1
|
Torralba EJV, Short RF, Travers JB, Mathis JM. Pharmacology of spinal interventions: review of agents used in spine pain procedures. FRONTIERS IN PAIN RESEARCH 2024; 5:1408905. [PMID: 39444579 PMCID: PMC11496298 DOI: 10.3389/fpain.2024.1408905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
Spine procedures are commonly performed to diagnose and treat various spinal conditions, ranging from degenerative disc disease to vertebral fractures. These procedures often involve the use of pharmaceutical agents to enhance the efficacy of the intervention and improve patient outcomes. This review provides an overview of the pharmaceuticals commonly utilized in spine procedures, including corticosteroids, anesthetics, antibiotics, radiographic contrast, neurolytic agents, and materials used in kyphoplasty and vertebroplasty. This review summarizes the utilization of these pharmaceutical agents in spine procedures in an effort to optimize patient outcomes. Understanding the pharmacological properties and appropriate uses of these pharmaceuticals is essential for interventionalist and healthcare providers involved in the care of patients undergoing spinal interventions.
Collapse
Affiliation(s)
- Ericson John V. Torralba
- Department of Interventional Radiology, UCLA Medical Center, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- Boonshoft School of Medicine, Wright State Univeristy, Dayton, OH, United States
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Robert F. Short
- Boonshoft School of Medicine, Wright State Univeristy, Dayton, OH, United States
- Department of Therapeutic and Diagnostic Imaging, Dayton VA Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Boonshoft School of Medicine, Wright State Univeristy, Dayton, OH, United States
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - John M. Mathis
- Boonshoft School of Medicine, Wright State Univeristy, Dayton, OH, United States
- Department of Therapeutic and Diagnostic Imaging, Dayton VA Medical Center, Dayton, OH, United States
| |
Collapse
|
2
|
Saijilafu, Zhou JW, Wang GL, Sun KH, Xie JL. Percutaneous kyphoplasty in the treatment of Kümmell disease in lumbar scoliosis: A case report. World J Clin Cases 2024; 12:3123-3129. [PMID: 38898829 PMCID: PMC11185387 DOI: 10.12998/wjcc.v12.i17.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Due to mechanical imbalance in the spine, elderly scoliosis patients tend to develop vertebral fracture nonunion, i.e., Kümmell disease, when osteoporotic vertebral compression fractures occur. However, accompanying vertebral rotational deformities make surgical procedures challenging risky. Such patients are usually compelled to undergo conservative treatment and there are very few reports on minimally invasive surgeries for them. We first-time report a patient with Kümmell disease and lumbar scoliosis treated with percutaneous kyphoplasty (PKP) under O-arm guidance. CASE SUMMARY An 89-year-old female was admitted to the hospital due to delayed low back pain after a fall. She was diagnosed with Kümmell disease based on physical and radiologic examinations. The patient experienced severe scoliosis and subsequently underwent O-arm-guided kyphoplasty, resulting in a significant alleviation of low back pain. CONCLUSION PKP has good efficacy in treating Kümmell disease. However, surgical risks are elevated in scoliosis patients with Kümmell disease due to the abnormal anatomical structure of the spine. O-arm assisted operations play a crucial role in decreasing surgical risks.
Collapse
Affiliation(s)
- Saijilafu
- Department of Orthopaedic Surgery, Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou 311300, Zhejiang Province, China
| | - Jia-Wen Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gen-Lin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ke-Hong Sun
- Department of Orthopaedic Surgery, Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou 311300, Zhejiang Province, China
| | - Ji-Le Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
3
|
Zhang T, Deng Y, Yuan Z, Zhou M, Ma Z, Zhang M. What are the Risk Factors for Residual Pain After Percutaneous Vertebroplasty or Kyphoplasty? A Meta-Analysis. World Neurosurg 2024; 186:e382-e390. [PMID: 38561033 DOI: 10.1016/j.wneu.2024.03.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Although many risk factors for residual pain following percutaneous vertebroplasty or kyphoplasty (PVP or PKP) have been reported in many studies, research methods and cohorts differ greatly. A previous meta-analysis identified patient- and operation-specific risk factors for residual pain. This study aimed to examine the available data and identify significant risk factors for residual pain after PVP or PKP. METHODS PubMed, EMBASE, Web of Science, and the Chinese Wanfang Database were searched for relevant research in English and Chinese, and full-text publications including patients with and without residual pain were compared. Only studies presenting odds ratios from multivariate analysis of residual pain data were considered. To evaluate the impact of the results of the selected articles, Review Manager 5.4 was used. RESULTS Twelve publications including a total of 3120 patients met the requirements. The meta-analysis examined 10 factors associated with residual pain and categorized them as either patient- or operation-associated factors. Thoracolumbar fascia injury, intravertebral vacuum cleft, depression, and number of fractured vertebrae were all significant patient-associated parameters for residual pain. Significant operation-associated risk factors included bone cement distribution and intraoperative facet joint injury. CONCLUSIONS In this meta-analysis, we identified several significant risk factors for residual pain after PVP or PKP. These findings may be helpful for patient counseling and surgical planning.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Spine Surgery, Tongling People's Hospital, Tongling, Anhui, China
| | - Yinghu Deng
- Department of Spine Surgery, Tongling People's Hospital, Tongling, Anhui, China.
| | - Zhongshan Yuan
- Department of Spine Surgery, Tongling People's Hospital, Tongling, Anhui, China
| | - Minghao Zhou
- Department of Spine Surgery, Tongling People's Hospital, Tongling, Anhui, China
| | - Zhixiang Ma
- Department of Articular Surgery, Tongling People's Hospital, Tongling, Anhui, China
| | - Mingkai Zhang
- Department of Spine Surgery, Tongling People's Hospital, Tongling, Anhui, China
| |
Collapse
|
4
|
Zhang Y, Ge J, Liu H, Niu J, Wang S, Shen H, Li H, Qian C, Song Z, Zhu P, Zhu X, Zou J, Yang H. Kyphoplasty is associated with reduced mortality risk for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1490-1497. [PMID: 38062266 DOI: 10.1007/s00586-023-08032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 04/06/2024]
Abstract
BACKGROUND Vertebral augmentation, such as vertebroplasty (VP) or kyphoplasty (KP), has been utilized for decades to treat OVCFs; however, the precise impact of this procedure on reducing mortality risk remains a topic of controversy. This study aimed to explore the potential protective effects of vertebral augmentation on mortality in patients with osteoporotic vertebral compression fractures (OVCFs) using a large-scale meta-analysis. MATERIALS AND METHODS Cochrane Library, Embase, MEDLINE, PubMed and Web of Science databases were employed for literature exploration until May 2023. The hazard ratios (HRs) and 95% confidence intervals (CIs) were utilized as a summary statistic via random-effect models. Statistical analysis was executed using Review Manager 5.3 software. RESULTS After rigorous screening, a total of five studies with substantial sample sizes were included in the quantitative meta-analysis. The total number of participants included in the study was an 2,421,178, comprising of 42,934 cases of vertebral augmentation and 1,991,244 instances of non-operative management. The surgical intervention was found to be significantly associated with an 18% reduction in the risk of mortality (HR 0.82; 95% CI 0.78, 0.85). Subgroup analysis revealed a remarkable 71% reduction in mortality risk following surgical intervention during short-term follow-up (HR 0.29; 95% CI 0.26, 0.32). Furthermore, KP exhibited a superior and more credible decrease in the risk of mortality when compared to VP treatment. CONCLUSIONS Based on a comprehensive analysis of large samples, vertebral augmentation has been shown to significantly reduce the mortality risk associated with OVCFs, particularly in the early stages following fractures. Furthermore, it has been demonstrated that KP is more reliable and effective than VP in terms of mitigating mortality risk.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Jun Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junjie Niu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Shenghao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Hao Shen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Hanwen Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Chen Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Zhuorun Song
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Pengfei Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| | - Jun Zou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| |
Collapse
|
5
|
Barpour N, Ghorbani M, Baradaran B, Jodari-Mohammadpour Z, Nejati-Koshki K, Abdollahpour-Alitappeh M, Dabbaghi R, Gharibi T. Development of an injectable chitosan-based hydrogel containing nano-hydroxy-apatite and alendronate for MSC-based therapy. Int J Biol Macromol 2024; 261:129737. [PMID: 38286373 DOI: 10.1016/j.ijbiomac.2024.129737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND The combination of cells and biomaterials has become a powerful approach to regenerative medicine in recent years. Understanding the in-vitro interactions between cells and biomaterials is crucial for the success of regenerative medicine. AIM In this study, we developed an AD-pectin/chitosan/nano-crystalline cellulose scaffold with nano-hydroxy-apatite (n-HAP) and alendronate (ALN). The second step was to evaluate its effect on the immunomodulatory properties and biological behaviors of seeded adipose-derived mesenchymal stem cells (ADSCs) for bone tissue repair. MATERIAL AND METHOD After preparing and evaluating the characterization tests of the new combined n-HAP scaffold, we established different culture conditions to evaluate ADSC growth on this scaffold with or without ALN. The main assays were MTT assay, RT-PCR, and ELISA. RESULTS Our data regarding characterization tests (including SEM, TGA, FTIR, gelation time, swelling ratio, rheology and degradation tests) of ALN-loaded n-HAP scaffold showed the proper stability and good mechanical status of the scaffold. ADSC proliferation and viability increased in the presence of the scaffold compared with other conditions. Moreover, our data demonstrated increased gene expression and protein levels of anti-inflammatory TGF-β, HGF, and IDO cytokines in the presence of the ALN-loaded n-HAP scaffold, indicating the increased immunosuppressive activity of ADSCs in vitro. CONCLUSION This study demonstrates the promising abilities of the ALN-loaded n-HAP scaffold to increase the proliferation, viability, and immunomodulatory capacity of ADSCs, elucidating new aspects of cell-material interactions that can be used for bone tissue regeneration/repair, and paving the path of future research in developing new approaches for MSC- based therapy.
Collapse
Affiliation(s)
- Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Rozhin Dabbaghi
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Mondal S, MacManus DB, Banche-Niclot F, Vitale-Brovarone C, Fiorilli S, McCarthy HO, Dunne N. Finite element analysis of vertebroplasty in the osteoporotic T11-L1 vertebral body: Effects of bone cement formulation. J Biomed Mater Res B Appl Biomater 2024; 112:e35359. [PMID: 38247244 DOI: 10.1002/jbm.b.35359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Vertebral compression fractures are one of the most severe clinical consequences of osteoporosis and the most common fragility fracture afflicting 570 and 1070 out of 100,000 men and women worldwide, respectively. Vertebroplasty (VP), a minimally invasive surgical procedure that involves the percutaneous injection of bone cement, is one of the most efficacious methods to stabilise osteoporotic vertebral compression fractures. However, postoperative fracture has been observed in up to 30% of patients following VP. Therefore, this study aims to investigate the effect of different injectable bone cement formulations on the stress distribution within the vertebrae and intervertebral discs due to VP and consequently recommend the optimal cement formulation. To achieve this, a 3D finite element (FE) model of the T11-L1 vertebral body was developed from computed tomography scan data of the spine. Osteoporotic bone was modeled by reducing the Young's modulus by 20% in the cortical bone and 74% in cancellous bone. The FE model was subjected to different physiological movements, such as extension, flexion, bending, and compression. The osteoporotic model caused a reduction in the average von Mises stress compared with the normal model in the T12 cancellous bone and an increment in the average von Mises stress value at the T12 cortical bone. The effects of VP using different formulations of a novel injectable bone cement were modeled by replacing a region of T12 cancellous bone with the materials. Due to the injection of the bone cement at the T12 vertebra, the average von Mises stresses on cancellous bone increased and slightly decreased on the cortical bone under all loading conditions. The novel class of bone cements investigated herein demonstrated an effective restoration of stress distribution to physiological levels within treated vertebrae, which could offer a potential superior alternative for VP surgery as their anti-osteoclastogenic properties could further enhance the appeal of their fracture treatment and may contribute to improved patient recovery and long-term well-being.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - David B MacManus
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- BRAIN Lab, School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | | | | | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7 BL, UK
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Biodesign Europe, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Mounika C, Tadge T, Keerthana M, Velyutham R, Kapusetti G. Advancements in poly(methyl Methacrylate) bone cement for enhanced osteoconductivity and mechanical properties in vertebroplasty: A comprehensive review. Med Eng Phys 2023; 120:104049. [PMID: 37838402 DOI: 10.1016/j.medengphy.2023.104049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023]
Abstract
The evolution of polymethyl methacrylate (PMMA) based bone cement (BC) from plexiglass to a biomaterial has revolutionized the joint and vertebral arthroplasties field. This widely used grouting material possesses exceptional properties for medical applications, including excellent biocompatibility, impressive mechanical strength, and favorable handling characteristics. PMMA-based BC is preferred in challenging conditions such as osteoporotic vertebral compression fractures, scoliosis, vertebral hemangiomas, spinal metastases, and myelomas, where it is crucial in withstanding stress. This review aims to comprehensively analyze the available reports and guide further research toward enhanced formulations of vertebral BC, focusing on its osteoconductive and mechanical properties. Furthermore, the review emphasizes the significant impact of BC's mechanical properties and osteoconductivity on the success and longevity of vertebroplasty procedures.
Collapse
Affiliation(s)
- Choppadandi Mounika
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, India
| | - Tejaswini Tadge
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, India
| | - M Keerthana
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, India
| | - Ravichandiran Velyutham
- National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Bengal Chemicals, Kolkata, 700054, India
| | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Bengal Chemicals, Kolkata, 700054, India.
| |
Collapse
|
8
|
Hossain M, Jeong JH, Sultana T, Kim JH, Moon JE, Im S. A composite of polymethylmethacrylate, hydroxyapatite, and β-tricalcium phosphate for bone regeneration in an osteoporotic rat model. J Biomed Mater Res B Appl Biomater 2023; 111:1813-1823. [PMID: 37289178 DOI: 10.1002/jbm.b.35287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to test several modifications of the polymethylmethacrylate (PMMA) bone cement by incorporating osteoconductive and biodegradable materials for enhancing bone regeneration capacity in an osteoporotic rat model. Three bio-composites (PHT-1 [80% PMMA, 16% HA, 4% β-TCP], PHT-2 [70% PMMA, 24% HA, 6% β-TCP], and PHT-3 [30% PMMA, 56% HA, 14% β-TCP]) were prepared using different concentrations of PMMA, hydroxyapatite (HA), and β-tricalcium phosphate (β-TCP). Their morphological structure was then examined using a scanning electron microscope (SEM) and mechanical properties were determined using a MTS 858 Bionics test machine (MTS, Minneapolis, MN, USA). For in vivo studies, 35 female Wister rats (250 g, 12 weeks of age) were prepared and divided into five groups including a sham group (control), an ovariectomy-induced osteoporosis group (OVX), an OVX with pure PMMA group (PMMA), an OVX with PHT-2 group (PHT-2), and an OVX with PHT-3 group (PHT-3). In vivo bone regeneration efficacy was assessed using micro-CT and histological analysis after injecting the prepared bone cement into the tibial defects of osteoporotic rats. SEM investigation showed that the PHT-3 sample had the highest porosity and roughness among all samples. In comparison to other samples, the PHT-3 exhibited favorable mechanical properties for use in vertebroplasty procedures. Micro-CT and histological analysis of OVX-induced osteoporotic rats revealed that PHT-3 was more effective in regenerating bone and restoring bone density than other samples. This study suggests that the PHT-3 bio-composite can be a promising candidate for treating osteoporosis-related vertebral fractures.
Collapse
Affiliation(s)
- Mosharraf Hossain
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | - Tamima Sultana
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | - Ju Hyung Kim
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | - Ji Eun Moon
- Department of Biostatistics, Clinical Trial Center, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | - Soobin Im
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| |
Collapse
|
9
|
Deng Z, Feng T, Wu X, Xie H, Song D, Wang J, Yang H, Niu J. Thoracolumbar fascia injury in osteoporotic vertebral fracture: the important concomitant damage. BMC Musculoskelet Disord 2023; 24:166. [PMID: 36879207 PMCID: PMC9987111 DOI: 10.1186/s12891-023-06280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Thoracolumbar fascia injury (FI) is rarely discussed in osteoporotic vertebral fracture (OVF) patients in previous literature and it is usually neglected and treated as an unmeaning phenomenon. We aimed to evaluate the characteristics of the thoracolumbar fascia injury and further discuss its clinical significance in the treatment of kyphoplasty for osteoporotic vertebral fracture (OVF) patients. METHODS Based on the presence or absence of FI, 223 OVF patients were divided into two groups. The demographics of patients with and without FI were compared. The visual analogue scale and Oswestry disability index scores were compared preoperatively and after PKP treatment between these groups. RESULTS Thoracolumbar fascia injuries were observed in 27.8% of patients. Most FI showed a multi-level distribution pattern which involved a mean of 3.3 levels. Location of fractures, severity of fractures and severity of trauma were significantly different between patients with and without FI. In further comparison, severity of trauma was significantly different between patients with severe and non-severe FI. In patients with FI, VAS and ODI scores of 3 days and 1 month after PKP treatment were significantly worse compared to those without FI. It showed the same trend in VAS and ODI scores in patients with severe FI when compared to those patients with non-severe FI. CONCLUSIONS FI is not rare in OVF patients and presents multiple levels of involvement. The more serious trauma suffered, the more severe thoracolumbar fascia injury presented. The presence of FI which was related to residual acute back pain significantly affected the effectiveness of PKP in treating OVFs. TRIAL REGISTRATION retrospectively registered.
Collapse
Affiliation(s)
- Zicheng Deng
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Tao Feng
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Xiexing Wu
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Haifeng Xie
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Dawei Song
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Jinning Wang
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Junjie Niu
- The authors are from the Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, NO. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
10
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
11
|
Injectability, Processability, Drug Loading, and Antibacterial Activity of Gentamicin-Impregnated Mesoporous Bioactive Glass Composite Calcium Phosphate Bone Cement In Vitro. Biomimetics (Basel) 2022; 7:biomimetics7030121. [PMID: 36134925 PMCID: PMC9496498 DOI: 10.3390/biomimetics7030121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium phosphate cement (CPC) is similar to bone in composition and has plasticity, while mesoporous bioactive glass (MBG) has the advantage of releasing Si, which can promote osteogenic properties and drug loading capacity. A sol–gel-prepared MBG micro-powder (mMBG) and further impregnated antibiotic gentamicin sulfate (Genta@mMBG: 2, 3, and 4 mg/mL) antibiotic were added to CPC at different weight ratios (5, 10, and 15 wt.%) to study CPC’s potential clinical applications. Different ratios of mMBG/CPC composite bone cement showed good injectability and disintegration resistance, but with increasing mMBG addition, the working/setting time and compressive strength decreased. The maximum additive amount was 10 wt.% mMBG due to the working time of ~5 min, the setting time of ~10 min, and the compressive strength of ~51 MPa, indicating that it was more suitable for clinical surgical applications than the other groups. The 2Genta@mMBG group loaded with 2 mg/mL gentamicin had good antibacterial activity, and the 10 wt.% 2Genta@mMBG/CPC composite bone cement still had good antibacterial activity but reduced the initial release of Genta. 2Genta@mMBG was found to have slight cytotoxicity, so 2Genta@mMBG was composited into CPC to improve the biocompatibility and to endow CPC with more advantages for clinical application.
Collapse
|
12
|
Wang Y, Liu B, Sun Z, Zhang Y, Su J. Comparative Efficacy of Three Minimally Invasive Procedures for Kümmell's Disease: A Systematic Review and Network Meta-Analysis. Front Surg 2022; 9:893404. [PMID: 35722530 PMCID: PMC9198435 DOI: 10.3389/fsurg.2022.893404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022] Open
Abstract
Background Percutaneous vertebroplasty (PVP), percutaneous kyphoplasty (PKP), and bone-filling mesh containers(BFC) are three viable minimally invasive techniques that have been used to treat Kümmell's disease(KD). However, there is still debate as to which is safer and more effective. This study summarized the pros and cons of the three techniques in the treatment of KD through network meta-analysis(NMA). Methods All eligible published clinical control studies comparing PVP, PKP, and BFC for KD up to December 2021 were collected by online search of Cochrane Library, PubMed, Embase, CNKI, Wanfang Database, and Chinese biomedical literature database. Data were extracted after screening, and Stata 16.0 software was used to perform the network meta-analysis. Results Four randomized controlled trials (RCTs) and 16 retrospective case-control studies (CCTs) with a total of 1114 patients were included. The NMA results showed no statistical difference between the 3 procedures in terms of improving patients' clinical symptoms. PKP was most likely to be the most effective in correcting kyphosis, while BFC was likely to be the most effective in managing the occurrence of cement leakage. No statistical differences were found in the incidence of new vertebral fractures in adjacent segments. Conclusions Ranking analysis showed that BFC has the highest likelihood of being the optimal procedure for the treatment of KD, based on a combined assessment of effectiveness in improving patients' symptoms and safety in the occurrence of adverse events.
Collapse
Affiliation(s)
| | | | | | - Yaning Zhang
- Department of Orthopedics, Linfen People's Hospital, Linfen, China
| | - Jiangping Su
- Department of Orthopedics, Linfen People's Hospital, Linfen, China
| |
Collapse
|
13
|
Bone Cements Used for Hip Prosthesis Fixation: The Influence of the Handling Procedures on Functional Properties Observed during In Vitro Study. MATERIALS 2022; 15:ma15092967. [PMID: 35591302 PMCID: PMC9101139 DOI: 10.3390/ma15092967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
The failure of hip prostheses is a problem that requires further investigation and analysis. Although total hip replacement is an extremely successful operation, the number of revision surgeries needed after this procedure is expected to continue to increase due to issues with both bone cement types and cementation techniques (depending on the producer). To conduct a comparative analysis, as a surgeon prepared the bone cement and introduced it in the body, this study’s team of researchers prepared three types of commercial bone cements with the samples mixed and placed them in specimens, following the timeline of the surgery. In order to evaluate the factors that influenced the chemical composition and structure of each bone cement sample under specific intraoperative conditions, analyses of the handling properties, mechanical properties, structure, and composition were carried out. The results show that poor handling can impede prosthesis–cement interface efficacy over time. Therefore, it is recommended that manual mixing be avoided as much as possible, as the manual preparation of the cement can sometimes lead to structural unevenness.
Collapse
|
14
|
Minamisawa H, Kojima Y, Aizawa M. Adsorption of Inositol Phosphate on Hydroxyapatite Powder with High Specific Surface Area. MATERIALS 2022; 15:ma15062176. [PMID: 35329627 PMCID: PMC8950381 DOI: 10.3390/ma15062176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023]
Abstract
Chelate-setting calcium-phosphate cements (CPCs) have been developed using inositol phosphate (IP6) as a chelating agent. However, the compressive strength of the CPC fabricated from a commercially available hydroxyapatite (HAp) powder was approximately 10 MPa. In this study, we miniaturized HAp particles as a starting powder to improve the compressive strength of chelate-setting CPCs and examined the adsorption properties of IP6 onto HAp powders. An HAp powder with a specific surface area (SSA) higher than 200 m2/g (HApHS) was obtained by ultrasonic irradiation for 1 min in a wet synthesis process, greatly improving the SSA (214 m2/g) of the commercial powder without ultrasonic irradiation. The HApHS powder was found to be a B-type carbonate-containing HAp in which the phosphate groups in apatite were replaced by carbonate groups. Owing to the high SSA, the HApHS powder also showed high IP6 adsorption capacity. The adsorption phenomena of IP6 to our HApHS and commercially available Hap powders were found to follow the Freundlich and Langmuir models, respectively. We found that IP6 adsorbs on the HApHS powder by both physisorption and chemisorption. The fine HapHS powder with a high SSA is a novel raw powder material, expected to improve the compressive strength of chelate-setting CPCs.
Collapse
Affiliation(s)
- Hirogo Minamisawa
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan;
| | - Yoshiyuki Kojima
- Department of Materials and Applied Chemistry, Faculty of Science and Engineering, Nihon University, 1-8, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan;
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Correspondence:
| |
Collapse
|
15
|
Feng F, Chen M, Wang X, Zhang H, Nie H, Tang H. Translation of a spinal bone cement product from bench to bedside. Bioact Mater 2021; 10:345-354. [PMID: 34901551 PMCID: PMC8636668 DOI: 10.1016/j.bioactmat.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023] Open
Abstract
Spinal acrylic bone cements (ABCs) are used clinically for percutaneous vertebroplasty (PVP) and kyphoplasty (PKP) to treat osteoporotic vertebral compression fractures. Product translation of spinal ABC products followed the design control processes including design verification and validation. The bench to bedside translation of the first Chinese spinal ABC product (Alliment®, namely Alliment Cement) approved by National Medical Products Administration of China was investigated and another commercial product served as the control (Osteopal®V, namely Osteopal V Cement). Results of non-clinical bench performance verification tests of compression, bending and monomer release showed that the newly marketed Alliment Cement is similar to the Osteopal V Cement with properties of both meeting the criteria specified by standards. The Alliment Cement demonstrated good biocompatibility during the 26 weeks’ bone implantation test. Porcine cadaver validation tests further revealed that the Alliment Cement satisfied the needs for both PVP and PKP procedures. A post-approval, retrospective clinical investigation further demonstrated the safety and efficacy of the Alliment Cement, with a significant reduction of pain and the improved stability of the fractured vertebral bodies. A successful translation of biomaterial medical products needs close collaborations among academia, industry, healthcare professionals and regulatory agencies. Bench-to-bedside research of the first Chinese spinal acrylic bone cement product. •Pre- & clinical investigations demonstrate the product's safety and efficacy. •Translation of biomaterial medical products follows regulated processes.
Collapse
Affiliation(s)
- Fei Feng
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| | - Mengmeng Chen
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| | - Xuan Wang
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hongwei Zhang
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hongtao Nie
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
16
|
Pańtak P, Cichoń E, Czechowska J, Zima A. Influence of Natural Polysaccharides on Properties of the Biomicroconcrete-Type Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7496. [PMID: 34947091 PMCID: PMC8708244 DOI: 10.3390/ma14247496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
In this paper, novel hybrid biomicroconcrete-type composites were developed and investigated. The solid phase of materials consisted of a highly reactive α -tricalcium phosphate (α-TCP) powder, hybrid hydroxyapatite-chitosan (HAp-CTS) material in the form of powder and granules (as aggregates), and the polysaccharides sodium alginate (SA) or hydroxypropyl methylcellulose (HPMC). The liquid/gel phase in the studied materials constituted a citrus pectin gel. The influence of SA or HPMC on the setting reaction, microstructure, mechanical as well as biological properties of biomicroconcretes was investigated. Studies revealed that manufactured cement pastes were characterized by high plasticity and cohesion. The dual setting system of developed biomicroconcretes, achieved through α-TCP setting reaction and polymer crosslinking, resulted in a higher compressive strength. Material with the highest content of sodium alginate possessed the highest mechanical strength (~17 MPa), whereas the addition of hydroxypropyl methylcellulose led to a subtle compressive strength decrease. The obtained biomicroconcretes were chemically stable and characterized by a high bioactive potential. The novel biomaterials with favorable physicochemical and biological properties can be prosperous materials for filling bone tissue defects of any shape and size.
Collapse
Affiliation(s)
| | | | | | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Kraków, Poland; (P.P.); (E.C.); (J.C.)
| |
Collapse
|
17
|
Tomazela L, Cruz MAE, Nascimento LA, Fagundes CC, da Veiga MAMS, Zamarioli A, Bottini M, Ciancaglini P, Brassesco MS, Engel EE, Ramos AP. Fabrication and characterization of a bioactive polymethylmethacrylate-based porous cement loaded with strontium/calcium apatite nanoparticles. J Biomed Mater Res A 2021; 110:812-826. [PMID: 34783455 DOI: 10.1002/jbm.a.37330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr2+ -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts. The NPs resembled the structure of the bone's apatite and enabled the controlled release of Sr2+ . Trends in the X-ray patterns and infrared spectra confirmed that Sr2+ replaced Ca2+ in the whole composition range of the NPs. The inclusion of an effervescent additive reduced the polymerization temperature and lead to the formation of highly porous cement exhibiting mechanical properties comparable to the trabecular bone. The formation of an opened and interconnected matrix allowed osteoblasts to penetrate the cement structure. Most importantly, the gas formation confined the NPs at the surface of the pores, guaranteeing the controlled delivery of Sr2+ within a concentration sufficient to maintain osteoblast viability. Additionally, the cement was able to form apatite when immersed into simulated body fluids, further increasing its bioactivity. Therefore, we offer a formulation of PMMA cement with improved in vitro performance supported by enhanced bioactivity, increased osteoblast viability and deposition of mineralized matrix assigned to the loading with Sr2+ -substituted hydroxyapatite NPs and the creation of an interconnected porous structure. Altogether, our results hold promise for enhanced bone reparation guided by PMMA cements.
Collapse
Affiliation(s)
- Larissa Tomazela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aine Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia C Fagundes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ariane Zamarioli
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Sol Brassesco
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Edgard E Engel
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Li Q, Long X, Wang Y, Fang X, Guo D, Lv J, Hu X, Cai L. Development and validation of a nomogram for predicting the probability of new vertebral compression fractures after vertebral augmentation of osteoporotic vertebral compression fractures. BMC Musculoskelet Disord 2021; 22:957. [PMID: 34784910 PMCID: PMC8597210 DOI: 10.1186/s12891-021-04845-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION New vertebral compression fractures (NVCFs) are adverse events after vertebral augmentation of osteoporotic vertebral compression fractures (OVCFs). Predicting the risk of vertebral compression fractures (VCFs) accurately after surgery is still a significant challenge for spinal surgeons. The aim of our study was to identify risk factors of NCVFs after vertebral augmentation of OVCFs and develop a nomogram. METHODS We retrospectively reviewed the medical records of patients with OVCFs who underwent percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). Patients were divided into the NVCFs group and control group, base on the patients with or without NVCFs within 2 years follow-up period after surgery. A training cohort of 403 patients diagnosed in our hospital from June 2014 to December 2016 was used for model development. The independent predictive factors of postoperative VCFs were determined by least absolute shrinkage and selection operator (LASSO) logistic regression, univariate analysis and multivariate logistic regression analysis. We provided a nomogram for predicting the risk of NVCFs based on independent predictive factors and used the receiver operating characteristic curve (ROC), calibration curve, and decision curve analyses (DCA) to evaluated the prognostic performance. After internal validation, the nomogram was further evaluated in a validation cohort of 159 patients included between January 2017 and June 2018. RESULTS Of the 403 patients in the training cohort, 49(12.16%) were NVCFs at an average of 16.7 (1 to 23) months within the 2 years follow-up period. Of the 159 patients in the validation cohort, 17(10.69%) were NVCFs at an average of 8.7 (1 to 15) months within the 2 years follow-up period. In the training cohort, the proportions of elderly patients older than 80 years were 32.65 and 13.56% in the NVCFs and control group, respectively (p = 0.003). The percentages of patients with previous fracture history were 26.53 and 12.71% in the NVCFs and control group, respectively (p = 0.010). The volume of bone cement were 4.43 ± 0.88 mL and 4.02 ± 1.13 mL in the NVCFs and Control group, respectively (p = 0.014). The differences have statistical significance in the bone cement leakage, bone cement dispersion, contact with endplate, anti-osteoporotic treatment, post-op Cobb angle and Cobb angle restoration characteristics between the two groups. The model was established by multivariate logistic regression analysis to obtain independent predictors. In the training and validation cohort, the AUC of the nomogram were 0.882 (95% confidence interval (CI), 0.824-0.940) and 0.869 (95% CI: 0.811-0.927), respectively. The C index of the nomogram was 0.886 in the training cohort and 0.893 in the validation cohort, demonstrating good discrimination. In the training and validation cohort, the optimal calibration curves demonstrated the coincidence between prediction and actual status, and the decision curve analysis demonstrated that the full model had the highest clinical net benefit across the entire range of threshold probabilities. CONCLUSION A nomogram for predicting NVCFs after vertebral augmentation was established and validated. For patients evaluated by this model with predictive high risk of developing postoperative VCFs, postoperative management strategies such as enhance osteoporosis-related health education and management should be considered.
Collapse
Affiliation(s)
- Qiujiang Li
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Xingxia Long
- West China Hospital, Sichuan University, Sichuan, China
| | - Yinbin Wang
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Xiaomin Fang
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Donggeng Guo
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Jinhan Lv
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Xuehua Hu
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China
| | - Lijun Cai
- Department of Orthopedics,People's Hospital of Ningxia Hui Autonomous Region, No. 56, Zhengyuan Street, Yinchuan, 750002, Ningxia, China.
| |
Collapse
|
19
|
Advances in Sintering Techniques for Calcium Phosphates Ceramics. MATERIALS 2021; 14:ma14206133. [PMID: 34683723 PMCID: PMC8540310 DOI: 10.3390/ma14206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
Calcium phosphate (CaP) biomaterials are extensively used to reconstruct bone defects. They resemble a chemical similarity to the inorganic mineral present in bones. Thus, they are termed as the key players in bone regeneration. Sintering is a heat treatment process applied to CaP powder compact or fabricated porous material to impart strength and integrity. Conventional sintering is the simplest sintering technique, but the processing of CaPs at a high temperature for a long time usually leads to the formation of secondary phases due to their thermal instability. Furthermore, it results in excessive grain growth that obstructs the densification process, limiting the application of CaP’s ceramics in bone regeneration. This review focuses on advanced sintering techniques used for the densification of CaPs. These techniques utilize the synergy of temperature with one or more parameters such as external pressure, electromagnetic radiation, electric current, or the incorporation of transient liquid that boosts the mass transfer while lowering the sintering temperature and time.
Collapse
|
20
|
In Vitro Evaluation of Calcium Phosphate Bone Cement Composite Hydrogel Beads of Cross-Linked Gelatin-Alginate with Gentamicin-Impregnated Porous Scaffold. Pharmaceuticals (Basel) 2021; 14:ph14101000. [PMID: 34681223 PMCID: PMC8541638 DOI: 10.3390/ph14101000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Calcium phosphate bone cement (CPC) is in the form of a paste, and its special advantage is that it can repair small and complex bone defects. In the case of open wounds, tissue debridement is necessary before tissue repair and the subsequent control of wound infection; therefore, CPC composite hydrogel beads containing antibiotics provide an excellent option to fill bone defects and deliver antibiotics locally for a long period. In this study, CPC was composited with the millimeter-sized spherical beads of cross-linked gelatin–alginate hydrogels at the different ratios of 0 (control), 12.5, 25, and 50 vol.%. The hydrogel was impregnated with gentamicin and characterized before compositing with CPC. The physicochemical properties, gentamicin release, antibacterial activity, biocompatibility, and mineralization of the CPC/hydrogel composites were characterized. The compressive strength of the CPC/hydrogel composites gradually decreased as the hydrogel content increased, and the compressive strength of composites containing gentamicin had the largest decrease. The working time and setting time of each group can be adjusted to 8 and 16 min, respectively, using a hardening solution to make the composite suitable for clinical use. The release of gentamicin before the hydrogel beads was composited with CPC varied greatly with immersion time. However, a stable controlled release effect was obtained in the CPC/gentamicin-impregnated hydrogel composite. The 50 vol.% hydrogel/CPC composite had the best antibacterial effect and no cytotoxicity but had reduced cell mineralization. Therefore, the optimal hydrogel beads content can be 25 vol.% to obtain a CPC/gentamicin-impregnated hydrogel composite with adequate strength, antibacterial activity, and bio-reactivity. This CPC/hydrogel containing gentamicin is expected to be used in clinical surgery in the future to accelerate bone regeneration and prevent prosthesis infection after surgery.
Collapse
|
21
|
Bokam P, Germaneau A, Breque C, Rigoard P, Vendeuvre T, Valle V. Fracture behavior of cancellous bone and cancellous bone-PMMA bone cement interface: An experimental study using an integrated methodology (wedge splitting test and Heaviside-based digital image correlation). J Mech Behav Biomed Mater 2021; 122:104663. [PMID: 34246077 DOI: 10.1016/j.jmbbm.2021.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
Minimally invasive methods, such as balloon kyphoplasty (BKP) and percutaneous sacroplasty (PS), which are now widely used for the surgical treatment of compression fractures, involve injection of a bolus of poly (methyl methacrylate) bone cement (hereafter, "bone cement") into the fractured tissue. Many of the common complications following these surgeries, such as cement leakage and adjacent-level fractures (in the case of BKP), have been postulated to be related to the quality of the cancellous bone-bone cement interface, which, in turn, is a function of its fracture resistance. It is common to use bovine cancellous bone or polyurethane foam (PF) as a substitute for human cancellous bone in biomechanical studies of these surgical methods. The literature is lacking in studies of determination of fracture properties of human cancellous bone-bone cement interface, bovine cancellous bone-bone cement interface, and PF-bone cement interface. In the present work, an integrated methodology (combination of wedge splitting test and Heaviside-based digital image correlation) was used to make these determinations as well as those for the bone cement, bones and the PF alone. The fracture properties determined were maximum fracture load (Fmax), fracture toughness (Kc), and specific fracture energy (Gf). For example, Gf values for human cancellous bone and human cancellous bone-bone interface were 0.48±0.14 N/mm and 0.38±0.05 N/mm, respectively, whereas in the case of bovine cancellous bone and bovine cancellous bone-bone cement interface, they were 1.08±0.11 N/mm and 0.22±0.05 N/mm, respectively, and for PF (Grades 12.5 and 15.0) and PF-bone cement interface, they were 0.81±0.12 and 0.55±0.06 N/mm, respectively. The same trends were seen in the Fmax and Kc results. These results suggest that it may not be justified to use either bovine cancellous bone or either of the PF grades as a substitute for human cadaveric cancellous bone in biomechanical studies of BKP, PS, and similar surgical methods.
Collapse
Affiliation(s)
- P Bokam
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à vocation régionale Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France; Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France.
| | - A Germaneau
- Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France
| | - C Breque
- Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France; Laboratoire d'anatomie et de simulation de universite de Poitiers, ABS Lab-Bat D1, 6, rue de la miletrie TSA-51115, 86073 Poitiers cedex 9, France
| | - P Rigoard
- Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France; Department of Neurosurgery, Spine and Neuromodulation Function Unit. Prismatics Lab. CHU. Poitiers., France
| | - T Vendeuvre
- Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France; Department of Neurosurgery, Spine and Neuromodulation Function Unit. Prismatics Lab. CHU. Poitiers., France
| | - V Valle
- Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962, Futuroscope, Chasseneuil, France
| |
Collapse
|
22
|
Adamska O, Modzelewski K, Stolarczyk A, Kseniuk J. Is Kummell's Disease a Misdiagnosed and/or an Underreported Complication of Osteoporotic Vertebral Compression Fractures? A Pattern of the Condition and Available Treatment Modalities. J Clin Med 2021; 10:2584. [PMID: 34208124 PMCID: PMC8230888 DOI: 10.3390/jcm10122584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
This narrative review provides the outcomes of minimally invasive surgery (MIS) and describes the available conservative treatment options for patients with osteoporotic vertebral compression fractures (OVCFs) that have risk factors for Kummell's disease (KD). It aims to explore the evidence, emphasize the possible therapy complications, and aims to propose the most efficient clinical strategies for maintaining a good overall condition of individuals who may suffer from neurological deficits from a late-diagnosed OVCF complication. The secondary objective is to sum up the diagnostic particularities concerning individuals prone to OVCFs and KD, as the major risk factor for developing these severe conditions remains osteoporosis. Findings of our narrative review are based on the results found in PubMed, Embase, and Google Scholar from the beginning of their inception to December 2020, described independently by two authors. All of the studies included in the review focus on reporting the following treatment methods: conservative methods, vertebroplasty, kyphoplasty, targeted percutaneous vertebroplasty, frontal and side-opening cannula vertebroplasty, SpineJack, bone-feeling mesh container treatment, and the difference in the cement viscosity used (high vs. low) and the approach used (unilateral vs. bilateral). The comparison of randomized control trials (RCTs) as well as prospective and retrospective case series showed a comparable efficacy of kyphoplasty and vertebroplasty, and described cement-augmented screw fixation and the SpineJack system as effective and safe. Although it should be noted that several studies revealed inconsistent results in regards to the efficacy of using back braces and analgesics in patients who had vertebral fractures that were overlooked or not enrolled in any active surveillance program to track the patient's deterioration immediately. Nevertheless there are non-standardized guidelines for treating patients with OVCFs and their complications already established. Using these guidelines, a treatment plan can be planned that takes into consideration the patients' comorbidities and susceptibilities. However, the primary approach remains the management of osteoporosis and that is why prophylaxis and prevention play a crucial role. These measures reduce the risk of disease progression. Unfortunately, in the majority of cases these measures are not taken into account and KD develops.
Collapse
Affiliation(s)
- Olga Adamska
- Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Krzysztof Modzelewski
- Orthopaedic and Rehabilitation Department, Medical University of Warsaw, 61 Żwirki i Wigury St., 02-091 Warsaw, Poland; (K.M.); (A.S.)
| | - Artur Stolarczyk
- Orthopaedic and Rehabilitation Department, Medical University of Warsaw, 61 Żwirki i Wigury St., 02-091 Warsaw, Poland; (K.M.); (A.S.)
| | - Jurij Kseniuk
- Carolina Medical Center, 78 Pory St., 02-757 Warsaw, Poland;
| |
Collapse
|
23
|
He H, Ren H, Ding Z, Ji M, Chen H, Yan Y. Developing a novel magnesium calcium phosphate/sodium alginate composite cement with high strength and proper self-setting time for bone repair. J Biomater Appl 2021; 36:346-357. [PMID: 34053305 DOI: 10.1177/08853282211021535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, novel magnesium calcium phosphate/sodium alginate composite cements were successfully fabricated with a proper setting time (5-24 min) and high compressive strength (91.1 MPa). The physicochemical and biological properties of the cement in vitro were fully characterized. The composite cements could gradually degrade in PBS as the soaking time increase, and the weight loss reached 20.74% by the end of 56th day. The cements could induce the deposition of Ca-P layer in SBF. Cell experiments proved that the extracts of the composite cements can effectively promote the proliferation and differentiation of the mouse bone marrow mesenchymal stem cells (MSCs). These preliminary results indicate that the magnesium calcium phosphate/sodium alginate composite cements could be promising as potential bone repair candidate materials.
Collapse
Affiliation(s)
- Haosheng He
- College of Physics, Sichuan University, Chengdu, China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, China
| | - Zhengwen Ding
- College of Physics, Sichuan University, Chengdu, China
| | - Mizhi Ji
- College of Physics, Sichuan University, Chengdu, China
| | - Hong Chen
- College of Physics, Sichuan University, Chengdu, China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Wekwejt M, Chen S, Kaczmarek-Szczepańska B, Nadolska M, Łukowicz K, Pałubicka A, Michno A, Osyczka AM, Michálek M, Zieliński A. Nanosilver-loaded PMMA bone cement doped with different bioactive glasses - evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomater Sci 2021; 9:3112-3126. [PMID: 33704333 DOI: 10.1039/d1bm00079a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanosilver-loaded PMMA bone cement (BC-AgNp) is a novel cement developed as a replacement for conventional cements. Despite its favorable properties and antibacterial activity, BC-AgNp still lacks biodegradability and bioactivity. Hence, we investigated doping with bioactive glasses (BGs) to create a new bioactive BC characterized by time-varying porosity and gradual release of AgNp. The BC Cemex was used as the base material and modified simultaneously with the AgNp and BGs: melted 45S5 and 13-93B3 glasses with various particle sizes and sol-gel derived SiO2/CaO microparticles. The effect of BG addition was examined by microscopic analysis, an assessment of setting parameters, wettability, FTIR and UV-VIS spectroscopy, mechanical testing, and hemo- and cytocompatibility and antibacterial efficiency studies. The results show that it is possible to incorporate various BGs into BC-AgNp, which leads to different properties depending on the type and size of BGs. The smaller particles of melted BGs showed higher porosity and better antibacterial properties with the moderate deterioration of mechanical properties. The sol-gel derived BGs, however, displayed a tendency for agglomeration and random distribution in BC-AgNp. The BGs with greater solubility more efficiently improve the antibacterial properties of BC-AgNp. Besides, the unreacted MMA monomer release could negatively influence the cellular response. Despite that, cements doped with different BGs are suitable for medical applications.
Collapse
Affiliation(s)
- M Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| | - S Chen
- Centre for Functional and Surface Functionalized Glass, TnU AD, Trenčín, Slovakia
| | - B Kaczmarek-Szczepańska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - M Nadolska
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - K Łukowicz
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Kościerzyna, Poland
| | - A Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - A M Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - M Michálek
- Centre for Functional and Surface Functionalized Glass, TnU AD, Trenčín, Slovakia
| | - A Zieliński
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
25
|
Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater 2020; 117:1-20. [PMID: 32979583 DOI: 10.1016/j.actbio.2020.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Calcium phosphate cements (CPCs) have been used to treat bone defects and support bone regeneration because of their good biocompatibility and osteointegrative behavior. Since their introduction in the 1980s, remarkable clinical success has been achieved with these biomaterials, because they offer the unique feature of being moldable and even injectable into implant sites, where they harden through a low-temperature setting reaction. However, despite decades of research efforts, two major limitations concerning their biological and mechanical performance hamper a broader clinical use. Firstly, achieving a degradation rate that is well adjusted to the dynamics of bone formation remains a challenging issue. While apatite-forming CPCs frequently remain for years at the implant site without major signs of degradation, brushite-forming CPCs are considered to degrade to a greater extent. However, the latter tend to convert into lower soluble phases under physiological conditions, which makes their degradation behavior rather unpredictable. Secondly, CPCs exhibit insufficient mechanical properties for load bearing applications because of their inherent brittleness. This review places an emphasis on these limitations and provides an overview of studies that have investigated the biological and biomechanical performance as well as the degradation characteristics of different CPCs after implantation into trabecular bone. We reviewed studies performed in large animals, because they mimic human bone physiology more closely in terms of bone metabolism and mechanical loading conditions compared with small laboratory animals. We compared the results of these studies with clinical trials that have dealt with the degradation behavior of CPCs after vertebroplasty and kyphoplasty.
Collapse
Affiliation(s)
- Lena Schröter
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Svenja Stein
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| | - Anita Ignatius
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| |
Collapse
|
26
|
Stramazzo L, Ratano S, Monachino F, Pavan D, Rovere G, Camarda L. Cement augmentation for trochanteric fracture in elderly: A systematic review. J Clin Orthop Trauma 2020; 15:65-70. [PMID: 33717919 PMCID: PMC7920012 DOI: 10.1016/j.jcot.2020.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cement augmentation of internal fixation of hip fracture has reported to improve fracture stability in osteoporotic hip fractures, reducing the risk of cut-out of the sliding screw through the femoral head. The purpose of present study was to perform a systematic literature review on the effects of augmentation technique in patients with osteoporotic hip fractures. MATERIAL AND METHODS A comprehensive literature search was systematically performed to evaluate all papers published in English language included in the literature between January 2010 and July 2020, according to the PRISMA 2009 guidelines. In vivo and in vitro studies, case reports, review articles, cadaveric studies, biomechanical studies, histological studies, oncological studies, technical notes, studies dealing with radiological classifications and studies on revision surgery were excluded. RESULTS A total of 5 studies involving 301 patients were included. Patients had a mean age of 84.6 years and were followed up for a mean period of 11 months. The proximal femoral fractures were stabilized with implantation of the PFNA or Gamma nail and augmentation was performed with two different cements: polymethylmethacrylate (PMMA) in 4 studies and calcium phosphate (CP) in one study. Overall, 57.5% of patients reached the same or greater preoperative mobility, and postoperative Parker Mobility Score and Harris Hip Score were acceptable. No significantly complications were observed, and no additional surgery related to the implant was required. CONCLUSION The results of this systematic review show that cement augmentation is a safe and effectiveness method of fixation to treat trochanteric fractures.
Collapse
Affiliation(s)
- Leonardo Stramazzo
- Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Palermo, Italy
| | - Salvatore Ratano
- Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Monachino
- Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Palermo, Italy
| | - Davide Pavan
- Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Rovere
- Department of Orthopaedics and Traumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Lawrence Camarda
- Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Palermo, Italy
- Corresponding author. Department of Orthopaedic Surgery (DICHIRONS), University of Palermo, Via del Vespro, 90100, Palermo, Italy.
| |
Collapse
|
27
|
Wekwejt M, Michalska-Sionkowska M, Bartmański M, Nadolska M, Łukowicz K, Pałubicka A, Osyczka AM, Zieliński A. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111286. [PMID: 32919647 DOI: 10.1016/j.msec.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
Acrylic bone cements (BC) are wildly used in medicine. Despite favorable mechanical properties, processability and inject capability, BC lack bioactivity. To overcome this, we investigated the effects of selected biodegradable additives to create a partially-degradable BC and also we evaluated its combination with nanosilver (AgNp). We hypothesized that using above strategies it would be possible to obtain bioactive BC. The Cemex was used as the base material, modified at 2.5, 5 or 10 wt% with either cellulose, chitosan, magnesium, polydioxanone or tricalcium-phosphate. The resulted modified BC was examined for surface morphology, wettability, porosity, mechanical and nanomechanical properties and cytocompatibility. The composite BC doped with AgNp was also examined for its release and antibacterial properties. The results showed that it is possible to create modified cement and all studied modifiers increased its porosity. Applying the additives slightly decreased BC wettability and mechanical properties, but the positive effect of the additives was observed in nanomechanical research. The relatively poor cytocompatibility of modified BC was attributed to the unreacted monomer release, except for polydioxanone modification which increased cells viability. Furthermore, all additives facilitated AgNp release and increased BC antibacterial effectiveness. Our present studies suggest the optimal content of biodegradable component for BC is 5 wt%. At this content, an improvement in BC porosity is achieved without significant deterioration of BC physical and mechanical properties. Polydioxanone and cellulose seem to be the most promising additives that improve porosity and antibacterial properties of antibiotic or nanosilver-loaded BC. Partially-degradable BC may be a good strategy to improve their antibacterial effectiveness, but some caution is still required regarding their cytocompatibility. STATEMENT OF SIGNIFICANCE: The lack of bone cement bioactivity is the main limitation of its effectiveness in medicine. To overcome this, we have created composite cements with partially-degradable properties. We also modified these cements with nanosilver to provide antibacterial properties. We examined five various additives at three different contents to modify a selected bone cement. Our results broaden the knowledge about potential modifiers and properties of composite cements. We selected the optimal content and the most promising additives, and showed that the combination of these additives with nanosilver would increase cements` antibacterial effectiveness. Such modified cements may be a new solution for medical applications.
Collapse
Affiliation(s)
- M Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland.
| | - M Michalska-Sionkowska
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - M Bartmański
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| | - M Nadolska
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - K Łukowicz
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Pałubicka
- Department of Surgical Oncologic, Medical University of Gdańsk, Gdańsk, Poland; Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Kościerzyna, Poland
| | - A M Osyczka
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - A Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
28
|
Abstract
BACKGROUND Despite optimal drug-conservative therapy, a relevant percentage of patients with vertebral compression fractures (WKF) do not experience any relevant improvement in their pain symptoms. Vertebroplasty (VP) and kyphoplasty (KP) are described in the literature as percutaneous interventional procedures for the treatment of WKF. OBJECTIVE Assessment of the effectiveness of the VP and KP in the treatment of WKF and discussion of the procedures in the context of the current literature. MATERIAL AND METHODS Presentation of the fundamentals of VP and KP and their further developments. Description of indications and contraindications. Discussion of the current literature and recommendations of the individual professional associations. RESULTS In patients with vertebral compression fractures, VP or KP of the affected vertebral body leads to a pain reduction in more than 90% of cases. Clinically relevant complications occur in less than 1% of interventions. CONCLUSION VP and KP are a safe and effective method for treating painful WKF. Optimal patient selection improves the clinical outcome.
Collapse
|
29
|
Filament Extrusion and Its 3D Printing of Poly(Lactic Acid)/Poly(Styrene-co-Methyl Methacrylate) Blends. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the melt blending of amorphous poly(lactide acid) (PLA) with poly(styrene-co-methyl methacrylate) (poly(S-co-MMA)). The PLAx/poly(S-co-MMA)y blends were made using amorphous PLA compositions from 50, 75, and 90wt.%, namely PLA50/poly(S-co-MMA)50, PLA75/poly(S-co-MMA)25, and PLA90/poly(S-co-MMA)10, respectively. The PLAx/poly(S-co-MMA)y blend pellets were extruded into filaments through a prototype extruder at 195 °C. The 3D printing was done via fused deposition modeling (FDM) at the same temperature and a 40 mm/s feed rate. Furthermore, thermogravimetric curves of the PLAx/poly(S-co-MMA)y blends showed slight thermal decomposition with less than 0.2% mass loss during filament extrusion and 3D printing. However, the thermal decomposition of the blends is lower when compared to amorphous PLA and poly(S-co-MMA). On the contrary, the PLAx/poly(S-co-MMA)y blend has a higher Young’s modulus (E) than amorphous PLA, and is closer to poly(S-co-MMA), in particular, PLA90/poly(S-co-MMA)10. The PLAx/poly(S-co-MMA)y blends proved improved properties concerning amorphous PLA through mechanical and rheological characterization.
Collapse
|
30
|
Wang YF, Shen J, Li SY, Yu X, Zou TM. Kambin triangle approach in percutaneous vertebroplasty for the treatment of osteoporotic vertebral compression fractures. Medicine (Baltimore) 2019; 98:e17857. [PMID: 31689878 PMCID: PMC6946336 DOI: 10.1097/md.0000000000017857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to evaluate the safety and efficacy of percutaneous vertebroplasty (PVP) in Kambin triangle approach for the treatment of osteoporotic vertebral compression fractures (OVCFs).Between November 2017 and September 2018, 109 patients (144 vertebral bodies) with OVCFs, with a mean age of 76.7 ± 9.9 years (55-96 years), underwent PVP in Kambin triangle approach. The time of operation, the volume of bone cement, the incidence of complication, the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI) score, the position of puncture needles, and the spread of polymethylmethacrylate (PMMA) in vertebral body (VB) were recorded.All patients had been completed the operation successfully and were followed up 9.1 ± 2.9 months. The average operation time of each VB was 24.0 ± 3.5 minutes. The average volume of cement was 4.8 ± 0.6 ml. The mean VAS scores were 8.4 ± 0.7 preoperatively, 1.6 ± 0.6 at the first day postoperatively, and 1.2 ± 0.6 at the last follow-up. The mean ODI scores were 70.97 ± 7.73 preoperatively, 27.99 ± 4.12 at the first day postoperatively, and 19.65 ± 3.49 at the last follow-up. The position of puncture needles in the VB was: 119 vertebral puncture needles reached the midline, 15 were close to the midline, and 10 exceeded the midline. The spread of PMMA in the VB was: type 1 in 81 levels (56.3%), type 2 in 37 (25.7%), type 3 in 18 (12.5%), type 5 in 8 (5.5%), and no case in type 4. One case developed pneumothorax after operation. No other complications (hematoma, cement embolism, spinal cord, and nerve injury) occurred.Kambin triangle approach in PVP, which can deliver the puncture needle to the midline of VB easily and with excellent cement distribution, is a safe and effective method.
Collapse
|
31
|
Choppadandi M, More N, Kapusetti G. Detoxification of poly(methyl methacrylate) bone cement by natural antioxidant intervention. J Biomed Mater Res A 2019; 107:2835-2847. [PMID: 31433892 DOI: 10.1002/jbm.a.36785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022]
Abstract
Poly(methyl methacrylate) (PMMA) bone cement is the most widely used grouting material in the joint arthroplasties and vertebroplasties. The present investigation has been carried out to scavenge the radicals and monomer by addition of an antioxidant to minimize the toxicity of bone cement (BC). The in silico studies were employed to determine the potent natural antioxidant at physiological conditions. The antioxidant methionine demonstrated a strong binding affinity with free radicals and methyl methacrylate (MMA) monomer than cysteine. The designated amount of methionine was optimized by various assay methods and >2% methionine shows strong scavenging capacity in BC. Moreover, the antioxidant-loaded BC (ABC) demonstrated similar handling, physicochemical and mechanical properties to pristine bone cement. Significantly, the developed formulation shows superior biological characteristics such as cell proliferation (2 ± 1 BC and 6 ± 1 ABC), adhesion (0.32 ± 0.02 BC and 0.54 ± 0.01 ABC), and cell viability (81 ± 2% BC and 93 ± 1% ABC) toward human osteoblast-like cells (MG-63). Therefore, the novel antioxidant bone cement is a potential candidate for various orthopedic applications to eliminate the adverse effects, related to residual toxic radical and monomer in bone cement.
Collapse
Affiliation(s)
- Mounika Choppadandi
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Ahmedabad, India
| | - Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Ahmedabad, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Ahmedabad, India
| |
Collapse
|
32
|
Wekwejt M, Michno A, Truchan K, Pałubicka A, Świeczko-Żurek B, Osyczka AM, Zieliński A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1114. [PMID: 31382557 PMCID: PMC6722923 DOI: 10.3390/nano9081114] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Anna Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Truchan
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
- Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Świeczko-Żurek
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
33
|
Surface degradation-enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement. J Orthop Translat 2019; 17:121-132. [PMID: 31194022 PMCID: PMC6551367 DOI: 10.1016/j.jot.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/06/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Objective This work focuses on tackling the inadequate bone/implant interface strength of acrylic bone cements, which is a formidable problem diminishing their clinical performance, especially in percutaneous kyphoplasty surgery. Methods A new strategy of incorporating magnesium particles into clinically used poly(methylmethacrylate) (PMMA) bone cement to prepare a surface-degradable bone cement (SdBC) is proposed and validated both in vitro and in vivo. Results This surface degradation characteristic enables osseointegrative, angiogenic and antiinfective properties. SdBC showed fast surface degradation and formed porous surfaces as designed, while the desirable high compressive strengths (≥70 MPa) of the cement were preserved. Besides, the SdBC with proper Mg content promoted osteoblast adhesion, spreading, proliferation and endothelial cell angiogenesis capacity compared with PMMA. Also, SdBC demonstrated clear inhibitory effect on Staphylococcus aureus and Escherichia coli. In vivo evaluation on SdBC by the rat femur defect model showed that the bone/implant interface strength was significantly enhanced in SdBC (push-out force of 11.8 ± 1.5 N for SdBC vs 7.0 ± 2.3N for PMMA), suggesting significantly improved osseointegration and bone growth induced by the surface degradation of the cement. The injectability, setting times and compressive strengths of SdBC with proper content of Mg particles (2.8 wt% and 5.4 wt%) were comparable with those of the clinical acrylic bone cement, while the heat release during polymerization was reduced (maximum temperature 78 ± 1 °C for PMMA vs 73.3 ± 1.5 °C for SdBC). Conclusions This work validates a new concept of designing bioactive bone/implant interface in PMMA bone cement. And this surface-degradable bone cement possesses great potential for minimally invasive orthopaedic surgeries such as percutaneous kyphoplasty. The translational potential of this article This work reports PMMA/Mg surface-degradable acrylic bone cements that possess enhanced osseointegrative, angiogenic and antiinfective properties that are lacking in the clinically used acrylic bone cements. This new kind of bone cements could improve the treatment outcome of many orthopaedic surgeries such as percutaneous kyphoplasty and arthroplasty.
Collapse
|
34
|
Li J, Wang H, Guo Q, Zhu C, Zhu X, Han F, Yang H, Li B. Multifunctional Coating to Simultaneously Encapsulate Drug and Prevent Infection of Radiopaque Agent. Int J Mol Sci 2019; 20:E2055. [PMID: 31027323 PMCID: PMC6539451 DOI: 10.3390/ijms20092055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) bone cements have been widely used in clinical practices. In order to enhance PMMA's imaging performance to facilitate surgical procedures, a supplementation of radiopaque agent is needed. However, PMMA bone cements are still facing problems of loosening and bacterial infection. In this study, a multifunctional coating to simultaneously encapsulate drug and prevent the infection of radiopaque agent has been developed. Barium sulfate (BaSO4), a common radiopaque agent, is used as a substrate material. We successfully fabricated porous BaSO4 microparticles, then modified with hexakis-(6-iodo-6-deoxy)-alpha-cyclodextrin (I-CD) and silver (Ag) to obtain porous BaSO4@PDA/I-CD/Ag microparticles. The porous nature and presence of PDA coating and I-CD on the surface of microparticles result in efficient loading and release of drugs such as protein. Meanwhile, the radiopacity of BaSO4@PDA/I-CD/Ag microparticles is enhanced by this multifunctional coating containing Ba, I and Ag. PMMA bone cements containing BaSO4@PDA/I-CD/Ag microparticles show 99% antibacterial rate against both Staphylococcus aureus (S. aureus) and Escherichia Coli (E. coli), yet without apparently affecting its biocompatibility. Together, this multifunctional coating possessing enhanced radiopacity, controlled drug delivery capability and exceptional antibacterial performance, may be a new way to modify radiopaque agents for bone cements.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Huan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Xuesong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Fengxuan Han
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Huilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
35
|
Zhao K, Pi B, Zhao L, Tian S, Ge J, Yang H, Sha W, Wang L. Influence of N-acetyl cysteine (NAC) and 2-methylene-1,3-dioxepane (MDO) on the properties of polymethyl methacrylate (PMMA) bone cement. RSC Adv 2019; 9:11833-11841. [PMID: 35517041 PMCID: PMC9063513 DOI: 10.1039/c9ra01638d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Abstract
The properties of polymethyl methacrylate (PMMA) bone cement make it a popular bone filling material. However, its disadvantages, such as lack of biodegradability and osteogenesis, restrict its clinical application. Studies have indicated the osteogenic properties of N-acetyl cysteine (NAC) and the biodegradability of 2-methylene-1,3-dioxepane/methyl methacrylate-based (MDO/MMA) copolymers. In this study, we developed bioactive PMMA cements through modification with fixed concentrations of NAC and different proportions of MDO. The purpose of this study was to compare the mechanical properties, morphology, NAC release, biocompatibility, degradability and mineralization capability of modified bone cements with those of conventional cement. The specific-modified specimens (NAC-p (5% MDO-co-MMA)) exhibited a lower bending modulus but had little effect on compressive strength. This material was morphologically compact and nonporous, similar to conventional PMMA bone cement. NAC could be released from NAC-p (5% MDO-co-MMA) continuously and appropriately. NAC-p (5% MDO-co-MMA) was biologically safe and showed satisfactory tissue compatibility. Ester was introduced into the polymer, which reinforced the degradation properties of NAC-p (5% MDO-co-MMA). NAC-p (5% MDO-co-MMA) enhanced the mineralization capability of osteoblastic cells.
Collapse
Affiliation(s)
- Kangquan Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Liping Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Shoujin Tian
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Jianfei Ge
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Weiping Sha
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Liming Wang
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| |
Collapse
|
36
|
Spine Intervention—An Update on Injectable Biomaterials. Can Assoc Radiol J 2019; 70:37-43. [DOI: 10.1016/j.carj.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Back pain is the second most common reason for primary-care physician visits after the common cold. New understanding of the spine pathophysiology and biomechanics led to the development of novel injectable biomaterials to treat those pain generators. Although not all biomaterials are currently ready for common use, there is significant interest by the medical community to invest time, resources, and energy to optimize these injectables. This review introduces basic concepts and advancements in the field of bioinjectables tailored for the vertebral body. Also, we highlight advances in injectable biomaterials which were presented at the Groupe de Recherche Interdisciplinaire sur les Biomatériaux Ostéoarticulaires Injectables (GRIBOI) (Interdisciplinary Research Society for Injectable Osteoarticular Biomaterials) meeting in March 2018 in Los Angeles, CA. Indeed, multidisciplinary translational research and international meetings such as GRIBOI bring together scientists and clinicians with different backgrounds/expertise to discuss injectable biomaterials innovations tailored for the interventional pain management field.
Collapse
|
37
|
Hu M, He Z, Han F, Shi C, Zhou P, Ling F, Zhu X, Yang H, Li B. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin. Int J Nanomedicine 2018; 13:7183-7193. [PMID: 30519015 PMCID: PMC6233488 DOI: 10.2147/ijn.s172881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Bone cement plays an important role in the treatment of osteoporotic vertebral compression fractures. Calcium phosphate cement (CPC) is a potential alternative to poly(methyl methacrylate), currently the gold standard of bone cements. However, the poor mechanical properties of CPCs limit their clinical applications. The objective of this study was to develop reinforced CPCs for minimally invasive orthopedic surgeries by compositing silk fibroin (SF) with α-tricalcium phosphate. METHODS SF solution was treated with calcium hydroxide and characterized by Zeta potential analyzer and Fourier transform infrared spectroscopy. The alkaline-treated SF (tSF) was com-posited with α-tricalcium phosphate to obtain tSF/CPC composite, which was characterized using mechanical tests, scanning electron microscopy, handling property and biocompatibility tests, and sheep vertebral augmentation tests. RESULTS Upon treatment with calcium hydroxide, larger SF particles and more abundant negative charge appeared in tSF solution. The tSF/CPCs exhibited a compact structure, which consisted of numerous SF -CPC clusters and needle-like hydroxyapatite (HAp) crystals. In addition, high transition rate of HAp in tSF/CPCs was achieved. As a result, the mechanical property of tSF/ CPC composite cements was enhanced remarkably, with the compressive strength reaching as high as 56.3±1.1 MPa. Moreover, the tSF/CPC cements showed good injectability, anti-washout property, and decent biocompatibility. The tSF/CPCs could be used to augment defected sheep vertebrae to restore their mechanical strength. CONCLUSION tSF/CPC may be a promising composite bone cement for minimally invasive orthopedic surgeries.
Collapse
Affiliation(s)
- Muli Hu
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Zhiwei He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fengxuan Han
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Feng Ling
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China,
| |
Collapse
|
38
|
Zhai Q, Han F, He Z, Shi C, Zhou P, Zhu C, Guo Q, Zhu X, Yang H, Li B. The "Magnesium Sacrifice" Strategy Enables PMMA Bone Cement Partial Biodegradability and Osseointegration Potential. Int J Mol Sci 2018; 19:E1746. [PMID: 29895809 PMCID: PMC6032233 DOI: 10.3390/ijms19061746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Poly (methyl methacrylate) (PMMA)-based bone cements are the most commonly used injectable orthopedic materials due to their excellent injectability and mechanical properties. However, their poor biocompatibility and excessive stiffness may cause complications such as aseptic implant loosening and stress shielding. In this study, we aimed to develop a new type of partially biodegradable composite bone cement by incorporating magnesium (Mg) microspheres, known as "Mg sacrifices" (MgSs), in the PMMA matrix. Being sensitive to the physiological environment, the MgSs in PMMA could gradually degrade to produce bioactive Mg ions and, meanwhile, result in an interconnected macroporous structure within the cement matrix. The mechanical properties, solidification, and biocompatibility, both in vitro and in vivo, of PMMA⁻Mg bone cement were characterized. Interestingly, the incorporation of Mg microspheres did not markedly affect the mechanical strength of bone cement. However, the maximum temperature upon setting of bone cement decreased. This partially biodegradable composite bone cement showed good biocompatibility in vitro. In the in vivo study, considerable bony ingrowth occurred in the pores upon MgS degradation. Together, the findings from this study indicate that such partially biodegradable PMMA⁻Mg composite may be ideal bone cement for minimally invasive orthopedic surgeries such as vertebroplasty and kyphoplasty.
Collapse
Affiliation(s)
- Qingpan Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Fengxuan Han
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Zhiwei He
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore, Singapore.
| | - Pinghui Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Xuesong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Huilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310000, China.
| |
Collapse
|
39
|
Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling. Med Biol Eng Comput 2018; 56:2137-2150. [DOI: 10.1007/s11517-018-1844-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
|
40
|
Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9:2041731418776819. [PMID: 29899969 PMCID: PMC5990883 DOI: 10.1177/2041731418776819] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research.
Collapse
Affiliation(s)
- Gabriel Fernandez de Grado
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Anne-Marie Musset
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| | - Damien Offner
- INSERM (French National Institute of Health and Medical Research), “Regenerative Nanomedicine” laboratory, http://www.regmed.fr, UMR 1260, Faculté de Médecine, FMTS, F-67085 Strasbourg Cedex
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, F-67000 Strasbourg
- Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67000 Strasbourg
| |
Collapse
|
41
|
Injectable, biomechanically robust, biodegradable and osseointegrative bone cement for percutaneous kyphoplasty and vertebroplasty. INTERNATIONAL ORTHOPAEDICS 2017; 42:125-132. [PMID: 29116357 DOI: 10.1007/s00264-017-3674-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Poly(methyl methacrylate) (PMMA) cement is widely used for percutaneous kyphoplasty and vertebroplasty (PKP and PVP) but possesses formidable shortcomings due to non-degradability. Here, a biodegradable replacement is developed. METHODS Calcium phosphate cement (CPC) was redesigned by incorporating starch and BaSO4 (new cement named as CPB). The biomechanical, biocompatibility, osseointegrative and handling properties of CPB were systematically evaluated in vitro and in vivo by the models of osteoporotic sheep vertebra, rat subcutaneous implantation and rat femoral defect. RESULTS CPB revealed appropriate injectability and setting ability for PKP and PVP. More importantly, its biomechanical strengths measured by in vitro and in vivo models were not less than that of PMMA, while its biodegradability and osseointegrative capacities were significantly enhanced compared to PMMA. CONCLUSIONS CPB is injectable, biomechanically robust, biodegradable and osseointegrative, demonstrating revolutionary potential for the application in PKP and PVP.
Collapse
|
42
|
Wang L, Yang X, Cao W, Shi C, Zhou P, Li Q, Han F, Sun J, Xing X, Li B. Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model. RSC Adv 2017. [DOI: 10.1039/c7ra10203h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Periprosthetic infection represents one of the most devastating complications in orthopedic surgeries.
Collapse
|
43
|
Gao C, Wang Y, Han F, Yuan Z, Li Q, Shi C, Cao W, Zhou P, Xing X, Li B. Antibacterial activity and osseointegration of silver-coated poly(ether ether ketone) prepared using the polydopamine-assisted deposition technique. J Mater Chem B 2017; 5:9326-9336. [DOI: 10.1039/c7tb02436c] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PEEK-PDA-Ag substrates may be a promising orthopaedic implant material due to the outstanding biocompatibility and antibacterial properties.
Collapse
Affiliation(s)
- Changcheng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Yong Wang
- Department of Orthopedic Surgery
- The Affiliated Yixing Hospital of Jiangsu University
- Wuxi
- China
| | - Fengxuan Han
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Zhangqin Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Qiang Li
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Chen Shi
- Department of Materials Science and Engineering
- University of California
- Los Angeles
- USA
| | - Weiwei Cao
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Pinghui Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| | - Xiaodong Xing
- College of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Bin Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Orthopaedic Institute
- Soochow University
- Suzhou
| |
Collapse
|
44
|
Dadkhah M, Pontiroli L, Fiorilli S, Manca A, Tallia F, Tcacencu I, Vitale-Brovarone C. Preparation and characterisation of an innovative injectable calcium sulphate based bone cement for vertebroplasty application. J Mater Chem B 2017; 5:102-115. [DOI: 10.1039/c6tb02139e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spine-Ghost: a novel injectable resorbable cement containing mesoporous bioactive glass and a radiopaque glass-ceramic phase in a calcium sulphate matrix.
Collapse
Affiliation(s)
- Mehran Dadkhah
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - Lucia Pontiroli
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
- Oral Biology
| | - Sonia Fiorilli
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - Antonio Manca
- Radiology Unit
- Istituto di Candiolo – Fondazione del Piemonte per l'Oncologia (FPO)
- IRCCS
- Candiolo (Torino)
- Italy
| | - Francesca Tallia
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
- Department of Materials
| | - Ion Tcacencu
- Department of Dental Medicine
- Karolinska Institutet
- Huddinge
- Sweden
| | | |
Collapse
|
45
|
Torres PMC, Marote A, Cerqueira AR, Calado AJ, Abrantes JCC, Olhero S, da Cruz e Silva OAB, Vieira SI, Ferreira JMF. Injectable MnSr-doped brushite bone cements with improved biological performance. J Mater Chem B 2017; 5:2775-2787. [DOI: 10.1039/c6tb03119f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combining Mn and Sr co-doping β-TCP powder with sucrose addition in the setting liquid enhances injectability, mechanical and biological performance of brushite-forming cements, renders them promising for minimally invasive surgery applications.
Collapse
Affiliation(s)
- P. M. C. Torres
- Department of Materials and Ceramic Engineering
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - A. Marote
- Department of Medical Sciences
- Institute of Biomedicine (iBiMED)
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - A. R. Cerqueira
- Department of Medical Sciences
- Institute of Biomedicine (iBiMED)
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - A. J. Calado
- Department of Biology
- GeoBioTec
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - J. C. C. Abrantes
- Department of Materials and Ceramic Engineering
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - S. Olhero
- Department of Materials and Ceramic Engineering
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - O. A. B. da Cruz e Silva
- Department of Medical Sciences
- Institute of Biomedicine (iBiMED)
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - S. I. Vieira
- Department of Medical Sciences
- Institute of Biomedicine (iBiMED)
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - J. M. F. Ferreira
- Department of Materials and Ceramic Engineering
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
46
|
Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2016; 143:81-87. [DOI: 10.1016/j.colsurfb.2016.03.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
|
47
|
Abstract
Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided.
Collapse
Affiliation(s)
- Chunxia Gao
- Department of Orthopaedic Surgery and Orthopaedic Institute, First Affiliated Hospital, Soochow University, Suzhou, People’s Republic of China
| | - Donglei Wei
- Department of Orthopaedic Surgery and Orthopaedic Institute, First Affiliated Hospital, Soochow University, Suzhou, People’s Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery and Orthopaedic Institute, First Affiliated Hospital, Soochow University, Suzhou, People’s Republic of China
| | - Tao Chen
- Robotics and Microsystems Center, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, People’s Republic of China
| | - Lei Yang
- Department of Orthopaedic Surgery and Orthopaedic Institute, First Affiliated Hospital, Soochow University, Suzhou, People’s Republic of China
- Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|