1
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
2
|
Tsurugi H, Mashima K, Misal Castro LC, Sultan I. Pyridine-Mediated B–B Bond Activation of (RO)2B–B(OR)2 for Generating Borylpyridine Anions and Pyridine-Stabilized Boryl Radicals as Useful Boryl Reagents in Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1486-8169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSignificant developments have been achieved in recent years toward the utilization of (RO)2B–B(OR)2 for exploring transition-metal-free organic transformations in organic synthesis. Among the various combinations of Lewis bases with diborons developed so far, pyridine derivatives are simple, commercially available, and cheap compounds to expand the synthetic utility of diborons by generating borylpyridine anions and pyridine-stabilized boryl radicals via B–B bond cleavage. These borylpyridine species mediate a series of transformations in both a catalytic and stoichiometric manner for C–X activation (X = halogen, CO2H, NR2) and concomitant C-borylation, hydroborylation, C–C bond formation, and reduction reactions.1 Introduction2 Reaction Pathway for B–B Bond Cleavage of Diborons with Electron-Deficient Pyridines3 Pyridine-Mediated B–B Bond Activation of (RO)2B–B(OR)2 for Application in Organic Synthesis3.1 Dehalogenative C-Borylation3.2 Desulfonative C-Borylation3.3 Decarboxylative C-Borylation3.4 Deaminative C-Borylation3.5 Hydroborylation3.6 C–C Bond Formation3.7 Pyridine Functionalization3.8 Deoxygenation and N-Borylation Reactions4 Conclusions
Collapse
|
3
|
Verma PK, Meher NK, Geetharani K. Homolytic cleavage of diboron(4) compounds using diazabutadiene derivatives. Chem Commun (Camb) 2021; 57:7886-7889. [PMID: 34302163 DOI: 10.1039/d1cc02881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazabutadiene derivatives have been identified as a distinct class of reagents, capable of cleaving B-B bonds of diboron(4). The cleavage is accompanied by the formation of a new C[double bond, length as m-dash]C bond and the product geometry is highly dependent on the substituents on the DAB units. Preliminary mechanistic investigations suggest a concerted mechanism and the absence of any radical intermediates.
Collapse
Affiliation(s)
- Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| | - Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
4
|
Gao L, Zhang H, Liu X, Wang G, Li S. Mechanistic insights into the dearomative diborylation of pyrazines: a radical or non-radical process? Dalton Trans 2021; 50:6982-6990. [DOI: 10.1039/d1dt00921d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of the dearomative diborylation of pyrazines were investigated via a combination of density functional theory calculations and experimental studies.
Collapse
Affiliation(s)
- Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Hanyin Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
5
|
Qi JQ, Jiao L. DFT Study on the Mechanism of 4,4′-Bipyridine-Catalyzed Nitrobenzene Reduction by Diboron(4) Compounds. J Org Chem 2020; 85:13877-13885. [DOI: 10.1021/acs.joc.0c01963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Qing Qi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Abstract
The mechanism studies of transition-metal-catalyzed reductive coupling reactions
investigated using Density Functional Theory calculations in the recent ten years have been
reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and
some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the
methodology used in these computational mechanism studies. The mechanisms of the transition-
metal-catalyzed reductive coupling reactions normally include three main steps: oxidative
addition; transmetalation; and reductive elimination or four main steps: the first oxidative
addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting
step is most likely the final reductive elimination step in the whole mechanism.
Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry
optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values.
We hope that this review will stimulate more and more experimental and computational combinations and the
computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qinghua Ren
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
7
|
Zhou M, Li K, Chen D, Xu R, Xu G, Tang W. Enantioselective Reductive Coupling of Imines Templated by Chiral Diboron. J Am Chem Soc 2020; 142:10337-10342. [PMID: 32459089 DOI: 10.1021/jacs.0c04558] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We herein report a general, practical, and highly efficient method for asymmetric synthesis of a wide range of chiral vicinal diamines via reductive coupling of imines templated by chiral diboron. The protocol features high enantioselectivity and stereospecificity, mild reaction conditions, simple operating procedures, use of readily available starting materials, and a broad substrate scope. The method signifies the generality of diboron-enabled [3,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Mingkang Zhou
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Kaidi Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Dongping Chen
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Ronghua Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China.,NingBo Zejun Pharmaceutical Technology Co., Ltd, Hangzhou Bay New District, Ningbo 315336, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.,NingBo Zejun Pharmaceutical Technology Co., Ltd, Hangzhou Bay New District, Ningbo 315336, China
| |
Collapse
|
8
|
Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. 4,4′-Bipyridyl-Catalyzed Reduction of Nitroarenes by Bis(neopentylglycolato)diboron. Org Lett 2019; 21:9812-9817. [DOI: 10.1021/acs.orglett.9b03419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hiromu Hosoya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan
| | - Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|