1
|
Zheng L, Zhang R, Chen X, Luo Y, Du W, Zhu Y, Ruan YC, Xu J, Wang J, Qin L. Chronic kidney disease: a contraindication for using biodegradable magnesium or its alloys as potential orthopedic implants? Biomed Mater 2024; 19:045023. [PMID: 38815612 DOI: 10.1088/1748-605x/ad5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Magnesium (Mg) has gained widespread recognition as a potential revolutionary orthopedic biomaterial. However, whether the biodegradation of the Mg-based orthopedic implants would pose a risk to patients with chronic kidney disease (CKD) remains undetermined as the kidney is a key organ regulating mineral homeostasis. A rat CKD model was established by a 5/6 subtotal nephrectomy approach, followed by intramedullary implantation of three types of pins: stainless steel, high pure Mg with high corrosion resistance, and the Mg-Sr-Zn alloy with a fast degradation rate. The long-term biosafety of the biodegradable Mg or its alloys as orthopedic implants were systematically evaluated. During an experimental period of 12 weeks, the implantation did not result in a substantial rise of Mg ion concentration in serum or major organs such as hearts, livers, spleens, lungs, or kidneys. No pathological changes were observed in organs using various histological techniques. No significantly increased iNOS-positive cells or apoptotic cells in these organs were identified. The biodegradable Mg or its alloys as orthopedic implants did not pose an extra health risk to CKD rats at long-term follow-up, suggesting that these biodegradable orthopedic devices might be suitable for most target populations, including patients with CKD.
Collapse
Affiliation(s)
- Lizhen Zheng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China, People's Republic of China
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ri Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Xin Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiali Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- Hong Kong-Shenzhen Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
2
|
Yao Z, Yuan W, Xu J, Tong W, Mi J, Ho P, Chow DHK, Li Y, Yao H, Li X, Xu S, Guo J, Zhu Q, Bian L, Qin L. Magnesium-Encapsulated Injectable Hydrogel and 3D-Engineered Polycaprolactone Conduit Facilitate Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202102. [PMID: 35652188 PMCID: PMC9313484 DOI: 10.1002/advs.202202102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Indexed: 05/02/2023]
Abstract
Peripheral nerve injury is a challenging orthopedic condition that can be treated by autograft transplantation, a gold standard treatment in the current clinical setting. Nevertheless, limited availability of autografts and potential morbidities in donors hampers its widespread application. Bioactive scaffold-based tissue engineering is a promising strategy to promote nerve regeneration. Additionally, magnesium (Mg) ions enhance nerve regeneration; however, an effectively controlled delivery vehicle is necessary to optimize their in vivo therapeutic effects. Herein, a bisphosphonate-based injectable hydrogel exhibiting sustained Mg2+ delivery for peripheral nerve regeneration is developed. It is observed that Mg2+ promoted neurite outgrowth in a concentration-dependent manner by activating the PI3K/Akt signaling pathway and Sema5b. Moreover, implantation of polycaprolactone (PCL) conduits filled with Mg2+ -releasing hydrogel in 10 mm nerve defects in rats significantly enhanced axon regeneration and remyelination at 12 weeks post-operation compared to the controls (blank conduits or conduits filled with Mg2+ -absent hydrogel). Functional recovery analysis reveals enhanced reinnervation in the animals treated with the Mg2+ -releasing hydrogel compared to that in the control groups. In summary, the Mg2+ -releasing hydrogel combined with the 3D-engineered PCL conduit promotes peripheral nerve regeneration and functional recovery. Thus, a new strategy to facilitate the repair of challenging peripheral nerve injuries is proposed.
Collapse
Affiliation(s)
- Zhi Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Weihao Yuan
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Pak‐Cheong Ho
- Department of Orthopaedics & TraumatologyPrince of Wales HospitalChinese University of Hong KongHong KongSAR999077China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic TraumaFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong Province510080China
| | - Liming Bian
- School of Biomedical Sciences and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong Province510006China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
3
|
Shang Z, Li D, Chen J, Wang M, Zhang B, Wang X, Ma B. The Role of Biodegradable Magnesium and Its Alloys in Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis Based on Animal Studies. Front Bioeng Biotechnol 2021; 9:789498. [PMID: 34869297 PMCID: PMC8636800 DOI: 10.3389/fbioe.2021.789498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
Objective: The actual efficacy of magnesium and its alloy in anterior cruciate ligament reconstruction (ACLR) was systematically evaluated to reduce the risk of translation from animal experiments to the clinic. Methods: Databases of PubMed, Ovid-Embase, Web of Science, CNKI, Wanfang, VIP, and CBM were searched for literature in July 2021. Screening of search results, data extraction, and literature quality evaluation were undertaken independently by two reviewers. Results and discussion: Seven articles were selected for the meta-analysis. The results showed that the mechanical properties of the femoral-tendon graft–tibia complex fixed with magnesium and its alloys were comparable to those fixed with titanium and its alloys, and magnesium and its alloys were superior to titanium and its alloys in promoting new bone formation. In addition, the unique biodegradability made magnesium and its alloys an orthopedic implant with significant therapeutic potential. However, whether the degradation rate of magnesium and its alloy can match the rate of bone-tendon integration, and whether the bioconjugation of bone-tendon after degradation can meet the exercise load still needs to be explored in further detail. Simultaneously, it is necessary for future research to improve and standardize experimental design, result measurement, etc., so as to minimize the risk of transforming animal experimental results into clinical practice.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China.,Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Xu J, Hu P, Zhang X, Chen J, Wang J, Zhang J, Chen Z, Yu MK, Chung YW, Wang Y, Zhang X, Zhang Y, Zheng N, Yao H, Yue J, Chan HC, Qin L, Ruan YC. Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β-catenin signaling. Bioact Mater 2021; 8:95-108. [PMID: 34541389 PMCID: PMC8424424 DOI: 10.1016/j.bioactmat.2021.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Magnesium metal and its alloys are being developed as effective orthopedic implants; however, the mechanisms underlying the actions of magnesium on bones remain unclear. Cystic fibrosis, the most common genetic disease in Caucasians caused by the mutation of CFTR, has shown bone disorder as a key clinical manifestation, which currently lacks effective therapeutic options. Here we report that implantation of magnesium-containing implant stimulates bone formation and improves bone fracture healing in CFTR-mutant mice. Wnt/β-catenin signaling in the bone is enhanced by the magnesium implant, and inhibition of Wnt/β-catenin by iCRT14 blocks the magnesium implant to improve fracture healing in CFTR-mutant mice. We further demonstrate that magnesium ion enters osteocytes, increases intracellular cAMP level and activates ATF4, a key transcription factor known to regulate Wnt/β-catenin signaling. In vivo knockdown of ATF4 abolishes the magnesium implant-activated β-catenin in bones and reverses the improved-fracture healing in CFTR-mutant mice. In addition, oral supplementation of magnesium activates ATF4 and β-catenin as well as enhances bone volume and density in CFTR-mutant mice. Together, these results show that magnesium implantation or supplementation may serve as a potential anabolic therapy for cystic fibrosis-related bone disease. Activation of ATF4-dependent Wnt/β-catenin signaling in osteocytes is identified as a previously undefined mechanism underlying the beneficial effect of magnesium on bone formation. Magnesium implant ameliorates bone defects and improves the impaired bone fracture healing in CFTR-deficient mice. Oral magnesium supplementation improves bone quality in CFTR-deficient mice. Extracellular Mg2+ enters bone cells through Mg2+ channels and transporters. Mg2+ elevates cAMP level to activate ATF4-dependent Wnt/β-catenin signalingin bone cells.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaotian Zhang
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junjiang Chen
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Wang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifeng Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chun Ruan
- Deparment of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
5
|
Becerra LHC, Rodríguez MALH, Arroyo RL, Solís HE, Castro AT. Effect of sterilization on 3-point dynamic response to in vitro bending of an Mg implant. Biomater Res 2021; 25:9. [PMID: 33823939 PMCID: PMC8025350 DOI: 10.1186/s40824-021-00207-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study is to characterize a biomedical magnesium alloy and highlighting the loss of mechanical integrity due to the sterilization method. Ideally, when using these alloys is to delay the onset of degradation so that the implant can support body loads and avoid toxicological effects due to the release of metal ions into the body. Methods Standardized procedures according to ASTM F-1264 and ISO-10993-5 were used, respecting detailed methodological controls to ensure accuracy and reproducibility of the results, this testing methodology is carried out in accordance with the monographs of the Pharmacopoeia for the approval of medical devices and obtaining a health registration. An intramedullary implant (IIM) manufactured in magnesium (Mg) WE43 can support loads of the body in the initial period of bone consolidation without compromising the integrity of the fractured area. A system with these characteristics would improve morbidity and health costs by avoiding secondary surgical interventions. Results As a property, the fatigue resistance of Mg in aggressive environments such as the body environment undergoes progressive degradation, however, the autoclave sterilization method drastically affects fatigue resistance, as demonstrated in tests carried out under in vitro conditions. Coupled with this phenomenon, the relatively poor biocompatibility of Mg WE43 alloys has limited applications where they can be used due to low acceptance rates from agencies such as the FDA. However, Mg alloy with elements such as yttrium and rare earth elements (REEs) have been shown to delay biodegradation depending on the method of sterilization and the physiological solution used. With different sterilization techniques, it may be possible to keep toxicological effects to a minimum while still ensuring a balance between the integrity of fractured bone and implant degradation time. Therefore, the evaluation of fatigue resistance of WE43 specimens sterilized and tested in immersion conditions (enriched Hank’s solution) and according to ASTM F-1264, along with the morphological, crystallinity, and biocompatibility characterization of the WE43 alloy allows for a comprehensive evaluation of the mechanical and biological properties of WE43. Conclusions These results will support decision-making to generate a change in the current perspective of biomaterials utilized in medical devices (MDs), to be considered by manufacturers and health regulatory agencies. An implant manufactured in WE43 alloy can be used as an intramedullary implant, considering keeping elements such as yttrium-REEs below as specified in its designation and with the help of a coating that allows increasing the life of the implant in vivo.
Collapse
Affiliation(s)
- Luis Humberto Campos Becerra
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, ciudad universitaria, San Nicolás de los Garza, NL, Mexico.
| | | | - Raúl Lesso Arroyo
- Departamento de Ingeniería Mecánica., Biomecánica, Instituto Tecnológico de Celaya (ITC), Av. Tecnológico Esq. A. García Cubas S/N Col. Bonfil, Celaya, 38010, Guanajuato, CP, Mexico
| | - Hugo Esquivel Solís
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No.800, Colinas de la normal C.P, 44270, Guadalajara, Jalisco, Mexico
| | - Alejandro Torres Castro
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, ciudad universitaria, San Nicolás de los Garza, NL, Mexico
| |
Collapse
|
6
|
Serum copper levels are associated with bone mineral density and total fracture. J Orthop Translat 2018; 14:34-44. [PMID: 30035031 PMCID: PMC6034109 DOI: 10.1016/j.jot.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] Open
Abstract
Background Both copper deficiency and overexposure have been associated with adverse health effects. Evidence linking copper to bone mineral density (BMD) and total fracture, however, is limited. Methods This nationally representative cross-sectional study enrolled participants from the National Health and Nutrition Examination Survey (2011–2014) in the United States. Using unadjusted and multivariate adjusted logistic regression analyses and a two-piecewise linear regression model with a smoothing function, we evaluated the associations between serum copper levels, bone mineral density and total fracture in 722 participants. Results The study sample (n = 722, mean age: 56.47 ± 11.55 y) represented a population of which 47.2% were men; 43.91% were non-Hispanic white, 18.84% non-Hispanic black and 13.71% Mexican American; 25.9% had total fracture. In the multivariate logistic regression analysis, individuals in the lowest category (<98.5 μg/dL) of serum copper concentration had 0.049 g/cm2 lower total femur BMD and 0.045 g/cm2 lower femoral neck BMD than those in the second concentration category (98.5–114 μg/dL). Individuals in the highest category (≥134 μg/dL) of serum copper concentration had an approximately 4-fold increase in the risk of total fracture than those in the second concentration category. There were no significant associations between per 10 μg/dL increases in serum copper levels and total fracture in multivariate logistic regression analysis after multivariate adjustment (all p > 0.05). However, a differential association between serum copper levels and total fractures between men and women was observed (odds ratio = 1.81, 95% confidence interval 1.08–3.03, p = 0.026 for men and odds ratio = 1.07, 95% confidence interval 0.86–1.32, p = 0.552 for women). Conclusion Moderate serum copper levels are critically important for bone health. Lower serum copper levels are significantly associated with decreased BMD in the total femur and femoral neck. Higher serum copper levels are significantly associated with increased total fracture, especially in men. The Translational Potential of this Article The impact of serum copper concentrations on bone mineral density and total fracture can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Key Words
- Bone mineral density
- Bone mineral density, BMD
- Centers for Disease Control and Prevention, CDC
- Confidence interval, CI
- Diastolic blood pressure, DBP
- Dual-energy x-ray absorptiometry, DXA
- Fracture
- High-density lipoprotein-cholesterol, HDL-C
- Low-density lipoprotein-cholesterol, LDL-C
- National Center for Health Statistics, NCHS
- National Health and Nutrition Examination Survey, NHANES
- Odds ratio
- Serum copper levels
- Standard deviation, SD
- Systolic blood pressure, SBP
- Total cholesterol, TC
- Triglycerides, TG
Collapse
|