10, Chandigarh, 160 011, India
| | - Kuldip K. Bhasin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Punjab University, Chandigarh, 160 014, India
| | - V. A. Potapov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| | - S. V. Amosova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| |
Collapse
|
22
|
Singh VP, Poon JF, Butcher RJ, Lu X, Mestres G, Ott MK, Engman L. Effect of a Bromo Substituent on the Glutathione Peroxidase Activity of a Pyridoxine-like Diselenide. J Org Chem 2015; 80:7385-95. [DOI: 10.1021/acs.joc.5b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vijay P. Singh
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jia-fei Poon
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Ray J. Butcher
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Xi Lu
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Gemma Mestres
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Marjam Karlsson Ott
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lars Engman
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
23
|
Martins IL, Charneira C, Gandin V, Ferreira da Silva JL, Justino GC, Telo JP, Vieira AJSC, Marzano C, Antunes AMM. Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy. J Med Chem 2015; 58:4250-65. [PMID: 25906385 DOI: 10.1021/acs.jmedchem.5b00230] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium-containing chrysin (SeChry) and 3,7,3',4'-tetramethylquercetin (SePQue) derivatives were synthesized by a microwave-based methodology. In addition to their improvement in terms of DPPH scavenging and potential GPx-like activities, when tested in a panel of cancer cell lines both selenium-derivatives revealed consistently to be more cytotoxic when compared with their oxo and thio-analogues, evidencing the key role of selenocabonyl moiety for these activities. In particular, SeChry elicited a noteworthy cytotoxic activity with mean IC50 values 18- and 3-fold lower than those observed for chrysin and cisplatin, respectively. Additionally, these seleno-derivatives evidenced an ability to overcome cisplatin and multidrug resistance. Notably, a differential behavior toward malignant and nonmalignant cells was observed for SeChry and SePQue, exhibiting higher selectivity indexes when compared with the chalcogen-derivatives and cisplatin. Our preliminary investigation on the mechanism of cytotoxicity of SeChry and SePQue in MCF-7 human mammary cancer cells demonstrated their capacity to efficiently suppress the clonal expansion along with their ability to hamper TrxR activity leading to apoptotic cell death.
Collapse
Affiliation(s)
- Inês L Martins
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Catarina Charneira
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Valentina Gandin
- ‡Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - João L Ferreira da Silva
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Gonçalo C Justino
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - João P Telo
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Abel J S C Vieira
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Marzano
- ‡Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Alexandra M M Antunes
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
24
|
Dhau JS, Singh A, Singh A, Sharma N, Brandão P, Félix V, Singh B, Sharma V. A mechanistic study of the synthesis, single crystal X-ray data and anticarcinogenic potential of bis(2-pyridyl)selenides and -diselenides. RSC Adv 2015. [DOI: 10.1039/c5ra15577k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A mechanistic study on LiAlH4 assisted scission of C–Se bond in bis(2-pyridyl)diselenides leading to bis(2-pyridyl)selenides generation has been presented.
Collapse
Affiliation(s)
| | - Avtar Singh
- Department of Chemistry
- Punjabi University
- Patiala-147002
- India
| | - Amritpal Singh
- Department of Chemistry
- Mata Gujri College
- Fatehgarh Sahib-140406
- India
| | - Neha Sharma
- Department of Chemistry
- Punjabi University
- Patiala-147002
- India
| | - Paula Brandão
- Departamento de Química
- CICECO
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - Vítor Félix
- Departamento de Química
- iBiMED and CICECO
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - Baljinder Singh
- Department of Biotechnology
- Panjab University
- Chandigarh-160014
- India
| | - Vishal Sharma
- Department of Biotechnology
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
25
|
Synthesis and characterization of pyrimidyl- and pyrazinylselenium compounds: X-ray structure of 2,5-bis(methylselenenyl)pyrazine. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Synthesis and antibacterial activity of pyridylselenium compounds: Self-assembly of bis(3-bromo-2-pyridyl)diselenide via intermolecular secondary and π⋯π stacking interactions. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Singh VP, Poon JF, Butcher RJ, Engman L. Pyridoxine-Derived Organoselenium Compounds with Glutathione Peroxidase-Like and Chain-Breaking Antioxidant Activity. Chemistry 2014; 20:12563-71. [DOI: 10.1002/chem.201403229] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/07/2022]
|
28
|
Hodage AS, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK. Synthesis, Characterization, and Structures of α-Substituted Selenenyl-Acetophenones. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2013.844144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ananda S. Hodage
- Chemistry Division, Bhabha Atomic Research Centre, Trombay 400085, Mumbai, India
| | - Prasad P. Phadnis
- Chemistry Division, Bhabha Atomic Research Centre, Trombay 400085, Mumbai, India
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Trombay 400085, Mumbai, India
| | - K. I. Priyadarsini
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay 400085, Mumbai, India
| | - Vimal K. Jain
- Chemistry Division, Bhabha Atomic Research Centre, Trombay 400085, Mumbai, India
| |
Collapse
|
29
|
Dhau JS, Singh A, Singh A, Sooch BS. A Study on the Antioxidant Activity of Pyridylselenium Compounds and their Slow Release from Poly(acrylamide) Hydrogels. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2013.844143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaspreet S. Dhau
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Avtar Singh
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Amritpal Singh
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Balwinder S. Sooch
- Department of Biotechnology, Punjabi University, Patiala-147002, Punjab, India
| |
Collapse
|
30
|
Sharma RK, Wadawale A, Kedarnath G, Vishwanadh B, Jain VK. Pyrimidyl-2-selenolates of cadmium and mercury: Synthesis, characterization, structures and their conversion to metal selenide nano-particles. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Doomra) SG(, Bhasin KK. Synthesis and characterization of novel 2-fluoro/chloro-3-pyridyl selenides: X-ray crystal structure of bis(2-fluoro-3-pyridyl) diselenide and bis(2-fluoro-3-pyridylseleno) methane. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Kedarnath G, Jain VK. Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: A family of multi utility molecules. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|