1
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Singh A, Dutta A, Singh AK, Trivedi M, Kociok‐Köhn G, Muddassir M, Kumar A. Tertiary phosphine‐appended transition metal ferrocenyl dithiocarbamates: Syntheses, Hirshfeld surface, and electrochemical analyses. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amita Singh
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| | - Archisman Dutta
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
- Chemical Division Geological Survey of India Northern Region Lucknow 226024 India
| | - Ashish Kumar Singh
- Department of Chemistry Guru Ghasidas Vishwavidyala, Koni Bilaspur 495009 India
| | - Manoj Trivedi
- Department of Chemistry University of Delhi Delhi India
| | - Gabriele Kociok‐Köhn
- Material and Chemical Characterization Facility (MC2) University of Bath Bath BA27AY UK
| | - Mohd. Muddassir
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| |
Collapse
|
3
|
Sanz del Olmo N, Carloni R, Ortega P, García-Gallego S, de la Mata FJ. Metallodendrimers as a promising tool in the biomedical field: An overview. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Antiprotozoal activity of palladium(II) salicylaldiminato thiosemicarbazone complexes on metronidazole resistant Trichomonas vaginalis. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Summers KL. A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes. Mini Rev Med Chem 2019; 19:569-590. [DOI: 10.2174/1389557518666181015152657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/26/2018] [Accepted: 09/30/2018] [Indexed: 01/14/2023]
Abstract
Malaria is a potentially life-threatening disease, affecting approx. 214 million people worldwide. Malaria is caused by a protozoan, Plasmodium falciparum, which is transmitted through the Anopheles mosquito. Malaria treatment is becoming more challenging due to rising resistance against the antimalarial drug, chloroquine. Novel compounds that target aspects of parasite development are being explored in attempts to overcome this wide-spread problem. Anti-malarial drugs target specific aspects of parasite growth and development within the human host. One of the most effective targets is the inhibition of hematin formation, either through inhibition of cysteine proteases or through iron chelation. Metal-thiosemicarbazone (TSC) complexes have been tested for antimalarial efficacy against drug-sensitive and drug-resistant strains of P. falciparum. An array of TSC complexes with numerous transition metals, including ruthenium, palladium, and gold has displayed antiplasmodial activity. Au(I)- and Pd(II)-TSC complexes displayed the greatest potency; 4-amino-7-chloroquine moieties were also found to improve antiplasmodial activity of TSCs. Although promising metal-TSC drug candidates have been tested against laboratory strains of P. falciparum, problems arise when attempting to compare between studies. Future work should strive to completely characterize synthesized metal-TSC structures and assess antiplasmodial potency against several drug-sensitive and drugresistant strains. Future studies need to precisely determine IC50 values for antimalarial drugs, chloroquine and ferroquine, to establish accurate standard values. This will make future comparisons across studies more feasible and potentially help reveal structure-function relationships. Investigations that attempt to link drug structures or properties to antiplasmodial mechanism(s) of action will aid in the design of antimalarial drugs that may combat rising drug resistance.
Collapse
Affiliation(s)
- Kelly L. Summers
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
7
|
Singh A, Lumb I, Mehra V, Kumar V. Ferrocene-appended pharmacophores: an exciting approach for modulating the biological potential of organic scaffolds. Dalton Trans 2019; 48:2840-2860. [DOI: 10.1039/c8dt03440k] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present review article describes the recent developments (2014–18) on the synthesis of ferrocene-based pharmacophores with the specific benefits of introducing/replacing organic pharmacophores with the ferrocene core for desired bioactivities.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Isha Lumb
- Department of Chemistry
- Baring Union Christian College
- Batala-143505
- India
| | - Vishu Mehra
- Department of Chemistry
- Hindu College
- Amritsar-143001
- India
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
9
|
Enhanced electrochemical sensitivity towards acetaminophen determination using electroactive self-assembled ferrocene derivative polymer nanospheres with multi-walled carbon nanotubes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Adams M, de Kock C, Smith PJ, Chibale K, Smith GS. Evaluation of Ferrocenyl-Containing Benzothiazoles as Potential Antiplasmodial Agents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Muneebah Adams
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
| | - Carmen de Kock
- Division of Pharmacology; Department of Medicine; University of Cape Town; Groote Schuur Hospital; K45, OMB, Observatory 7925 Cape Town South Africa
| | - Peter J. Smith
- Division of Pharmacology; Department of Medicine; University of Cape Town; Groote Schuur Hospital; K45, OMB, Observatory 7925 Cape Town South Africa
| | - Kelly Chibale
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
- Institute of Infectious Disease and Molecular Medicine; University of Cape Town; Rondebosch 7701 Cape Town South Africa
- South African Medical Research Council Drug Discovery & Development Research Unit; University of Cape Town; Rondebosch 7701 Cape Town South Africa
| | - Gregory S. Smith
- Department of Chemistry; University of Cape Town; Private Bag, Rondebosch 7701 Cape Town South Africa
| |
Collapse
|