1
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Alí-Torres J, Flores-Gaspar A. Pincer Ligands as Multifunctional Agents for Alzheimer's Copper Dysregulation and Oxidative Stress: A Computational Evaluation. Chempluschem 2023; 88:e202300405. [PMID: 37756039 DOI: 10.1002/cplu.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide, affecting millions of people around the globe. AD is characterized by different pathologies being beta-amyloid (Aβ) plaque formation, metal ion dysregulation, and oxidative stress (OS) central topics under investigation. Copper-Aβ complexes have been shown to induce catalytic hydrogen peroxide formation and increase OS in the brain leading to neuronal death. Pincer-type compounds are tridentate ligands that coordinate metals in a planar fashion whose properties can be tuned via group substitutions, giving rise to many possibilities in catalysis and drug discovery. In this work we evaluated the potential pharmaceutical activity of 26 pincer compounds in AD's copper ion-related oxidative stress framework. In this sense, four key aspects were considered: 1) Lipinski's rule of five, 2) blood-brain barrier permeation, 3) standard reduction potential (SRP) of the formed copper complexes, and 4) the ligand's affinity towards copper cations. The evaluation of these criteria was performed by means of bioinformatic tools and electronic structure calculations at the DFT level of theory. Our results suggest that two compounds from this set are potential antioxidant agents, whereas five of them are promissory distributor-like compounds in the context of AD.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá
| | - Diego Chaparro
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá
- Department of Chemistry, Universidad Militar Nueva Granada, Kilómetro 2, vía Cajicá-Zipaquira, costado oriental, Cajicá, Colombia
| | - David Morales-Morales
- Institute of Chemistry, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Jorge Alí-Torres
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá
| | - Areli Flores-Gaspar
- Department of Chemistry, Universidad Militar Nueva Granada, Kilómetro 2, vía Cajicá-Zipaquira, costado oriental, Cajicá, Colombia
| |
Collapse
|
2
|
Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct C-H Heteroarylation of (Hetero)arenes. Chem Asian J 2023; 18:e202300628. [PMID: 37602812 DOI: 10.1002/asia.202300628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5 mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
Collapse
Affiliation(s)
- Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
3
|
Esfandiari M, Mohammadnezhad G, Akintola O, Otto F, Fritz T, Plass W. Sustainable catalysts for efficient triazole synthesis: an immobilized triazine-based copper-NNN pincer complex on TiO 2. Dalton Trans 2023; 52:11875-11885. [PMID: 37560800 DOI: 10.1039/d3dt02118a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The multistep synthesis of a hybrid material based on a TiO2 core with an immobilized triazine-based copper(II)-NNN pincer complex is reported. The formation of the material was confirmed by FT-IR spectroscopy and elemental and thermogravimetric analyses, and the loading by copper ions was quantified by ICP/OES analysis. The properties of the hybrid material were further investigated by X-ray photoelectron spectroscopy (XPS), contiuous wave electron spin resonance (CW-ESR), UV-vis spectroscopy, and argon sorption. Efficient and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was achieved by employing the hybrid material as a catalyst in a mixture of H2O/EtOH as a green solvent with excellent catalytic activity with a TOF up to 495 h-1 at 50 °C. The reusability of the prepared hybrid material in the catalytic reaction was possible over five consecutive runs without significant loss of catalytic activity. The described method represents an effective way to ensure sustainable use of pincer complexes in catalytic systems by immobilizing them on solid supports, resulting in a hybrid organic-inorganic catalyst platform.
Collapse
Affiliation(s)
- Mitra Esfandiari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743 Jena, Germany.
| | | | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743 Jena, Germany.
| | - Felix Otto
- Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Torsten Fritz
- Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 5, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743 Jena, Germany.
| |
Collapse
|
4
|
Esteruelas MA, Moreno-Blázquez S, Oliván M, Oñate E. Competition between N, C, N-Pincer and N, N-Chelate Ligands in Platinum(II). Inorg Chem 2023; 62:10152-10170. [PMID: 37343120 PMCID: PMC11003652 DOI: 10.1021/acs.inorgchem.3c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/23/2023]
Abstract
Replacement of the chloride ligand of PtCl{κ3-N,C,N-[py-C6HR2-py]} (R = H (1), Me (2)) and PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (3) by hydroxido gives Pt(OH){κ3-N,C,N-[py-C6HR2-py]} (R = H (4), Me (5)) and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (6). These compounds promote deprotonation of 3-(2-pyridyl)pyrazole, 3-(2-pyridyl)-5-methylpyrazole, 3-(2-pyridyl)-5-trifluoromethylpyrazole, and 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole. The coordination of the anions generates square-planar derivatives, which in solution exist as a unique species or equilibria between isomers. Reactions of 4 and 5 with 3-(2-pyridyl)pyrazole and 3-(2-pyridyl)-5-methylpyrazole provide Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[R'pz-py]} (R = H; R' = H (7), Me (8). R = Me; R' = H (9), Me (10)), displaying κ1-N1-pyridylpyrazolate coordination. A 5-trifluoromethyl substituent causes N1-to-N2 slide. Thus, 3-(2-pyridyl)-5-trifluoromethylpyrazole affords equilibria between Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[CF3pz-py]} (R = H (11a), Me (12a)) and Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N2-[CF3pz-py]} (R = H (11b), Me (12b)). 1,3-Bis(2-pyridyloxy)phenyl allows the chelating coordination of the incoming anions. Deprotonations of 3-(2-pyridyl)pyrazole and its substituted 5-methyl counterpart promoted by 6 lead to equilibria between Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[R'pz-py]} (R' = H (13a), Me (14a)) with a κ-N1-pyridylpyrazolate anion, keeping the pincer coordination of the di(pyridyloxy)aryl ligand, and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[R'pz-py]} (R' = H (13c), Me (14c)) with two chelates. Under the same conditions, 3-(2-pyridyl)-5-trifluoromethylpyrazole generates the three possible isomers: Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[CF3pz-py]} (15a), Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N2-[CF3pz-py]} (15b), and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[CF3pz-py]} (15c). The N1-pyrazolate atom produces a remote stabilizing effect on the chelating form, pyridylpyrazolates being better chelate ligands than pyridylpyrrolates. Accordingly, reactions of 4-6 with 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole yield Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[(CF3)2C4(py)HN]} (R = H (16), Me (17)) or Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[(CF3)2C4(py)HN]} (18), displaying κ1-N1-pyrrolate coordination. Complexes 7-10 are efficient green phosphorescent emitters (488-576 nm). In poly(methyl methacrylate) (PMMA) films and in dichloromethane, they experience self-quenching, due to molecular stacking. Aggregation occurs through aromatic π-π interactions, reinforced by weak platinum-platinum interactions.
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Kasera A, Biswas JP, Ali Alshehri A, Ahmed Al-Thabaiti S, Mokhtar M, Maiti D. Transition metal pincer complexes: A series of potential catalysts in C H activation reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Antibacterial activity and molecular studies of non-symmetric POCOP-Pd(II) pincer complexes derived from 2,4-dihydroxybenzaldehyde (2,4-DHBA). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Investigating Intermediates in the CCC-NHC Pincer Ligand Metalation/Transmetalation to Rh Sequence, An Improved Stoichiometric Synthesis of CCC-NHC Pincer Rh Complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
He F, Gourlaouen C, Pang H, Braunstein P. Experimental and Theoretical Study of Ni II - and Pd II -Promoted Double Geminal C(sp 3 )-H Bond Activation Providing Facile Access to NHC Pincer Complexes: Isolated Intermediates and Mechanism. Chemistry 2022; 28:e202200507. [PMID: 35543286 PMCID: PMC9401054 DOI: 10.1002/chem.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/11/2022]
Abstract
We report the first examples of metal-promoted double geminal activation of C(sp3 )-H bonds of the N-CH2 -N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole (1) with [PdCl2 (cod)] occurred in a stepwise fashion, first by single C-H bond activation yielding the alkyl pincer complex [PdCl(PCsp 3 H P)] (3) with two trans phosphane donors and a covalent Pd-Csp 3 bond. Activation of the C-H bond of the resulting α-methine Csp 3 H-M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHC P)]Cl (2). Treatment of 1 with [NiBr2 (dme)] also afforded a NHC pincer complex, [NiBr(PCNHC P)]Br (6), but the reactions leading to the double geminal C-H bond activation of the N-CH2 -N group were too fast to allow identification or isolation of an intermediate analogous to 3. The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N-CH2 -N moiety in the N-CNHC -N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.
Collapse
Affiliation(s)
- Fengkai He
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009JiangsuP. R. China) E-mail: s
- Laboratoire de Chimie de CoordinationInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| | - Christophe Gourlaouen
- Laboratoire de Chimie QuantiqueInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009JiangsuP. R. China) E-mail: s
| | - Pierre Braunstein
- Laboratoire de Chimie de CoordinationInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| |
Collapse
|
9
|
Spielvogel KD, Durgaprasad G, Daly SR. Configurational Flexibility of a Triaryl-Supported SBS Ligand with Rh and Ir: Structural Investigations and Olefin Isomerization Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Gummadi Durgaprasad
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
- Department of Chemistry, RGUKT-AP, IIIT-Ongole, Andhra Pradesh 523225, India
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
10
|
He F, Gourlaouen C, Pang H, Braunstein P. Influence of the Flexibility of Nickel PCP‐Pincer Complexes on C−H and P−C Bond Activation and Ethylene Reactivity: A Combined Experimental and Theoretical Investigation. Chemistry 2022; 28:e202104234. [DOI: 10.1002/chem.202104234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Fengkai He
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 Jiangsu P. R. China
- Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4 rue Blaise Pascal 67081 Strasbourg France
| |
Collapse
|
11
|
Valdés H, Germán-Acacio JM, van Koten G, Morales-Morales D. Bimetallic complexes that merge metallocene and pincer-metal building blocks: synthesis, stereochemistry and catalytic reactivity. Dalton Trans 2022; 51:1724-1744. [PMID: 34985477 DOI: 10.1039/d1dt03870b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This perspective is to illustrate the synthesis and applications of bimetallic complexes by merging a metallocene and a (cyclopentadienyl/aryl) pincer metal complex. Four possible ways to merge metallocene and pincer-metal motifs are reported and representative examples are discussed in more detail. These bimetallic complexes have been employed in some important catalytic reactions such as cross-coupling, transfer hydrogenation or synthesis of ammonia. The metallocene fragment may tune the electronic properties of the pincer ligand, due to its redox reversible properties. Also, the presence of two metals in a single complex allows their electronic communication, which proved beneficial for, e.g., the catalytic activity of some species. The presence of the metallocene fragment provides an excellent opportunity to develop chiral catalysts, because the metallocene merger generally renders the two faces of the pincer-metal catalytic site diastereotopic. Besides, an extra chiral functionality may be added to the bimetallic species by using pincer motifs that are planar chiral, e.g. by using the different substituents of pincer ligand "arms" or non-symmetrical arene groupings. Post-functionalization of pre-formed pincer-metal complexes, via η6-coordination with an areneophile such as [CpRu]+ and [Cp*Ru]+ presents a striking strategy to obtain diastereomeric metallocene-pincer type derivatives, that actually involve half-sandwich metallocenes. This approach offers the possibility to create diastereomerically pure derivatives by using the chiral TRISPHAT anion. The authors hope that this report of the synthetic, physico-chemical properties and remarkable catalytic activities of metallocene-based pincer-metal complexes will inspire other researchers to continue exploring this realm.
Collapse
Affiliation(s)
- Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona E-17003, Catalonia, Spain
| | - Juan M Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, C. P.14000, Ciudad de México, Mexico
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México. C. P. 04510, Mexico.
| |
Collapse
|
12
|
Kamitani M. Chemically robust and readily available quinoline-based PNN iron complexes: application in C-H borylation of arenes. Chem Commun (Camb) 2021; 57:13246-13258. [PMID: 34812447 DOI: 10.1039/d1cc04877e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron catalysts have been used for over a century to produce ammonia industrially. However, the use of iron catalysts generally remained quite limited until relatively recently, when the abundance and low toxicity of iron spurred the development of a variety of iron catalysts. Despite the fact that iron catalysts are being developed as alternatives to precious metal catalysts, their reactivities and stabilities are quite different because of their unique electronic structures. In this context, our group previously developed a new family of quinoline-based PNN pincer-type ligands for low- to mid-valent iron catalysts. These chemically robust PNN ligands provide air- and moisture-tolerant iron complexes, which exhibit excellent catalytic performances in the C-H borylation of arenes. This feature article summarises our recent work on PNN iron complexes, including their conception and design, as well as related reports on iron pincer complexes and iron-catalysed C-H borylation reactions.
Collapse
Affiliation(s)
- Masahiro Kamitani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan.
| |
Collapse
|
13
|
Zakis JM, Smejkal T, Wencel-Delord J. Cyclometallated complexes as catalysts for C-H activation and functionalization. Chem Commun (Camb) 2021; 58:483-490. [PMID: 34735563 DOI: 10.1039/d1cc05195d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel catalysts for C-H activation reactions with increased reactivity and improved selectivities has been attracting significant interest over the last two decades. More recently, promising results have been developed using tridentate pincer ligands, which form a stable C-M bond. Furthermore, based on mechanistic studies, the unique catalytic role of some metallacyclic intermediate species has been revealed. These experimental observations have subsequently translated into the rational design of advanced C-H activation catalysts in both Ru- and Ir-based systems. Recent breakthroughs in the field of C-H activation catalysed by metallacyclic intermediates are thus discussed.
Collapse
Affiliation(s)
- Janis Mikelis Zakis
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland. .,Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| |
Collapse
|
14
|
Lin W, Zhang L, Ma Y, Liang T, Sun W. Sterically enhanced 2‐iminopyridylpalladium chlorides as recyclable ppm‐palladium catalyst for Suzuki–Miyaura coupling in aqueous solution. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhua Lin
- School of Textiles Science and Engineering Jiangnan University Wuxi China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Liping Zhang
- School of Textiles Science and Engineering Jiangnan University Wuxi China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
15
|
Rufino-Felipe E, Nayely Osorio-Yáñez R, Vera M, Valdés H, González-Sebastián L, Reyes-Sanchez A, Morales-Morales D. Transition-metal complexes bearing chelating NHC Ligands. Catalytic activity in cross coupling reactions via C H activation. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Keske EC, Sattler MO, Lough AJ, Morris RH. Tridentate NPN Ligands with a Central Secondary Phosphine Oxide Donor and their Corresponding Metal Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Eric C. Keske
- Department of Chemistry University of Toronto 80 Saint George St. Toronto, Ontario M4K 3Y1 Canada
- Chemistry Department Trent University 1600 West Bank Drive Peterborough, Ontario K9L 0G2 Canada
| | - Madeleine O. Sattler
- Department of Chemistry University of Toronto 80 Saint George St. Toronto, Ontario M4K 3Y1 Canada
| | - Alan J. Lough
- Department of Chemistry University of Toronto 80 Saint George St. Toronto, Ontario M4K 3Y1 Canada
| | - Robert H. Morris
- Department of Chemistry University of Toronto 80 Saint George St. Toronto, Ontario M4K 3Y1 Canada
| |
Collapse
|
17
|
Ghobashy MM, Elbarbary AM, Hegazy DE. Synthesis of poly (vinylpyrrolidone)/Fe
3
O
4
@SiO
2
nanoporous catalyst by
γ
‐rays and evaluation their sono‐photo‐Fenton degradation of toluidine blue under magnetic field. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Ahmed M. Elbarbary
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Dalia E. Hegazy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
18
|
Gafurov ZN, Kantyukov AO, Kagilev AA, Kagileva AA, Sakhapov IF, Mikhailov IK, Yakhvarov DG. Recent Advances in Chemistry of Unsymmetrical Phosphorus-Based Pincer Nickel Complexes: From Design to Catalytic Applications. Molecules 2021; 26:4063. [PMID: 34279402 PMCID: PMC8271868 DOI: 10.3390/molecules26134063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Pincer complexes play an important role in organometallic chemistry; in particular, their use as homogeneous catalysts for organic transformations has increased dramatically in recent years. The high catalytic activity of such bis-cyclometallic complexes is associated with the easy tunability of their properties. Moreover, the phosphorus-based unsymmetrical pincers showed higher catalytic activity than the corresponding symmetrical analogues in several catalytic reactions. However, in modern literature, an increasing interest in the development of catalysts based on non-precious metals is observed. For example, nickel, which is an affordable and sustainable analogue of platinum and palladium, known for its low toxicity, has attracted increasing attention in the catalytic chemistry of transition metals in recent years. Thus, this mini-review is devoted to the recent advances in the chemistry of unsymmetrical phosphorus-based pincer nickel complexes, including the ligand design, the synthesis of nickel complexes and their catalytic applications.
Collapse
Affiliation(s)
- Zufar N Gafurov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Artyom O Kantyukov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey A Kagilev
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alina A Kagileva
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Il'yas F Sakhapov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Ilya K Mikhailov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Dmitry G Yakhvarov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
19
|
Singh A, Maji A, Joshi M, Choudhury AR, Ghosh K. Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Dalton Trans 2021; 50:8567-8587. [PMID: 34075925 DOI: 10.1039/d0dt03748f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms respectively. Co1, Co2 and Co3 were characterized by IR, UV-Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were utilized to study the dehydrogenative activation of alcohols for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | | | | | | | | |
Collapse
|
20
|
Sheludko B, Castro CF, Khalap CA, Emge TJ, Goldman AS, Celik FE. Regioselective Gas‐Phase
n
‐Butane Transfer Dehydrogenation via Silica‐Supported Pincer‐Iridium Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Boris Sheludko
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey 123 Bevier Road Piscataway NJ 08854 USA
- Department of Chemical and Biochemical Engineering Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
| | - Cristina F. Castro
- Department of Chemical and Biochemical Engineering Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
| | - Chaitanya A. Khalap
- Department of Chemical and Biochemical Engineering Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey 123 Bevier Road Piscataway NJ 08854 USA
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey 123 Bevier Road Piscataway NJ 08854 USA
| | - Fuat E. Celik
- Department of Chemical and Biochemical Engineering Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
| |
Collapse
|
21
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
22
|
Affiliation(s)
- Gerard Koten
- Organic Chemistry and Catalysis Debye Institute for Materials Science Faculty of Science Utrecht University 3584CG Utrecht The Netherlands
| | - T. Keith Hollis
- Department of Chemistry Mississippi State University MS 39762 Mississippi State United States
| | - David Morales‐Morales
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria 04510 Ciudad de México Mexico
| |
Collapse
|
23
|
Synthesis and physical property studies of cyclometalated Pt(II) and Pd(II) complexes with tridentate ligands containing pyrazole and pyridine groups. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Synthesis and characterization of non-symmetric Ni(II)- and Pd(II)-POCOP pincer complexes derived from 1,7-naphthalenediol. Evaluation of their catalytic activity in Suzuki-Miyaura couplings. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Valdés H, Rufino‐Felipe E, van Koten G, Morales‐Morales D. Hybrid POCZP Aryl Pincer Metal Complexes and their Catalytic Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Valdés
- Instituto de Química Universidad Nacional Autónoma de México 04510, Ciudad de México Coyoacán Mexico
| | - Ernesto Rufino‐Felipe
- Instituto de Química Universidad Nacional Autónoma de México 04510, Ciudad de México Coyoacán Mexico
| | - Gerard van Koten
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584CG Utrecht The Netherlands
| | - David Morales‐Morales
- Instituto de Química Universidad Nacional Autónoma de México 04510, Ciudad de México Coyoacán Mexico
| |
Collapse
|
26
|
Gan L, Jia X, Fang H, Liu G, Huang Z. Dehydrogenation of Primary Alkyl Azides to Nitriles Catalyzed by Pincer Iridium/Ruthenium Complexes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lan Gan
- Department State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Institution Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiangqing Jia
- Department State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Institution Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Huaquan Fang
- Department State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Institution Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guixia Liu
- Department State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Institution Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Zheng Huang
- Department State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Institution Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- Chang-Kung Chuang InstituteEast China Normal University 3663 N. Zhongshan Rd. Shanghai 200062 P. R. China
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced StudyUniversity of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
| |
Collapse
|
27
|
Isai Ortega-Gaxiola J, Valdés H, Rufino-Felipe E, Toscano RA, Morales-Morales D. Synthesis of Pd(II) complexes with P-N-OH ligands derived from 2-(diphenylphosphine)-benzaldehyde and various aminoalcohols and their catalytic evaluation on Suzuki-Miyaura couplings in aqueous media. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Unsymmetrical pyrazole-based PCN pincer NiII halides: Reactivity and catalytic activity in ethylene oligomerization. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Valderrama-García BX, Rufino-Felipe E, Valdés H, Hernandez-Ortega S, Aguilar-Castillo BA, Morales-Morales D. Novel and facile procedure for the synthesis of Ni(II) and Pd(II) PSCOP pincer complexes. Evaluation of their catalytic activity on C-S, C-Se and C-C cross coupling reactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Omolo KO, Bacsa J, Sadighi JP. Acridine Variations for Coordination Chemistry. Isr J Chem 2020. [DOI: 10.1002/ijch.202000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevin O. Omolo
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
- present address: Intel Corporation, Chandler, AZ U.S.A
| | - John Bacsa
- X-Ray Crystallography CenterDepartment of Chemistry, Emory University Atlanta, Georgia U.S.A
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
| | - Joseph P. Sadighi
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia, U.S.A
| |
Collapse
|
31
|
A Pincer Motif Etched into a meta-Benziporphyrin Frame. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Hasche P, Spannenberg A, Beweries T. Study of the Reactivity of the [(PE 1CE 2P)Ni(II)] (E 1, E 2 = O, S) Pincer System with Acetonitrile and Base: Formation of Cyanomethyl and Amidocrotononitrile Complexes versus Ligand Decomposition by P–S Bond Activation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Patrick Hasche
- Leibniz-Institute for Catalysis at the University of Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis at the University of Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz-Institute for Catalysis at the University of Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|