1
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
2
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
3
|
Huang KC, Li JC, Wang SM, Cheng CH, Yeh CH, Lin LS, Chiu HY, Chang CY, Chuu JJ. The effects of carbon monoxide releasing molecules on paraquat-induced pulmonary interstitial inflammation and fibrosis. Toxicology 2021; 456:152750. [PMID: 33737140 DOI: 10.1016/j.tox.2021.152750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
Paraquat, an herbicide used extensively worldwide, can cause severe toxicity in humans and animals, leading to irreversible, lethal lung fibrosis. The potential of CO-releasing molecules (CORMs), substances that release CO (Carbon monoxide) within animal tissues, for treating paraquat-induced ROS generation and inflammation is investigated here. Our results show that the fast CO releaser CORM-3 (4-20 μM) acts as a potential scavenger of free radicals and decreases fibrosis progression by inhibiting paraquat-induced overexpression of connective tissue growth factor and angiotensin II in MRC-5 cells. The slow CO releaser CORM-A1 (5 mg/kg) clearly decreased expression of the lung profibrogenic cytokines COX-2, TNF-α, and α-SMA and serum hydroxyproline, resulting in a lower mortality rate in paraquat-treated mice. Mice treated with higher-dose CORM-A1 (10 mg/kg) had relatively intact lung lobes and fewer fibrotic patches by gross observation, with less collagen deposition, mesangial matrix accumulation, and pulmonary fibrosis resulting from the mitigation of TGF-β overexpression. In conclusion, our data demonstrate for the first time that CORM-A1 alleviated the development of the fibrotic process and improved survival rate in mice exposed to PQ, would be an attractive therapeutic approach to attenuate the progression of pulmonary fibrosis following PQ exposure.
Collapse
Affiliation(s)
- Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Hospital, Liouying, Tainan, Taiwan; Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Jui-Chen Li
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli, Taiwan
| | - Shu-Mei Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hui Cheng
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chun-Hsiang Yeh
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Li-Syun Lin
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hsin-Yi Chiu
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chia-Yu Chang
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Jiunn-Jye Chuu
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli, Taiwan; Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
4
|
Liu HP, Liao Y, Ren MZ, Quan ZJ, Wang XC. Synthesis, structural characterization, molecular docking study, biological activity of carbon monoxide release molecules as potent antitumor agents. Bioorg Chem 2021; 107:104621. [PMID: 33465671 DOI: 10.1016/j.bioorg.2020.104621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 11/12/2022]
Abstract
In this study, two series of novel carbon monoxide-releasing molecules (CO-RMs) containing Co were designed and synthesized. The synthesized complexes were characterized by IR, ESI-MS, 1H NMR and 13C NMR spectroscopies. The antitumor activity of all complexes on HepG2 cells, Hela cells and MDA-MB-231 cells were assayed by MTT. IC50 values of complexes 1-13 were 4.7-548.6 µM. Among these complexes, complex 1 was presented with a high selectivity to HepG2 cells (IC50 = 4.7 ± 0.76 μM). Compared with iCORM (inactive CORM), CORM (complex 1) showed a remarkable activity against tumor cells owing to co-effect of CO and the ligand of COX-2 inhibitor. In addition, complex 1 increased ROS in mitochondria and caused a decrease of dose-dependent mitochondrial membrane potential against HepG2 cells. Complex 1 down-regulated the expression of COX-2 protein in western blot analysis. The molecular docking study suggested that the complex 1 formed a hydrogen bond with amino acid R120 in the active site of the Human cyclooxygenase-2 (COX-2). Therefore, the complex 1 could induce apoptosis of HepG2 cells through targeting COX-2 and mitochondria pathways, and it maybe a potential therapeutic agent for cancer.
Collapse
Affiliation(s)
- Hua-Peng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Department of Pharmacy, Gansu Medical College, Pingliang, Gansu 744000, PR China
| | - Yuan Liao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Ming-Zhe Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, PR China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
5
|
Liu Y, Zhang T, Li G, Li S, Li J, Zhao Q, Wu Q, Xu D, Hu X, Zhang L, Li Q, Zhang H, Liu B. Radiosensitivity enhancement by Co-NMS-mediated mitochondrial impairment in glioblastoma. J Cell Physiol 2020; 235:9623-9634. [PMID: 32394470 DOI: 10.1002/jcp.29774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
We investigated the radiosensitizing effects of Co-NMS, a derivative of nimesulide based on a cobalt carbonyl complex, on malignant glioma cells. In the zebrafish exposed to Co-NMS ranging from 5 to 20 μM, cell death and heat shock protein 70 expression in the brain and neurobehavioral performance were evaluated. Our data showed that Co-NMS at 5 μM did not cause the appreciable neurotoxicity, and thereby was given as a novel radiation sensitizer in further study. In the U251 cells, Co-NMS combined with irradiation treatment resulted in significant inhibition of cell growth and clonogenic capability as well as remarkable increases of G2/M arrest and apoptotic cell population compared to the irradiation alone treatment. This demonstrated that the Co-NMS administration exerted a strong potential of sensitizing effect on the irradiated cells. With regard to the tumor radiosensitization of Co-NMS, it could be primarily attributed to the Co-NMS-derived mitochondrial impairment, reflected by the loss of mitochondrial membrane potential, the disruption of mitochondrial fusion and fission balance as well as redox homeostasis. Furthermore, the energy metabolism of the U251 cells was obviously suppressed by cotreatment with Co-NMS and irradiation through repressing mitochondrial function. Taken together, our findings suggested that Co-NMS could be a desirable drug to enhance the radiotherapeutic effects in glioblastoma patients.
Collapse
Affiliation(s)
- Yang Liu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Taofeng Zhang
- Institute of Radiochemistry, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qingfen Wu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Hu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luwei Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
8
|
Li S, Li G, Zhang T, Li J, Zhao Q, Zhang B, Wang R, Zhou R, Si J, Gan L, Liu Y, Zhang H, Liu B. Co-SLD suppressed the growth of oral squamous cell carcinoma via disrupting mitochondrial function. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1746-1757. [PMID: 31062618 DOI: 10.1080/21691401.2019.1608218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Jili Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Li J, Zhang J, Zhang Q, Bai Z, Zhao Q, He D, Wang Z, Chen Y, Liu B. Syntheses and anti-cancer activity of CO-releasing molecules with targeting galactose receptors. Org Biomol Chem 2018; 16:8115-8129. [PMID: 30334056 DOI: 10.1039/c8ob01921e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO-releasing molecules (CORMs) containing cobalt have many bioactivities, but most of them do not dissolve in water and have no selectivity to tissue and organs. On the basis of the specific recognition of galactose or sialic acid by a receptor, a series of CORMs based on carbohydrates were synthesized and evaluated. The test results show that all the complexes displayed anticancer activity. Among them, the effects of the complexes of galactose (1), GalNAc (8) and sialic acid (10) were very distinct. Complex 1 displayed higher activity against HeLa, HePG2, MCF-7 and HT-29 cell proliferation than cis-platin (DDP), and its selectivity was far much better than DDP compared with normal cell W138. Furthermore, the uptakes of complexes 1, 8 and 10 by HePG2, HT-29, A549 and RAW264.7 cell lines were studied. The uptake ratio of each cell line for complex 1 was different, and the order of uptake ratio in the four cell lines was HePG2 > HT-29 > RAW264.7 > A549. The HePG2 cells absorbed complex 1 beyond 60% after incubation for 8 h, while A549 absorbed only 27.8%. For complex 8, the uptake trend was similar to that of complex 1 with it being absorbed by all the four cancer cells, but the uptake rate was lower. However, differently, complex 10 was absorbed heavily by macrophage RAW264.7, followed by HePG2; after 8 h incubation, the uptake ratio of RAW264.7 was over 50%. In addition, the mechanism of action was explored, and the results showed that the complexes inhibited cell cycle arrest at the G2/M phase; complex 1 up-regulated the expression levels of caspase-3 and Bax, and down-regulated the Bcl-2 expression, giving rise to HePG2 cell apoptosis.
Collapse
Affiliation(s)
- Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|