1
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Doraghi F, Taherkhani AM, Hosseinifar T, Rashidi Ranjbar P, Larijani B, Mahdavi M. Transition metal-catalyzed transformations of 2-formylarylboronic acids. Org Biomol Chem 2024; 22:6905-6921. [PMID: 39140460 DOI: 10.1039/d4ob01024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
2-Formylarylboronic acids are easily available precursors in organic chemistry. Different types of transition metal catalysts, such as Pd(0), Pd(II), Rh(I), Ir(I), Ni(II), Cu(I), Cu(II), and Co(II), can efficiently catalyze coupling reactions of 2-formylarylboronic acids with other organic reactants. In this review, we describe the synthesis of a diverse range of carbocyclic and heterocyclic compounds, as well as acyclic compounds, via transition metal-catalyzed reactions of 2-formylarylboronic acids over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Mohammad Taherkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tolou Hosseinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sporzyński A, Adamczyk-Woźniak A, Zarzeczańska D, Gozdalik JT, Ramotowska P, Abramczyk W. Acidity Constants of Boronic Acids as Simply as Possible: Experimental, Correlations, and Prediction. Molecules 2024; 29:2713. [PMID: 38893585 PMCID: PMC11173951 DOI: 10.3390/molecules29112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The wide use of boronic compounds, especially boronic acids and benzoxaboroles, in virtually all fields of chemistry is related to their specific properties. The most important of them are the ability to form cyclic esters with diols and the complexation of anions. In both cases, the equilibrium of the reaction depends mainly on the acidity of the compounds, although other factors must also be taken into account. Quantification of the acidity (pKa value) is a fundamental factor considered when designing new compounds of practical importance. The aim of the current work was to collect available values of the acidity constants of monosubstituted phenylboronic acids, critically evaluate these data, and supplement the database with data for missing compounds. Measurements were made using various methods, as a result of which a fast and reliable method for determining the pKa of boronic compounds was selected. For an extensive database of monosubstituted phenylboronic acids, their correlation with their Brønsted analogues-namely carboxylic acids-was examined. Compounds with ortho substituents do not show any correlation, which is due to the different natures of both types of acids. Nonetheless, both meta- and para-substituted compounds show excellent correlation. From a practical point of view, acidity constants are best determined from the Hammett equation. Computational approaches for determining acidity constants were also analyzed. In general, the reported calculated values are not compatible with experimental ones, providing comparable results only for selected groups of compounds.
Collapse
Affiliation(s)
- Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.A.-W.); (J.T.G.)
| | - Dorota Zarzeczańska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (D.Z.); (P.R.)
| | - Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.A.-W.); (J.T.G.)
| | - Paulina Ramotowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (D.Z.); (P.R.)
| | - Wiktoria Abramczyk
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| |
Collapse
|
4
|
Zhang P, Sun M, Liang J, Xiong Z, Liu Y, Peng J, Yuan Y, Zhang H, Zhou P, Lai B. pH-modulated oxidation of organic pollutants for water decontamination: A deep insight into reactivity and oxidation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134393. [PMID: 38669929 DOI: 10.1016/j.jhazmat.2024.134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Solution pH is one of the primary factors affecting the efficiency of water decontamination. Although the influence of pH on oxidants activation, catalyst activity, and reactive oxygen species have been widely explored, there is still a scarcity of systemic studies on the changes in the oxidation behavior of organic pollutants at different pH levels. Herein, we report the influence laws of pH on the forms, reactivities, active sites, degradation pathways, and products toxicities of organic pollutants. Changes in pH cause the protonation or deprotonation of organic pollutants and further affect their forms and chemistry (e.g., electrostatic force, hydrophobicity, and oxidation potential). The oxidation potential of organic pollutants follows the order: protonated form > pristine form > deprotonated form. Moreover, protonation or deprotonation can modify the active sites and degradation pathways of organic pollutants, wherein deprotonation renders them more susceptible to electrophilic attack, while protonation reduces their activity against electrophilic and nucleophilic attacks. Additionally, pH adjustments can modify the degradation pathway and the toxicity of transformation products. Overall, pH changes can affect the oxidation fate of organic pollutants by altering their structure, which distinguishes it from the effect of pH on oxidants or oxidant activation processes.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Juan Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Dilmani SA, Koç S, Erkut TS, Gümüşderelioğlu M. Polymer-clay nanofibrous wound dressing materials containing different boron compounds. J Trace Elem Med Biol 2024; 83:127408. [PMID: 38387426 DOI: 10.1016/j.jtemb.2024.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.
Collapse
Affiliation(s)
- Sara Asghari Dilmani
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Sena Koç
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Tülay Selin Erkut
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey.
| |
Collapse
|
6
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. Rational design of nanozyme with integrated sample pretreatment for colorimetric biosensing. Biosens Bioelectron 2024; 257:116310. [PMID: 38643549 DOI: 10.1016/j.bios.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
7
|
Demchuk Z, Zhao X, Shen Z, Zhao S, Sokolov AP, Cao PF. Tuning the Mechanical and Dynamic Properties of Elastic Vitrimers by Tailoring the Substituents of Boronic Ester. ACS MATERIALS AU 2024; 4:185-194. [PMID: 38496049 PMCID: PMC10941276 DOI: 10.1021/acsmaterialsau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 03/19/2024]
Abstract
Elastic vitrimers, i.e., elastic polymers with associative dynamic covalent bonds, can afford elastomers with recyclability while maintaining their thermal and chemical stability. Herein, we report a series of boronic ester-based vitrimers with tunable mechanical properties and recyclability by varying the substitute groups of boronic acid in polymer networks. The dynamic polymer networks are formed by reacting diol-containing tetra-arm poly(amidoamine) with boronic acid-terminated tetra-arm poly(ethylene glycol), which possesses different substituents adjacent to boronic acid moieties. Varying the substituent adjacent to the boronic ester unit will significantly affect the binding strength of the boronic ester, therefore affecting their dynamics and mechanical performance. The electron-withdrawing substituents noticeably suppress the dynamics of boronic ester exchange and increase the activation energy and relaxation time while enhancing the mechanical strength of the resulting elastic vitrimers. On the other hand, the presence of electron-rich substituent affords relatively reduced glass transition temperature (Tg), faster relaxation, and prominent recyclability and malleability at lower temperatures. The developed pathway will guide the rational design of elastomers with well-tunable dynamics and processabilities.
Collapse
Affiliation(s)
- Zoriana Demchuk
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiao Zhao
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zhiqiang Shen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sheng Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P. Sokolov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- State
Key Laboratory of Organic–Inorganic Composites, College of
Materials Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Valencia J, Sánchez-Velasco OA, Saavedra-Olavarría J, Hermosilla-Ibáñez P, Pérez EG, Insuasty D. N-Arylation of 3-Formylquinolin-2(1 H)-ones Using Copper(II)-Catalyzed Chan-Lam Coupling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238345. [PMID: 36500438 PMCID: PMC9735505 DOI: 10.3390/molecules27238345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
3-formyl-2-quinolones have attracted the scientific community's attention because they are used as versatile building blocks in the synthesis of more complex compounds showing different and attractive biological activities. Using copper-catalyzed Chan-Lam coupling, we synthesized 32 new N-aryl-3-formyl-2-quinolone derivatives at 80 °C, in air and using inexpensive phenylboronic acids as arylating agents. 3-formyl-2-quinolones and substituted 3-formyl-2-quinolones can act as substrates, and among the products, the p-methyl derivative 9a was used as a substrate to obtain different derivatives such as alcohol, amine, nitrile, and chalcone.
Collapse
Affiliation(s)
- Jhesua Valencia
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oriel A. Sánchez-Velasco
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jorge Saavedra-Olavarría
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricio Hermosilla-Ibáñez
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago, Chile, Santiago 9170022, Chile
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (E.G.P.); (D.I.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.G.P.); (D.I.)
| |
Collapse
|
9
|
Adamczyk-Woźniak A, Sporzyński A. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113427. [PMID: 35684365 PMCID: PMC9182515 DOI: 10.3390/molecules27113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Fluorinated boron species are a very important group of organoboron compounds used first of all as receptors of important bioanalytes, as well as biologically active substances, including Tavaborole as an antifungal drug. The presence of substituents containing fluorine atoms increases the acidity of boronic compounds, which is crucial from the point of view of their interactions with analytes or certain pathogen's enzymes. The review discusses the electron acceptor properties of fluorinated boronic species using both the acidity constant (pKa) and acceptor number (AN) in connection with their structural parameters. The NMR spectroscopic data are also presented, with particular emphasis on 19F resonance due to the wide range of information that can be obtained from this technique. Equilibria in solutions, such as the dehydration of boronic acid to form boroxines and their esterification or cyclization with the formation of 3-hydroxyl benzoxaboroles, are discussed. The results of the latest research on the biological activity of boronic compounds by experimental in vitro methods and theoretical calculations using docking studies are also discussed.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| | - Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| |
Collapse
|
10
|
Hayes HLD, Wei R, Assante M, Geogheghan KJ, Jin N, Tomasi S, Noonan G, Leach AG, Lloyd-Jones GC. Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. J Am Chem Soc 2021; 143:14814-14826. [PMID: 34460235 DOI: 10.1021/jacs.1c06863] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.
Collapse
Affiliation(s)
- Hannah L D Hayes
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Ran Wei
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Michele Assante
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Katherine J Geogheghan
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Na Jin
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Simone Tomasi
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Gary Noonan
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andrew G Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
11
|
Sánchez-Velasco OA, Saavedra-Olavarría J, Araya-Santelices DAA, Hermosilla-Ibáñez P, Cassels BK, Pérez EG. Synthesis of N-Arylcytisine Derivatives Using the Copper-Catalyzed Chan-Lam Coupling. JOURNAL OF NATURAL PRODUCTS 2021; 84:1985-1992. [PMID: 34213336 DOI: 10.1021/acs.jnatprod.1c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Arylcytisine derivatives are quite rare. We report here a practical methodology to obtain these compounds. Using the copper-catalyzed Chan-Lam coupling, we synthesized new N-arylcytisine derivatives at room temperature, in air and using inexpensive phenylboronic acids. Cytisine and 3,5-dihalocytisines can act as substrates, and among the products, the p-Br-derivative 2r was used as a substrate to obtain biaryl derivatives under Pd-coupling conditions; ester 2j was converted into its acid and amide derivatives using classical carbodiimide conditions. This shows that the Chan-Lam cross-coupling reaction can be included as a versatile synthetic tool in the derivatization of natural products.
Collapse
Affiliation(s)
- Oriel A Sánchez-Velasco
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | | - Daniel A A Araya-Santelices
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricio Hermosilla-Ibáñez
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago de Chile (USACh), Santiago 9170022, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170022, Chile
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
12
|
Yu H, Tian Y, Wang S, Ke X, Li R, Kang X. Ferrate(VI) Oxidation Mechanism of Substituted Anilines: A Density Functional Theory Investigation. ACS OMEGA 2021; 6:14317-14326. [PMID: 34124455 PMCID: PMC8190916 DOI: 10.1021/acsomega.1c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Ferrate(VI) (Fe(VI)) is a promising oxidant coagulant and disinfectant for the degradation of organic micropollutants. However, it is hard to elucidate the detailed oxidation mechanism through the current experimental approaches. Substituted anilines (SANs) are important chemical compounds that are widely used in many industries. This paper presents the use of density functional theory (DFT) to understand the oxidation mechanism of SANs by Fe(VI) and the effect of substituents. The calculation results revealed that the primary oxidations of SANs follow the hydrogen atom transfer (HAT) mechanism. Interestingly, the hydroxyl oxygen of HFeO4 - is more reactive than the carbonyl oxygen when reacting with SANs. The formation of the SAN radical is crucial, and all of the products are formed from it. Azobenzene is more favorable to generate the above products. In addition, the obtained results indicate that this kind of substituent has a much greater influence on the reaction rather than the position. Thus, the present study provides a valuable insight into the transformation pathways of SANs in the Fe(VI) oxidation process and the effects of the substituent on oxidation. These results will advance the understanding of Fe(VI) involved in wastewater treatment.
Collapse
Affiliation(s)
- Hang Yu
- Liaoning
Key Laboratory of Clean Energy and College of Energy and Environment, Shenyang Aerospace University, Shenyang, Liao Ning 110136, China
| | - Yu Tian
- Liaoning
Key Laboratory of Clean Energy and College of Energy and Environment, Shenyang Aerospace University, Shenyang, Liao Ning 110136, China
| | - Shuyue Wang
- Liaoning
Key Laboratory of Clean Energy and College of Energy and Environment, Shenyang Aerospace University, Shenyang, Liao Ning 110136, China
| | - Xin Ke
- Liaoning
Key Laboratory of Clean Energy and College of Energy and Environment, Shenyang Aerospace University, Shenyang, Liao Ning 110136, China
| | - Rundong Li
- Liaoning
Key Laboratory of Clean Energy and College of Energy and Environment, Shenyang Aerospace University, Shenyang, Liao Ning 110136, China
| | - Xiaohui Kang
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
13
|
Adamczyk-Woźniak A, Gozdalik JT, Kaczorowska E, Durka K, Wieczorek D, Zarzeczańska D, Sporzyński A. (Trifluoromethoxy)Phenylboronic Acids: Structures, Properties, and Antibacterial Activity. Molecules 2021; 26:molecules26072007. [PMID: 33916124 PMCID: PMC8036725 DOI: 10.3390/molecules26072007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Three isomers of (trifluoromethoxy)phenylboronic acids were studied in the context of their physicochemical, structural, antimicrobial and spectroscopic properties. They were characterized by 1H, 13C, 11B and 19F NMR spectroscopy. The acidity of all the isomers was evaluated by both spectrophotometric and potentiometric titrations. The introduction of the -OCF3 group influences the acidity, depending, however, on the position of a substituent, with the ortho isomer being the least acidic. Molecular and crystal structures of ortho and para isomers were determined by the single crystal XRD method. Hydrogen bonded dimers are the basic structural motives of the investigated molecules in the solid state. In the case of the ortho isomer, intramolecular hydrogen bond with the -OCF3 group is additionally formed, weaker, however, than that in the analogous -OCH3 derivative, which has been determined by both X-Ray measurements as well as theoretical DFT calculations. Docking studies showed possible interactions of the investigated compounds with LeuRS of Escherichia coli. Finally, the antibacterial potency of studied boronic acids in vitro were evaluated against Escherichia coli and Bacillus cereus.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Correspondence:
| | - Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Dorota Zarzeczańska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| |
Collapse
|
14
|
Investigations substituent effect on structural, spectral and optical properties of phenylboronic acids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Kurnia KA, Setyaningsih W, Darmawan N, Yuliarto B. A comprehensive study on the impact of the substituent on pKa of phenylboronic acid in aqueous and non-aqueous solutions: A computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|