1
|
Zhong L, Huang R, Gao L, Yue J, Zhao B, Nie L, Li L, Wu A, Zhang K, Meng Z, Cao G, Zhang H, Zang H. A Novel Variable Selection Method Based on Binning-Normalized Mutual Information for Multivariate Calibration. Molecules 2023; 28:5672. [PMID: 37570642 PMCID: PMC10419756 DOI: 10.3390/molecules28155672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Variable (wavelength) selection is essential in the multivariate analysis of near-infrared spectra to improve model performance and provide a more straightforward interpretation. This paper proposed a new variable selection method named binning-normalized mutual information (B-NMI) based on information entropy theory. "Data binning" was applied to reduce the effects of minor measurement errors and increase the features of near-infrared spectra. "Normalized mutual information" was employed to calculate the correlation between each wavelength and the reference values. The performance of B-NMI was evaluated by two experimental datasets (ideal ternary solvent mixture dataset, fluidized bed granulation dataset) and two public datasets (gasoline octane dataset, corn protein dataset). Compared with classic methods of backward and interval PLS (BIPLS), variable importance projection (VIP), correlation coefficient (CC), uninformative variables elimination (UVE), and competitive adaptive reweighted sampling (CARS), B-NMI not only selected the most featured wavelengths from the spectra of complex real-world samples but also improved the stability and robustness of variable selection results.
Collapse
Affiliation(s)
- Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Ruiqi Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Jianan Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Bing Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Kefan Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China; (Z.M.); (G.C.)
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China; (Z.M.); (G.C.)
| | - Hui Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.Z.); (R.H.); (L.G.); (J.Y.); (B.Z.); (L.N.); (L.L.); (A.W.); (K.Z.)
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
- Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Theoretical study of closo-borate derivatives of general type [BnHn-1COR]2– (n = 6, 10, 12; R = H, CH3, NH2, OH, OCH3) – Borylated analogue of organic carbonyl compounds. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Pipim GB, Tia R, Adei E. Investigating the regio-, stereo-, and enantio-selectivities of the 1,3-dipolar cycloaddition reaction of C-cyclopropyl-N-phenylnitrone derivatives and benzylidenecyclopropane derivatives: A DFT study. J Mol Graph Model 2020; 100:107672. [PMID: 32659628 DOI: 10.1016/j.jmgm.2020.107672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023]
Abstract
The biomedical importance of spirocyclopropane isoxazolidine derivatives is widely known. The 1,3-dipolar cycloaddition (1,3-DC) of C-cyclopropyl-N-phenylnitrone derivative and benzylidenecyclopropane derivatives leading to the formation of 5- and 4-spirocyclopropane isoxazolidines derivatives have been studied using density functional theory (DFT) at M06-2X/6-311G (d,p) level of theory. An extensive exploration of the potential energy surface shows that the 1,3-dipole adds across the dipolarophile via an asynchronous concerted mechanism. While electron-donating groups (EDGs) on the benzylidenecyclopropane favor the formation of the 4-spirocyclopropane isomer, electron-withdrawing groups (EWGs) favor the reaction channels that furnish the 5-spirocyclopropane isoxazolidine isomer. Both EWDs and EDGs on the 1,3-dipole favor the formation of the 5-spirocyclopropane isoxazolidine isomer. Irrespective of the electronic nature of substituents on the C-cyclopropyl-N-phenylnitrone, the reaction channels that regioselectively lead to the formation of the 5-spirocyclopropane isoxazolidine isomer are favored. In all reactions considered, the channels that selectively lead to the formation of the cis-diastereoisomers proceed with lower activation barriers than the trans-diastereoisomers. In all cases, the observed selectivities in the title reaction are kinetically controlled.
Collapse
Affiliation(s)
- George Baffour Pipim
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Richard Tia
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
7
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pipim GB, Opoku E, Tia R, Adei E. Peri-, Chemo-, Regio-, Stereo- and Enantio-Selectivities of 1,3-dipolar cycloaddition reaction of C,N-Disubstituted nitrones with disubstituted 4-methylene-1,3-oxazol-5(4H)- one: A quantum mechanical study. J Mol Graph Model 2020; 97:107542. [PMID: 32004806 DOI: 10.1016/j.jmgm.2020.107542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
The peri-, chemo-, regio-, stereo- and enantio-selectivities of 1,3-dipolar cycloaddition reaction of C,N-disubstituted nitrones with disubstituted 4-methylene-1,3-oxazol-5(4H)-one have been studied using density functional theory (DFT) at the M06-2X/6-311G (d,p) level of theory. The 1,3-dipole preferentially adds chemo-selectively across the olefinic bond in a (3 + 2) fashion forming the corresponding spirocycloadduct. The titled reaction occurs with poor enantio- and stereo-selectivities, but a high degree of regio-selectivity is observed for the addition of the 1,3-dipole across the dipolarophile. Electron-withdrawing groups on the dipolarophile significantly reduce the activation barriers while electron-donating groups on the dipolarophile increase the activation barriers. Analysis of the HOMO and LUMO energies of the two reacting species indicates that the 1,3-dipole reacts as a nucleophile while the dipolarophile reacts as the electrophile. Investigation of the electrophilic Parr function (PK+) at the various reaction centers in the dipolarophile indicates that the 1,3-dipole selectively adds across the atomic species with the largest electrophilic Mulliken and NBO atomic spin densities which is in accordance with the energetic trends observed.
Collapse
Affiliation(s)
- George Baffour Pipim
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ernest Opoku
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Richard Tia
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
9
|
1, 3-Dipolar cycloaddition reactions of selected 1,3-dipoles with 7-isopropylidenenorbornadiene and follow-up thermolytic cleavage: A computational study. J Mol Graph Model 2019; 92:267-279. [PMID: 31425904 DOI: 10.1016/j.jmgm.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022]
Abstract
The mechanism, regio-, stereo-, and enantio-selectivities of the 1,3-dipolar cycloaddition reactions of 7-isopropylidenenorbornadiene (DENBD) with nitrones and azides to form pharmaceutically relevant isoxazolidine and triazole analogues have been studied computationally at the M06/6-31G(d), 6-31G(d,p), 6-311G(d,p), 6-311++G(d,p) and M06-2X/6-31G(d) levels of theory. In the reactions of DENBD with phenyl nitrones, the cycloaddition steps have low activation barriers, with the highest being 16 kcal/mol; and the Diels-Alder cycloreversion steps have generally high barriers, with the lowest being 20 kcal/mol, suggesting that the isolable products in these reactions are the bicyclic isoxazolidine cycloadducts and not the thermolytic products. This is in contrast to the reactions of DENBD with phenyl azide where the isolable products are predicted to be the thermolytic products since the Diels-Alder cycloreversion steps had relatively lower activation barriers. Electron-donating substituents on the dipolarophile substrate favour attack of the nitrone on the least hindered side of the DENBD substrate while electron-withdrawing substituents on the dipolarophile substrate favour attack on the more hindered side of the DENBD, indicating that site-selectivity is affected by nature of substituents. Global reactivity indices calculations are in good agreement with the activation barriers obtained. Analysis of the electrophilic (PK+) and nucleophilic (PK-) Parr functions at the reactive centres reveal that the cycloaddition occurs between atoms with the largest Mulliken and NBO atomic spin densities which agrees well with the energetic trends and the experimental product outcomes.
Collapse
|