1
|
Dai ZQ, Gong XY, Zhang R, Jin MQ, Lu W, Wen W, Chen J, Lu FJ, Yang YF, Wang L, He XJ. Research trends in exercise therapy for the treatment of pain in postmenopausal osteoporosis over the past decade: A bibliometric analysis. World J Orthop 2024; 15:950-964. [DOI: 10.5312/wjo.v15.i10.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is the most common form of primary osteoporosis among women, and the associated pain often drives patients to seek clinical intervention. Numerous studies have highlighted the unique clinical benefits of exercise therapy (ET) in alleviating PMOP-related pain. However, bibliometric analyses examining collaboration, development trends, and research frontiers in the field of ET for PMOP pain remain scarce.
AIM To explore the research trends in ET for pain treatment in PMOP patients over the past decade.
METHODS All scholarly works were meticulously sourced from the Science Citation Index-Expanded within the prominent Web of Science Core Collection. Utilizing the capabilities of CiteSpace 6.2.R5, we conducted a thorough analysis of publications, authors, frequently cited scholars, contributing nations, institutions, journals of significant citation, comprehensive references, and pivotal keywords. Additionally, our examination explored keyword cooccurrences, detailed timelines, and periods of heightened citation activity. This comprehensive search, from 2014 through 2023, was completed within a single day, on October 11, 2023.
RESULTS In total, 2914 articles were ultimately included in the analysis. There was a rapid increase in annual publication output in 2015, followed by stable growth in subsequent years. Boninger, Michael L, is the most prolific author, whereas Ware JE has the most citations. The United States’ global influence is significant, surpassing all other nations. The University of California System and Harvard University are the most influential academic institutions. J Bone Joint Surg Am is the most influential journal in this field. “Spinal cord injury” is the keyword that has garnered the most attention from researchers. The developmental pattern in this field is characterized by interdisciplinary fusion, with different disciplines converging to drive progress.
CONCLUSION The academic development of the field of ET for pain in PMOP has matured and stabilized. Clinical management and rehabilitation strategies, along with the mechanisms underlying the relationship between ET and bone resorption analgesia, continue to be the current and future focal points of research in this field.
Collapse
Affiliation(s)
- Zhao-Qiu Dai
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Xiao-Yan Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Rong Zhang
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Qin Jin
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Wei Lu
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Wen Wen
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Jie Chen
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Fang-Jie Lu
- Changshu Hospital Affiliated with Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Yi-Fan Yang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lei Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Jin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
2
|
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C, Ge RL. Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 2024; 54:68. [PMID: 38940355 PMCID: PMC11232666 DOI: 10.3892/ijmm.2024.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Guocai Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Peiyun Fan
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Wei Luo
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
3
|
Liu L, Guo J, Tong X, Zhang M, Chen X, Huang M, Zhu C, Bennett S, Xu J, Zou J. Mechanical strain regulates osteogenesis via Antxr1/LncRNA H19/Wnt/β-catenin axis. J Cell Physiol 2024; 239:e31214. [PMID: 38358001 DOI: 10.1002/jcp.31214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/β-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/β-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.
Collapse
Affiliation(s)
- Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Jianmin Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Guangzhou, China
| | - Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Qingdao University of Science and Technology, Qingdao, China
| | - Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Zhou RX, Zhang YW, Cao MM, Liu CH, Rui YF, Li YJ. Linking the relation between gut microbiota and glucocorticoid-induced osteoporosis. J Bone Miner Metab 2023; 41:145-162. [PMID: 36912997 PMCID: PMC10010237 DOI: 10.1007/s00774-023-01415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Osteoporosis (OP) is the most prevalent metabolic bone disease, characterized by the low bone mass and microarchitectural deterioration of bone tissue. Glucocorticoid (GC) clinically acts as one of the anti-inflammatory, immune-modulating, and therapeutic drugs, whereas the long-term use of GC may cause rapid bone resorption, followed by prolonged and profound suppression of bone formation, resulting in the GC-induced OP (GIOP). GIOP ranks the first among secondary OP and is a pivotal risk for fracture, as well as high disability rate and mortality, at both societal and personal levels, vital costs. Gut microbiota (GM), known as the "second gene pool" of human body, is highly correlated with maintaining the bone mass and bone quality, and the relation between GM and bone metabolism has gradually become a research hotspot. Herein, combined with recent studies and based on the cross-linking relationship between GM and OP, this review is aimed to discuss the potential mechanisms of GM and its metabolites on the OP, as well as the moderating effects of GC on GM, thereby providing an emerging thought for prevention and treatment of GIOP.
Collapse
Affiliation(s)
- Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan-Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Mu-Min Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Cun-Hao Liu
- School of Architecture, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Zhu WY, Yang WF, Wang L, Lan X, Tao ZY, Guo J, Xu J, Qin L, Su YX. The effect of drug holiday on preventing medication-related osteonecrosis of the jaw in osteoporotic rat model. J Orthop Translat 2023; 39:55-62. [PMID: 36721766 PMCID: PMC9860383 DOI: 10.1016/j.jot.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
Background Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication associated with antiresorptive medications managing osteoporosis, such as bisphosphonates (BPs). To date, there is very limited evidence from prospective, controlled studies to support or refute the controversial prevention regimen that if a discontinuation of BPs before dentoalveolar surgery, so called "drug holiday", is effective in reducing the risk of MRONJ development in patients with osteoporosis. We proposed an experimental animal study, aiming to investigate the prevention of MRONJ following tooth extractions in osteoporotic condition, with the implementation of a BP drug holiday. Methods Twenty rats were subjected to bilateral ovariectomy. After establishing the osteoporotic condition, all rats were exposed to weekly injections of zoledronate acid (ZA) for 8 weeks. After ZA treatment, 10 rats were subjected to dental extraction and defined as control group, and the rest 10 rats assigned to the DH group had a drug holiday of 8 weeks prior to dental extraction. Eight weeks after the dentoalveolar surgery, bone turnover biomarker in serum, occurrence of MRONJ-like lesion and histomorphometric assessment of osteonecrosis in mandible, and bone microarchitecture indices in femur, were examined. Results Eight weeks after dental extraction, the DH group showed a recovered osteoclastic activity, indicated by significantly increased number of osteoclasts in the mandibles and serum level of C-terminal telopeptides of type I collagen, as compared to the control group. No significant differences were observed in the gross-view and histological occurrences of MRONJ-like lesions between the two groups.There was no significant difference in bone microarchitecture in the femur between the control and DH groups before ZA therapy and 8 weeks after dental extraction. Conclusion Our data provided the first experimental evidence in the osteoporotic animal model that the implementation of a BP holiday in prior to dental extractions could partially recover osteoclastic activity, but could not alleviate the development of MRONJ-like lesion or exacerbate the osteoporotic condition in the femur. Longer-term drug holiday, or combination of drug holiday and other prophylaxes to prevent MRONJ in patients with osteoporosis could be worth exploring in future studies, to pave the way for clinical managements. The translational potential of this article This in vivo prospective study reported that a recovery of osteoclastic activity by a BP drug holiday for 8 weeks in osteoporosis rats did not alleviate the development of MRONJ-like lesion followed by dental extractions. It contributes to the understanding of regimens to prevent MRONJ.
Collapse
Affiliation(s)
- Wang-yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China,Department of Dental Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei-fa Yang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xinmiao Lan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhuo-ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China,Corresponding author.
| |
Collapse
|
6
|
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37:46-60. [PMID: 36196151 PMCID: PMC9520092 DOI: 10.1016/j.jot.2022.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. Methods In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. Results Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). Conclusions Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. The translational potential of this article This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
Collapse
|
7
|
Tuan RS, Zhang Y, Chen L, Guo Q, Yung PSH, Jiang Q, Lai Y, Yu J, Luo J, Xia J, Xu C, Lei G, Su J, Luo X, Zou W, Qu J, Song B, Zhao X, Ouyang H, Li G, Ding C, Wan C, Chan BP, Yang L, Xiao G, Shi D, Xu J, Cheung LWH, Bai X, Xie H, Xu R, Li ZA, Chen D, Qin L. Current progress and trends in musculoskeletal research: Highlights of NSFC-CUHK academic symposium on bone and joint degeneration and regeneration. J Orthop Translat 2022; 37:175-184. [PMID: 36605329 PMCID: PMC9791426 DOI: 10.1016/j.jot.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rocky S. Tuan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Lin Chen
- Daping Hospital, The Third Military (Army) Medical University, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Chinese PLA Medical School, China
| | - Patrick SH. Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing Jiang
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Yuxiao Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jiakuo Yu
- Peking University Third Hospital, China
| | - Jian Luo
- School of Medicine, Tongji University, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghua Lei
- Xiangya Hospital Central South University, China
| | - Jiacan Su
- Changhai Hospital, People's Liberation Army Naval Medical University, China
| | | | - Weiguo Zou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Jing Qu
- Institute of Zoology, Chinese Academy of Sciences, China
| | - Bing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changhai Ding
- Zhujiang Hospital of Southern Medical University, Menzies Institute of Medical Research, University of Tasmania, Australia
| | - Chao Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Barbara P. Chan
- Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Air Force Medical University, China
| | - Guozhi Xiao
- Department of Biology, Southern University of Science and Technology, China
| | - Dongquan Shi
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Jiankun Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis WH. Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaochun Bai
- School of Basic Medical Sciences, Southern Medical University, China
| | - Hui Xie
- Xiangya Hospital Central South University, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Zhang YW, Cao MM, Li YJ, Chen XX, Yu Q, Rui YF. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. J Transl Med 2022; 20:490. [PMID: 36303163 DOI: 10.1186/s12967-022-03700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by the decreased bone mass and destruction of bone microstructure, which tends to result in the enhanced bone fragility and related fractures, as well as high disability rate and mortality. Exercise is one of the most common, reliable and cost-effective interventions for the prevention and treatment of OP currently, and numerous studies have revealed the close association between gut microbiota (GM) and bone metabolism recently. Moreover, exercise can alter the structure, composition and abundance of GM, and further influence the body health via GM and its metabolites, and the changes of GM also depend on the choice of exercise modes. Herein, combined with relevant studies and based on the inseparable relationship between exercise intervention-GM-OP, this review is aimed to discuss the moderating effects and potential mechanisms of exercise intervention on GM and bone metabolism, as well as the interaction between them.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Xiang-Xu Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China. .,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China. .,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China. .,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
9
|
A novel image-based machine learning model with superior accuracy and predictability for knee arthroplasty loosening detection and clinical decision making. J Orthop Translat 2022; 36:177-183. [PMID: 36263380 PMCID: PMC9562957 DOI: 10.1016/j.jot.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Loosening is the leading cause of total knee arthroplasty (TKA) revision. This is a heavy burden toward the healthcare system owing to the difficulty in diagnosis and complications occurring from the delay management. Based on automatic analytical model building, machine learning, may potentially help to automatically recognize the risk of loosening based on radiographs alone. The aim of this study was to build an image-based machine-learning model for detecting TKA loosening. Methods Image-based machine-learning model was developed based on ImageNet, Xception model and a TKA patient X-ray image dataset. Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. Class activation maps were also used to interpret the prediction decision made by model. Two senior orthopaedic specialists were invited to assess loosening from X-ray images for 3 attempts in setting up comparison benchmark. Result In the image-based machine learning loosening model, the precision rate and recall rate were 0.92 and 0.96, respectively. While for the accuracy rate, 96.3% for visualization classification was observed. However, the addition of clinical-information-based model, with precision rate of 0.71 and recall rate of 0.20, did not further showed improvement on the accuracy. Moreover, as class activation maps showed corresponding signals over bone-implant interface that is loosened radiographically, this confirms that the current model utilized a similar image recognition pattern as that of inspection by clinical specialists. Conclusion The image-based machine learning model developed demonstrated high accuracy and predictability of knee arthroplasty loosening. And the class activation heatmap matched well with the radiographic features used clinically to detect loosening, which highlighting its potential role in assisting clinicians in their daily practice. However, addition of clinical-information-based machine-learning model did not offer further improvement in detection. As far as we know, this is the first report of pure image-based machine learning model with high detection accuracy. Importantly, this is also the first model to show relevant class activation heatmap corresponding to loosening location. Translational potential The finding in this study indicated image-based machine learning model can detect knee arthroplasty loosening with high accuracy and predictability, which the class activation heatmap can potentially assist surgeons to identify the sites of loosening.
Collapse
|
10
|
Ren B, Ren X, Wang L, Tu C, Zhang W, Liu Z, Qi L, Wan L, Pang K, Tao C, Li Z. A bibliometric research based on hotspots and frontier trends of denosumab. Front Pharmacol 2022; 13:929223. [PMID: 36199692 PMCID: PMC9527327 DOI: 10.3389/fphar.2022.929223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Denosumab is a monoclonal antibody that targets and inhibits the osteoclast activating factor receptor activator for nuclear factor-κB ligand (RANKL). It has been widely used in the treatment of osteoporosis, giant cell tumors of bone, and in the prevention of malignant skeletal-related events (SREs). We collected the research results and related MeSH terms of denosumab from 2011 to 2021 through the Web of Science and PubMed, respectively. The literature was visualized and analyzed by CiteSpace and bibliometric online analysis platforms. The MeSH terms were biclustered using the Bibliographic Co-Occurrence Analysis System (BICOMB) and graph clustering toolkit (gCLUTO). The results show that the number of denosumab-related annual publications had increased from 51 to 215, with the United States leading and Amgen Inc. being the most influential in the past 10 years. Articles published in the Journal of Bone and Mineral Research had the highest total citations. Three scholars from Shinshu University in Matsumoto, Yukio Nakamura, Takako Suzuki, and Hiroyuki Kato, joined the field relatively late but produced the most. The clinical comparison and combination of denosumab with other drugs in the treatment of osteoporosis was the most significant focus of research. Drug withdrawal rebound and management strategies have gained more attention and controversy recently. MeSH analysis revealed eight major categories of research hotspots. Among them, exploring the multiple roles of the RANK-RANKL-OPG system in tumor progression, metastasis, and other diseases is the potential direction of future mechanism research. It is a valuable surgical topic to optimize the perioperative drug administration strategy for internal spinal fixation and orthopedic prosthesis implantation. Taken together, the advantages of denosumab were broad and cost-effective. However, there were still problems such as osteonecrosis of the jaw, severe hypocalcemia, a high recurrence rate of giant cells in the treatment of bone and individual sarcoidosis, and atypical femoral fractures, which need to be adequately solved.
Collapse
Affiliation(s)
- Bolin Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke Pang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Tao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cheng Tao, ; Zhihong Li,
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cheng Tao, ; Zhihong Li,
| |
Collapse
|
11
|
Zong Z, Xu L, Zhang N, Cheung WH, Li G, Lin S. Editorial: Recent trends in pharmacological treatment of musculoskeletal disorders. Front Pharmacol 2022; 13:908977. [PMID: 36120356 PMCID: PMC9479490 DOI: 10.3389/fphar.2022.908977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhixian Zong
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- *Correspondence: Sien Lin,
| |
Collapse
|
12
|
Choo YW, Mohd Tahir NA, Mohamed Said MS, Li SC, Makmor Bakry M. Cost-effectiveness of Denosumab for the Treatment of Postmenopausal Osteoporosis in Malaysia. Osteoporos Int 2022; 33:1909-1923. [PMID: 35641572 DOI: 10.1007/s00198-022-06444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/23/2022] [Indexed: 12/09/2022]
Abstract
UNLABELLED From the perspective of Malaysian health care providers, denosumab was cost-effective in the treatment of postmenopausal osteoporosis, with an optimal outcome starting at age 60 years. Our results provide important insights into the value for money of anti-osteoporotic agents that can serve as a reference for other countries with comparable epidemiological data. INTRODUCTION The study aimed to compare the cost-effectiveness of denosumab with alendronate and no treatment in the management of postmenopausal osteoporosis among the Malaysian population. METHODS A well-validated Markov model was used to estimate the cost-effectiveness of denosumab in a hypothetical cohort of postmenopausal osteoporotic women between 50 and 80 years old who had no history of fractures. A 10-year time horizon from the perspective of Malaysian health care providers was used in this analysis. The model parameters, including transition probabilities and costs, were based on Malaysian sources. Treatment efficacy data were obtained from a network meta-analysis. The study outcomes were presented as incremental cost per quality-adjusted life-year (QALY) gained. Sensitivity analyses were performed to ensure the robustness of the results. A cost-effectiveness threshold was set at MYR 21,438 (USD 5175) per QALY. RESULTS Denosumab was found to be a cost-effective option for postmenopausal osteoporotic women aged 60 and older. The incremental cost-effectiveness ratios (ICERs) for denosumab versus alendronate ranged from MYR 16,955 (USD 4093) per QALY at age 60 to MYR 4380 (USD 1057) per QALY at age 80. The cost-effectiveness of denosumab improved monotonically with increasing age. Denosumab was 72.8-92.7% likely to be cost-effective at the cost-effectiveness threshold. Sensitivity analyses demonstrated that the results were robust across all parameter variations, with the annual cost of denosumab being the most sensitive. CONCLUSIONS From the perspective of the Malaysian health care provider, denosumab appears to be a cost-effective treatment choice for postmenopausal osteoporotic women over 60 years of age.
Collapse
Affiliation(s)
- Y W Choo
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
- Pharmacy Department, Kuala Lipis Hospital, Ministry of Health Malaysia, 27200, Kuala Lipis , Pahang, Malaysia
| | - N A Mohd Tahir
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - M S Mohamed Said
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Cheras, Malaysia
| | - S C Li
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - M Makmor Bakry
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Abstract
This observational study assessed the impact on the fracture incidence of osteoporosis medications in postmenopausal women in Germany. Continued treatment with osteoporosis medications was associated with reductions of fracture rates in a real-world setting. PURPOSE The efficacy of osteoporosis medications has been demonstrated in clinical trials, but a lack of evidence exists of their real-world effectiveness. This real-world study assessed the treatment patterns and impact on the fracture incidence of osteoporosis medications in postmenopausal women in Germany. METHODS This cohort study used data from the WIG2 benchmark database, a German anonymised healthcare claims database. All women ≥ 50 years of age with ≥ 1 prescription for osteoporosis medication between 1 January 2013 and 31 December 2017 were included. The primary outcome was treatment effectiveness, evaluated as the change in fracture incidence after initiating treatment. Fracture types included all fractures, clinical vertebral, hip and wrist/forearm. Fracture incidence was assessed during the early-treatment period (0-3 months) and the on-treatment period (4-12, 13-24, 25-36 and 37-48 months). RESULTS Baseline covariates and treatment patterns were determined for 41,861 patients. The median duration of therapy was longer with denosumab (587 days) than with intravenous ibandronate (451 days), intravenous zoledronate (389 days) or oral bisphosphonates (258 days). The baseline incidence rate of all fractures was higher in patients receiving denosumab than in those receiving other treatments (87.6, 78.2, 56.6 and 66.0 per 1000 person-years for denosumab, oral bisphosphonates, intravenous ibandronate and intravenous zoledronate, respectively). Rates of all fractures declined with continued denosumab (by 38%, 50%, 56% and 67% at 12, 24, 36 and 48 months, respectively) and oral bisphosphonates (by 39%, 44%, 49% and 42%, respectively) treatment. CONCLUSION Continued treatment with osteoporosis medications was associated with reductions of fracture rates in a real-world setting.
Collapse
|
14
|
Sun S, Xiu C, Chai L, Chen X, Zhang L, Liu Q, Chen J, Zhou H. HDAC inhibitor quisinostat prevents estrogen deficiency-induced bone loss by suppressing bone resorption and promoting bone formation in mice. Eur J Pharmacol 2022; 927:175073. [PMID: 35636521 DOI: 10.1016/j.ejphar.2022.175073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic skeletal disorder characterized by reduced bone mass and impaired bone microarchitecture resulting in increased bone fragility and fracture risk. PMOP is primarily caused by excessive osteoclastogenesis induced by estrogen deficiency. Quisinostat (Qst) is a potent hydroxamate-based second-generation inhibitor of histone deacetylases (HDACs) that can inhibit osteoclast differentiation in vitro, and protect mice from titanium particle-induced osteolysis in vivo. However, whether Qst has therapeutic potential against PMOP remains unclear. In the present study, we evaluated the therapeutic efficacy of Qst on PMOP, using a murine model of ovariectomy (OVX)-induced osteoporosis. We examined the body weight, femur length, and histology of major organs, and showed that Qst did not cause obvious toxicity in mice. Micro-computed tomography and histological analyses revealed that Qst treatment prevented OVX-induced trabecular bone loss both in femurs and vertebrae. Moreover, ELISA showed that Qst decreased the serum levels of the osteoclastic bone resorption marker CTX-1, whereas increased the levels of the osteoblastic bone formation marker Osteocalcin in OVX mice. Consistent with the CTX-1 results, TRAP staining showed that Qst suppressed OVX-induced osteoclastogenesis. Mechanistically, we showed that Qst suppressed RANKL-induced osteoclast differentiation in part by inhibiting p65 nuclear translocation. Collectively, our results demonstrated that Qst can ameliorate estrogen deficiency-induced osteoporosis by inhibiting bone resorption and promoting bone formation in vivo. In summary, our study provided the first preclinical evidence to support Qst as a potential therapeutic agent for PMOP prevention and treatment.
Collapse
Affiliation(s)
- Shengxuan Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chunmei Xiu
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Langhui Chai
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xinyu Chen
- Suzhou High School of Jiangsu Province, Suzhou, Jiangsu, 215002, China
| | - Lei Zhang
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Qingbai Liu
- Department of Orthopaedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Jianquan Chen
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China.
| | - Haibin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
15
|
Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L, Rui YF. The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr 2022; 63:7510-7528. [PMID: 35234534 DOI: 10.1080/10408398.2022.2047005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis (OP) is a systemic disease characterized by decreased bone mass and degeneration of bone microstructure. In recent years, more and more researches have focused on the close relationship between gut microbiota (GM) and the occurrence and progression of OP, and the regulation of probiotics and prebiotics on bone metabolism has gradually become a research hotspot. Based on the influence of brain-gut-bone axis on bone metabolism, this review expounds the potential mechanisms of probiotics and prebiotics on OP from next perspectives: regulation of intestinal metabolites, regulation of intestinal epithelial barrier function, involvement of neuromodulation, involvement of immune regulation and involvement of endocrine regulation, so as to provide a novel and promising idea for the prevention and treatment of OP in the future.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Li-Yong Bai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
16
|
Chen X, Hu Y, Geng Z, Su J. The "Three in One" Bone Repair Strategy for Osteoporotic Fractures. Front Endocrinol (Lausanne) 2022; 13:910602. [PMID: 35757437 PMCID: PMC9218483 DOI: 10.3389/fendo.2022.910602] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
In aging society, osteoporotic fractures have become one major social problem threatening the health of the elderly population in China. Compared with conventional fractures, low bone mass, bone defect and retarded healing issues of osteoporotic fractures lead to great difficulties in treatment and rehabilitation. Addressing major concerns in clinical settings, we proposed the "three in one" bone repair strategy focusing on anti-osteoporosis therapies, appropriate bone grafting and fracture healing accelerating. We summarize misconceptions and repair strategies for osteoporotic fracture management, expecting improvement of prognosis and clinical outcomes for osteoporotic fractures, to further improve therapeutic effect and living quality of patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su,
| |
Collapse
|
17
|
Liang G, Zhao J, Dou Y, Yang Y, Zhao D, Zhou Z, Zhang R, Yang W, Zeng L. Mechanism and Experimental Verification of Luteolin for the Treatment of Osteoporosis Based on Network Pharmacology. Front Endocrinol (Lausanne) 2022; 13:866641. [PMID: 35355555 PMCID: PMC8959132 DOI: 10.3389/fendo.2022.866641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To explore the molecular mechanism of luteolin in the treatment of osteoporosis (OP) by network pharmacological prediction and experimentation. METHODS The target proteins of luteolin were obtained with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). OP-related proteins were extracted from the Comparative Toxicogenomics Database (CTD) and GeneCards and DisGeNET databases. We imported the common protein targets of luteolin and OP into the STRING database to obtain the relationships between the targets. The common target proteins of luteolin and OP were assessed by KEGG and GO enrichment analyses with the DAVID database. Animal experiments were conducted to verify the effect of luteolin on bone mineral density in ovariectomised (OVX) rats. Finally, the effects of luteolin on key signalling pathways were verified by cell experiments in vitro. RESULTS Forty-four targets of luteolin involved in the treatment of OP, including key target proteins such as TP53, AKT1, HSP90AA1, JUN, RELA, CASP3, and MAPK1, were screened. KEGG enrichment analysis found that luteolin inhibits OP by regulating the PI3K-Akt, TNF, oestrogen and p53 signalling pathways. The results of animal experiments showed that bone mass in the low-dose luteolin group (Luteolin-L group, 10 mg/kg), high-dose luteolin group (Luteolin-H group, 50 mg/kg) and positive drug group was significantly higher than that in the OVX group (P<0.05). Western blot (WB) analysis showed that the protein expression levels of Collagen I, Osteopontin and RUNX2 in bone marrow mesenchymal stem cells (BMSCs) cultured with 0.5, 1 and 5 μM luteolin for 48 h were significantly higher than those in the dimethyl sulfoxide (DMSO) group (P<0.05). In vitro cell experiments showed that the p-PI3K/PI3K and p-Akt/Akt expression ratios in BMSCs cultured with 0.5, 1 and 5 μM luteolin for 48 h were also significantly higher than those in the DMSO group (P<0.05). CONCLUSIONS Luteolin has multitarget and multichannel effects in the treatment of OP. Luteolin could reduce bone loss in OVX rats, which may be due to its ability to promote the osteogenic differentiation of BMSCs by regulating the activity of the PI3K-Akt signalling pathway.
Collapse
Affiliation(s)
- Guihong Liang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlong Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Yang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanpeng Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Yang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Weiyi Yang, ; Lingfeng Zeng,
| | - Lingfeng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Weiyi Yang, ; Lingfeng Zeng,
| |
Collapse
|
18
|
Tao ZS, Li TL, Xu HG, Yang M. Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:4. [PMID: 34940936 PMCID: PMC8702411 DOI: 10.1007/s10856-021-06627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 05/23/2023]
Abstract
The purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing, histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration of blood vessel and bone formation.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
19
|
Yang Z, Feng L, Wang H, Li Y, Lo JHT, Zhang X, Lu X, Wang Y, Lin S, Tortorella MD, Li G. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021; 13:4455. [PMID: 34960006 PMCID: PMC8704418 DOI: 10.3390/nu13124455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023] Open
Abstract
As one of the leading causes of bone fracture in postmenopausal women and in older men, osteoporosis worldwide is attracting more attention in recent decades. Osteoporosis is a common disease mainly resulting from an imbalance of bone formation and bone resorption. Pharmaceutically active compounds that both activate osteogenesis, while repressing osteoclastogenesis hold the potential of being therapeutic medications for osteoporosis treatment. In the present study, sesamin, a bioactive ingredient derived from the seed of Sesamum Indicum, was screened out from a bioactive compound library and shown to exhibit dual-regulating functions on these two processes. Sesamin was demonstrated to promote osteogenesis by upregulating Wnt/β-catenin, while repressing osteoclastogenesis via downregulating NF-κB signaling . Furthermore, DANCR was found to be the key regulator in sesamin-mediated bone formation and resorption . In an ovariectomy (OVX)-induced osteoporotic mouse model, sesamin could rescue OVX-induced bone loss and impairment. The increased serum level of DANCR caused by OVX was also downregulated upon sesamin treatment. In conclusion, our results demonstrate that sesamin plays a dual-functional role in both osteogenesis activation and osteoclastogenesis de-activation in a DANCR-dependent manner, suggesting that it may be a possible medication candidate for osteoporotic patients with elevated DNACR expression levels.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Haixing Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Jessica Hiu Tung Lo
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| |
Collapse
|
20
|
Yu H, Li Y, Tang J, Lu X, Hu W, Cheng L. Long non-coding RNA RP11-84C13.1 promotes osteogenic differentiation of bone mesenchymal stem cells and alleviates osteoporosis progression via the miR-23b-3p/RUNX2 axis. Exp Ther Med 2021; 22:1340. [PMID: 34630694 PMCID: PMC8495569 DOI: 10.3892/etm.2021.10775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study was to determine the role of RP11-84C13.1 in osteoporosis (OP) and its molecular mechanism. First, clinical samples were collected from OP patients and normal control patients. Human bone marrow stromal cells (hBMSCs) were extracted from femoral head tissues. Runt-related transcription factor 2 (RUNX2) and RP11-84C13.1 serum levels were assessed by reverse transcription-quantitative (RT-q)PCR. Following transfection of pcDNA-RP11-84C13.1, si-RP11-84C13.1, microRNA (miRNA)-23b-3p mimic and miRNA-23b-3p inhibitor, the expression levels of RUNX2 and RP11-84C13.1 were determined by RT-qPCR. In addition, the osteogenic ability of hBMSCs was assessed by Alizarin Red staining. The binding of RP11-84C13.1 to miRNA-23b-3p and the binding of miRNA-23b-3p to RUNX2 was confirmed by dual-luciferase reporter gene assay. Long non-coding RNA (lncRNA) RP11-84C13.1 was significantly downregulated in the serum of OP patients. The osteogenic differentiation-related genes RUNX2 and RP11-84C13.1 were markedly upregulated in a time-dependent manner, while the miRNA-23b-3p level gradually decreased in hBMSCs with the prolongation of osteogenesis. RP11-84C13.1 knockdown inhibited the osteogenic differentiation of hBMSCs. Furthermore, RP11-84C13.1 regulated RUNX2 expression by targeting miRNA-23b-3p. Overexpression of miRNA-23b-3p partially reversed the promoting effect of RP11-84C13.1 on the osteogenesis of hBMSCs. In conclusion, lncRNA RP11-84C13.1 upregulated RUNX2 by absorbing miRNA-23b-3p, and thus induced hBMSC osteogenesis to alleviate osteoporosis.
Collapse
Affiliation(s)
- Huaixi Yu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Yunyun Li
- Department of Information Statistics Center, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Jinshan Tang
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Xiaoqing Lu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Wen Hu
- Department of Endocrinology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Liang Cheng
- Department of Endocrinology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| |
Collapse
|
21
|
Ishizu H, Arita K, Terkawi MA, Shimizu T, Iwasaki N. Risks vs. benefits of switching therapy in patients with postmenopausal osteoporosis. Expert Rev Endocrinol Metab 2021; 16:217-228. [PMID: 34310233 DOI: 10.1080/17446651.2021.1956902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Introduction: Osteoporosis is characterized by the fragility of bones, leading to fractures and, consequently, the deterioration of functional capacity and quality of life. Postmenopausal women, in particular, are prone to osteoporosis and often require anti-osteoporosis treatment. In the last few decades, various anti-osteoporosis drugs have been approved for clinical use. In an aging society, osteoporosis cannot be treated using a single agent; therefore, switching therapy is an important treatment strategy.Areas covered: This review covers switching therapy in patients with postmenopausal osteoporosis. It's extremely important to understand the characteristics of each drug including; limitations on the duration of use, side effects due to long-term use (such as atypical femur fracture and osteonecrosis of the jaw) or discontinuation (such as rebound phenomenon), compliance, and ability to prevent fractures. We review and summarize the risks and benefits of switching therapy.Expert opinion: When switching therapy, the order of drug administration is important. Routine monitoring should be continued after switching treatments. We recommend first using osteoanabolic agents in postmenopausal women with severe osteoporosis. In addition, identifying predictors of the efficacy and side effects of treatment may help prevent the inappropriate use of drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hotaka Ishizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kosuke Arita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
22
|
Tao ZS, Zhou WS, Xu HG, Yang M. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother 2020; 132:110911. [PMID: 33125972 DOI: 10.1016/j.biopha.2020.110911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose was to observe whether local administration Strontium (Sr) and Aspirin (Asp) can enhance the efficacy of β-Tricalcium phosphate(β-TCP) in the treatment of osteoporotic bone defect. The MC3T3-E1 cells were co-cultured with β-TCP, Sr/β-TCP, Asp-Sr/β-TCP scaffold and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT, Alizarin Red staining(ARS) and Western blotting(WB). Then this scaffolds were implanted into the femoral epiphysis bone defect model of ovariectomized(OVX) rats for 8 weeks. X-ray, Micro-CT, histology and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. MTT, ARS results show that the cell mineralization and viability of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. Protein expression show that the osteogenic protein expression such as ALP、OP、RUNX-2、OC and COL-1 of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. X-ray images, Micro-CT and Histological analysis evaluation show that, group Asp-Sr/β-TCP presented the strongest effect on bone regeneration and bone mineralization, when compared with β-TCP group and Sr/β-TCP group. RT-qPCR analysis show that Asp-Sr/β-TCP, β-TCP group and Sr/β-TCP group showed increased BMP2, Smad1, OPG than the OVX group(p < 0.05), while Asp-Sr/β-TCP exhibited decreased TNF-α、IFN-γ and RANKL than the OVX group(p < 0.05). Our current study demonstrated that Asp-Sr/ β-TCP is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local inflammation and through BMP-2/Smad1 and OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, the Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu, 241000 Anhui, People's Republic of China.
| | - Hong-Guang Xu
- Department of Spinal orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| |
Collapse
|
23
|
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong
| | - Ling Qin
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong
| |
Collapse
|