1
|
Banaei A, Saadat A, Gharibzadeh N, Ghasemi PP. Synthesis and characterization of new composite from modified silica-coated MnFe 2O 4 nanoparticles for removal of tetracycline from aqueous solution. RSC Adv 2024; 14:14170-14184. [PMID: 38690111 PMCID: PMC11058457 DOI: 10.1039/d4ra01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
In this study, a new composite from silica coated MnFe2O4 nanoparticles, diethylenetriamine, 3-chloropropyl trimethoxysilane and Mg-Al Layered Double Hydroxide (Mg-Al LDH/DETA/CPTMS/SCNPs) composite was synthesized. The Mg-Al LDH/DETA/CPTMS/SCNPs composite was examined by Fourier transform infrared spectrometer (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDS), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA) and Vibrating Sample Magnetometry (VSM). The synthesized composite exhibited magnetic property with a saturation magnetization of 0.40 emu g-1. The Mg-Al LDH/DETA/CPTMS/SCNPs composite was utilized as a successful adsorbent for removal of tetracycline from aqueous solutions. The effect of various operation factors such as initial drug concentration, adsorbent dosage, pH and contact time were investigated. The optimized variable conditions such as adsorbent dose of 60 mg L-1, drug concentration of 100 mg L-1, pH = 7 and contact time 30 min were obtained. For describing the adsorption isotherms, the Langmuir, Freundlich and Temkin adsorption models were utilized. The results indicated that the adsorption isotherm is in good agreement with Langmuir model. According to the Langmuir analysis, the maximum adsorption capacity (qm) of the Mg-Al LDH/DETA/CPTMS/SCNPs composite for tetracycline was obtained to be 40.16 mg g-1. The kinetic studies revealed that the adsorption in all cases to be a pseudo second-order process. The negative value of ΔG° and the positive value of ΔH° showed the adsorption process to be spontaneous and endothermic.
Collapse
Affiliation(s)
- Alireza Banaei
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | - Afshin Saadat
- Department of Chemistry, Germi Branch, Islamic Azad University Germi Iran
| | - Negar Gharibzadeh
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | | |
Collapse
|
2
|
Hosseinzadeh R, Mavvaji M, Moradi I. Synthesis and Characterization of Fe3O4@SiO2@MgAl-LDH@Au.Pd as an Efficient and Magnetically Recyclable Catalyst for Reduction of 4-Nitrophenol and Suzuki Coupling Reactions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Mohammad Ghadiri A, Farhang M, Hassani P, Salek A, Talesh Ramezani A, Reza Akbarzadeh A. Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Magnetically Recyclable Schiff-based Palladium Nanocatalyst [Fe3O4@SiNSB-Pd] and its Catalytic Applications in Heck Reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
5
|
Khorsandi Z, Metkazini SFM, Heydari A, Varma RS. Visible light-driven direct synthesis of ketones from aldehydes via C H bond activation using NiCu nanoparticles adorned on carbon nano onions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
7
|
Sobhani S, Zarei H, Sansano JM. A new nanomagnetic Pd-Co bimetallic alloy as catalyst in the Mizoroki-Heck and Buchwald-Hartwig amination reactions in aqueous media. Sci Rep 2021; 11:17025. [PMID: 34426594 PMCID: PMC8382703 DOI: 10.1038/s41598-021-95931-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
A Pd-Co bimetallic alloy encapsulated in melamine-based dendrimer supported on magnetic nanoparticles denoted as γ-Fe2O3@MBD/Pd-Co was synthesized by a facile co-complexation-reduction method and characterized sufficiently. The catalytic evaluation of γ-Fe2O3@MBD/Pd-Co showed promising results in the Mizoroki-Heck and Buchwald-Hartwig amination reactions of various iodo-, bromo- and challenging chloroarenes in aqueous media. The synergetic cooperative effect of both Pd and Co and dispersion of the catalyst in water due to the encapsulation of γ-Fe2O3 by melamine-based dendrimer lead to high catalytic performance compared with the monometallic counterparts. The dispersion of the magnetic catalyst also facilitates the recovery and reuse of the catalyst by ten consecutive extraction and final magnetic isolation with no loss of catalytic activity, keeping its structure unaltered.
Collapse
Affiliation(s)
- Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Hamed Zarei
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
8
|
Lin Z, Chen J. Magnetic Fe 3O 4@MgAl-LDH@La(OH) 3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release. CHEMOSPHERE 2021; 264:128551. [PMID: 33059289 DOI: 10.1016/j.chemosphere.2020.128551] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
In order to facilitate recovery and enhance phosphate adsorption capacity of lanthanum (La)-based materials, magnetic Fe3O4@MgAl-LDH@La(OH)3 (MMAL) composites with a hierarchical core-shell structure were synthesized. In the preparation process, citric acid played a vital role in the morphology control of La(OH)3, deciding the La content and phosphate adsorption capacity of materials. MMAL composites with a citric acid-to-La molar ratio of 0.375 (MMAL-0.375) exhibited a high adsorption capacity of 66.5 mg P/g, fast adsorption kinetics of 30 min, widely applicable pH range of 4.0-10.0, outstanding selective adsorption performance, and superior reusability in batch adsorption experiments. Moreover, the phosphate in the desorption solution could be concentrated by repeated use of desorption solution and recovered by using CaCl2. When the obtained composites were used for the sedimentary phosphorus sequestration and recovery, the results showed that the addition of MMAL-0.375 effectively reduced the concentration of soluble reactive phosphorus (SRP) in the overlying water. Accompanied by an evident increase in HCl-extractable phosphorus (HCl-P), mobile phosphorus (Pmob) in sediments was effectively reduced. This work indicates that the MMAL-0.375 composites can serve as an effective tool for the removal of phosphate from wastewater and the control of sedimentary phosphorus.
Collapse
Affiliation(s)
- Zhiguo Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China; Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, Yunnan University, Kunming, 650091, China; National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, 650091, China.
| | - Jing Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| |
Collapse
|
9
|
Facile synthesis of nanostructured Ni-Co/ZnO material: An efficient and inexpensive catalyst for Heck reactions under ligand-free conditions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Li J, Song Y, Wang Y, Zhang H. Ultrafine PdCu Nanoclusters by Ultrasonic-Assisted Reduction on the LDHs/rGO Hybrid with Significantly Enhanced Heck Reactivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50365-50376. [PMID: 33108171 DOI: 10.1021/acsami.0c09106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of hierarchical nanosheet array-like Co-Al layered double hydroxides (LDHs)/reduced graphene oxide (rGO) hybrid supported ultrafine PdCu nanocluster (NC) catalysts m-PdCux/LDHs/rGO (x: Cu/Pd molar ratio of 1.5, 3.0, and 5.5; m: Pd loadings of ∼0.80, 0.40, 0.11, and 0.01 wt %) were assembled via an ultrasonic-assisted NaBH4 reduction-sol immobilization strategy. The as-obtained catalysts display ultrafine PdCu alloy NCs with sizes of ∼0.9-1.8 nm finely tuned by both Cu/Pd ratios and Pd loadings and mainly distributed on the edge sites of LDH nanosheets and part of LDHs-rGO junctions upon the unique hierarchical nanosheet array-like structure. Three catalysts 0.85-PdCu1.5/LDHs/rGO, 0.83-PdCu3.0/LDHs/rGO, and 0.80-PdCu5.5/LDHs/rGO exhibit excellent Heck reactivity for iodobenzene with styrene, of which the 0.83-PdCu3.0/LDHs/rGO shows the highest activity, much higher than Pd/LDHs/rGO and single LDHs or GO supported PdCu3.0 catalysts, attributed to the ultrafine PdCu3.0 NCs, the largest electron density of the Pd0 center, and the strongest PdCu3.0 NCs-LDHs-rGO three-phase synergistic effect. The lowest Pd-loading sample 0.01-PdCu3.0/LDHs/rGO shows an unprecedented turnover frequency of 210 000 h-1 (Pd dosage: 2 × 10-5 mol %) with the highest value so far, excellent adaptability for substrates, and reusability. The present work provides a versatile method for designing hierarchically structured ultrafine Pd-M alloy NC catalysts for varied catalysis processes.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| | - Ying Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| | - Yanna Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| |
Collapse
|
11
|
Esmaeili MS, Varzi Z, Taheri-Ledari R, Maleki A. Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04311-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Amirmahani N, Rashidi M, Mahmoodi NO. Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
- Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of ScienceShahid Bahonar University of Kerman Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
| |
Collapse
|
13
|
Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chem Rev 2020; 120:3890-3938. [PMID: 32223178 PMCID: PMC7181275 DOI: 10.1021/acs.chemrev.9b00662] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
In
this review, we discuss selected examples from recent literature
on the role of the support on directing the nanostructures of Au-based
monometallic and bimetallic nanoparticles. The role of support is
then discussed in relation to the catalytic properties of Au-based
monometallic and bimetallic nanoparticles using different gas phase
and liquid phase reactions. The reactions discussed include CO oxidation,
aerobic oxidation of monohydric and polyhydric alcohols, selective
hydrogenation of alkynes, hydrogenation of nitroaromatics, CO2 hydrogenation, C–C coupling, and methane oxidation.
Only studies where the role of support has been explicitly studied
in detail have been selected for discussion. However, the role of
support is also examined using examples of reactions involving unsupported
metal nanoparticles (i.e., colloidal nanoparticles). It is clear that
the support functionality can play a crucial role in tuning the catalytic
activity that is observed and that advanced theory and characterization
add greatly to our understanding of these fascinating catalysts.
Collapse
Affiliation(s)
| | - Qian He
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575
| | - Rebecca V Engel
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Mala A Sainna
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Nishtha Agarwal
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Christopher J Kiely
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| |
Collapse
|
14
|
Li J, Song Y, Wang Y, Zhang H. Enhanced Heck reaction on flower-like Co(Mg or Ni)Al layered double hydroxide supported ultrafine PdCo alloy nanocluster catalysts: the promotional effect of Co. Dalton Trans 2019; 48:17741-17751. [PMID: 31746876 DOI: 10.1039/c9dt03663f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of PdCo alloy nanocluster (NC) catalysts x-PdCor/Co(Mg or Ni)Al-LDH (x: Pd loading, r: Co/Pd molar ratio) were synthesized by immobilizing ultrafine PdCor-PVP NCs on flower-like layered double hydroxide (LDH) supports. The sizes of PdCo alloy NCs of the catalysts can be elaborately tuned in ∼1.6-3.2 nm by both Co/Pd ratios and Pd loadings, and the PdCo NCs are mainly dispersed on the edge sites of LDH nanosheets upon a flower-like morphology. The PdCo bimetallic catalysts 0.81-PdCo0.10/MgAl-LDH (2.6 ± 0.6 nm), 0.86-PdCo0.28/MgAl-LDH (2.3 ± 0.7 nm) and 0.79-PdCo0.54/MgAl-LDH (3.2 ± 0.9 nm) exhibit enhanced activity compared with the monometallic Pd catalyst for Heck coupling of iodobenzene with styrene. Particularly, 0.86-PdCo0.28/MgAl-LDH shows the highest activity, which can be attributed to its smallest PdCo0.28 alloy NCs, and the maximum electron density of the Pd0 center resulted from the electron transfer from Co and the strongest PdCo0.28 NCs - LDH synergistic effect. 0.67-PdCo0.28/CoAl-LDH shows much better activity than those of 0.64-PdCo0.28/NiAl-LDH and 0.86-PdCo0.28/MgAl-LDH. The lowest Pd loading sample 0.01-PdCo0.28/CoAl-LDH (1.6 ± 0.4 nm) shows an ultrahigh turnover frequency of 163 000 h-1 (Pd: 1.9 × 10-5 mol%), which is the highest value obtained so far. Meanwhile, the catalyst shows excellent adaptability for the substrates and can be reused for 12 runs without significant loss of activity. The present work may provide a new idea for the simple and green synthesis of ultrafine Pd-based non-noble bimetallic catalysts for varied catalytic processes.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China.
| | - Ying Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China.
| | - Yajuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China.
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China.
| |
Collapse
|
15
|
Rohani S, Mohammadi Ziarani G, Ziarati A, Badiei A. Designer 3D CoAl-layered double hydroxide@N, S doped graphene hollow architecture decorated with Pd nanoparticles for Sonogashira couplings. APPLIED SURFACE SCIENCE 2019; 496:143599. [DOI: 10.1016/j.apsusc.2019.143599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
16
|
Yavari I, Mobaraki A, Hosseinzadeh Z, Sakhaee N. Copper-catalyzed Mizoroki-Heck coupling reaction using an efficient and magnetically reusable Fe3O4@SiO2@PrNCu catalyst. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|