1
|
Zheng L, Zhang R, Chen X, Luo Y, Du W, Zhu Y, Ruan YC, Xu J, Wang J, Qin L. Chronic kidney disease: a contraindication for using biodegradable magnesium or its alloys as potential orthopedic implants? Biomed Mater 2024; 19:045023. [PMID: 38815612 DOI: 10.1088/1748-605x/ad5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Magnesium (Mg) has gained widespread recognition as a potential revolutionary orthopedic biomaterial. However, whether the biodegradation of the Mg-based orthopedic implants would pose a risk to patients with chronic kidney disease (CKD) remains undetermined as the kidney is a key organ regulating mineral homeostasis. A rat CKD model was established by a 5/6 subtotal nephrectomy approach, followed by intramedullary implantation of three types of pins: stainless steel, high pure Mg with high corrosion resistance, and the Mg-Sr-Zn alloy with a fast degradation rate. The long-term biosafety of the biodegradable Mg or its alloys as orthopedic implants were systematically evaluated. During an experimental period of 12 weeks, the implantation did not result in a substantial rise of Mg ion concentration in serum or major organs such as hearts, livers, spleens, lungs, or kidneys. No pathological changes were observed in organs using various histological techniques. No significantly increased iNOS-positive cells or apoptotic cells in these organs were identified. The biodegradable Mg or its alloys as orthopedic implants did not pose an extra health risk to CKD rats at long-term follow-up, suggesting that these biodegradable orthopedic devices might be suitable for most target populations, including patients with CKD.
Collapse
Affiliation(s)
- Lizhen Zheng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China, People's Republic of China
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ri Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Xin Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiali Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- Hong Kong-Shenzhen Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
2
|
Antoniac I, Manescu (Paltanea) V, Antoniac A, Paltanea G. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering. Regen Biomater 2023; 10:rbad095. [PMID: 38020233 PMCID: PMC10664085 DOI: 10.1093/rb/rbad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included in vitro and in vivo tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of in vivo or in vitro studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
3
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
4
|
Qian J, Qin H, Zeng P, Hou J, Mo X, Shen G, Zeng H, Zhang W, Chen Y, Wan G. Metal-organic Zn-zoledronic acid and 1-hydroxyethylidene-1,1-diphosphonic acid nanostick-mediated zinc phosphate hybrid coating on biodegradable Zn for osteoporotic fracture healing implants. Acta Biomater 2023; 166:685-704. [PMID: 37196904 DOI: 10.1016/j.actbio.2023.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Zn and its alloys are increasingly under consideration for biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for osteoporotic bone fracture healing, due to their uneven degradation mode, burst release of zinc ions, and insufficient osteo-promotion and osteo-resorption regulating properties. In this study, a type of Zn2+ coordinated zoledronic acid (ZA) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) metal-organic hybrid nanostick was synthesized, which was further mixed into zinc phosphate (ZnP) solution to mediate the deposition and growth of ZnP to form a well-integrated micro-patterned metal-organic/inorganic hybrid coating on Zn. The coating protected noticeably the Zn substrate from corrosion, in particular reducing its localized occurrence as well as suppressing its Zn2+ release. Moreover, the modified Zn was osteo-compatible and osteo-promotive and, more important, performed osteogenesis in vitro and in vivo of well-balanced pro-osteoblast and anti-osteoclast responses. Such favorable functionalities are related to the nature of its bioactive components, especially the bio-functional ZA and the Zn ions it contains, as well as its unique micro- and nano-scale structure. This strategy provides not only a new avenue for surface modification of biodegradable metals but also sheds light on advanced biomaterials for osteoporotic fracture and other applications. STATEMENT OF SIGNIFICANCE: Developing appropriate biodegradable metallic materials is of clinical relevance for osteoporosis fracture healing, whereas current strategies are short of good balance between the bone formation and resorption. Here, we designed a micropatterned metal-organic nanostick mediated zinc phosphate hybrid coating modified Zn biodegradable metal to fulfill such a balanced osteogenicity. The in vitro assays verified the coated Zn demonstrated outstanding pro-osteoblasts and anti-osteoclasts properties and the coated intramedullary nail promoted fracture healing well in an osteoporotic femur fracture rat model. Our strategy may offer not only a new avenue for surface modification of biodegradable metals but also shed light on better understanding of new advanced biomaterials for orthopedic application among others.
Collapse
Affiliation(s)
- Junyu Qian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peijie Zeng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiaming Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoshan Mo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gang Shen
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wentai Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Dong J, Zhong J, Hou R, Hu X, Chen Y, Weng H, Zhang Z, Liu B, Yang S, Peng Z. Polymer bilayer-Micro arc oxidation surface coating on pure magnesium for bone implantation. J Orthop Translat 2023; 40:27-36. [PMID: 37274179 PMCID: PMC10232471 DOI: 10.1016/j.jot.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background Pure magnesium-based ortho-implants have a number of advantages. However, vital parameters like degradation rate and biocompatibility still call for significant improvement. Methods In this study, poly (1,3-trimethylene carbonate) (PTMC) and polydopamine (PDA) bilayer and micro arc oxidation composite coatings were prepared successively on magnesium surface by immersion method and microarc oxidation. Its corrosion resistance and biocompatibility were evaluated by in vitro corrosion tests, cellular compatibility experiments, and in vivo animal experiments. Results In vitro experiments demonstrated that the composite coating provides excellent corrosion protection and biocompatibility. Animal studies demonstrated that the composite coating slowed the degradation of the implant and was not toxic to animal viscera. Conclusion In conclusion, the inorganic-organic composite coating proposed in this study provided good corrosion resistance and enhanced biocompatibility for pure magnesium implants. The translational potential of this article The translational potential of this article is to develop an anti-corrosion composite coating on a pure magnesium surface and to verify the viability of its use in animal models. It is hoped to open up a new approach to the design of new degradable orthopedic magnesium-based implants.
Collapse
Affiliation(s)
- Jieyang Dong
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Zhong
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Ruixia Hou
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiaodong Hu
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yujiong Chen
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hangbin Weng
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Zhewei Zhang
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Botao Liu
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Zhaoxiang Peng
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| |
Collapse
|
6
|
Sun T, Huang J, Zhang W, Zheng X, Wang H, Liu J, Leng H, Yuan W, Song C. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater 2023; 21:44-56. [PMID: 36017072 PMCID: PMC9395756 DOI: 10.1016/j.bioactmat.2022.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections (IAIs) caused by biofilm formation are the most devastating complications of orthopedic surgery. Statins have been commonly and safely used drugs for hypercholesterolemia for many years. Here, we report that simvastatin-hydroxyapatite-coated titanium alloy prevents biofilm-associated infections. The antibacterial properties of simvastatin against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro was confirmed by crystal violet staining and live-dead bacterial staining. We developed a simvastatin-and hydroxyapatite (Sim-HA)-coated titanium alloy via electrochemical deposition. Sim-HA coatings inhibited Staphylococcus aureus biofilm formation and improved the biocompatibility of the titanium alloy. Sim-HA coatings effectively prevented Staphylococcus aureus IAI in rat femurs, as confirmed by radiological assessment and histological examination. The antibacterial effects of the Sim-HA coatings were attributed to their inhibitory effects on biofilm formation, as verified by scanning electron microscopic observations and bacterial spread plate analysis. In addition, the Sim-HA coatings enhanced osteogenesis and osteointegration, as verified by micro-CT, histological evaluation, and biomechanical pull-out tests. In summary, Sim-HA coatings are promising implant materials for protection against biofilm-associated infections. Simvastatin-hydroxyapatite coatings were prepared on Ti6Al4V by electrochemical deposition process. The Simvastatin-hydroxyapatite coatings inhibited S. aureus biofilm formation and improved biocompatibility in vitro. The coatings exhibited antibacterial effects and improved bone formation in a rat femur IAI model. Simvastatin coatings are promising for application in orthopedic implants.
Collapse
|
7
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
8
|
Shan Z, Xie X, Wu X, Zhuang S, Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J Orthop Translat 2022; 36:184-193. [PMID: 36263386 PMCID: PMC9552026 DOI: 10.1016/j.jot.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background Use of degradable magnesium (Mg)-based metal implants in orthopaedic surgeries can avoid drawbacks associated with subsequent removal of the non-degradable metallic implants, reducing cost and trauma of patients. Although Mg has been applied in the clinic for orthopaedic treatment, the use of Mg-based metal implants is largely in the research phase. But its application is potentially beneficial in this context as it has been shown that Mg can promote osteogenesis and inhibit osteoclast activity. Methods A systematic literature search about “degradable magnesium (Mg)-based metal implants” was performed in PubMed and Web of Science. Meanwhile, relevant findings have been reviewed and quoted. Results In this review, we summarize the latest developments in Mg-based metal implants and their role in bone regeneration. We also review the various molecular mechanisms by which Mg ions regulate bone metabolic processes, including osteogenesis, osteoclast activity, angiogenesis, immunity, and neurology. Finally, we discuss the remaining research challenges and opportunities for Mg-based implants and their applications. Conclusion Currently, establishment of the in vitro and in vivo biological evaluation systems and phenotypic modification improvement of Mg-based implants are still needed. Clarifying the functions of Mg-based metal implants in promoting bone metabolism is beneficial for their clinical application. The Translational potential of this article All current reviews on Mg-based implants are mainly concerned with the improvement of Mg alloy properties or the progress of applications. However, there are few reviews that provides a systematic narrative on the effect of Mg on bone metabolism. This review summarized the latest developments in Mg-based metal implants and various molecular mechanisms of Mg ions regulating bone metabolism, which is beneficial to further promote the translation of Mg based implants in the clinic and is able to provide a strong basis for the clinical application of Mg based implants.
Collapse
Affiliation(s)
- Zhengming Shan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinhui Xie
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xiaotao Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Suyang Zhuang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| | - Cong Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
9
|
Abdulahy SB, Esmaeili Bidhendi M, Vaezi MR, Moosazadeh Moghaddam M. Osteogenesis Improvement of Gelatin-Based Nanocomposite Scaffold by Loading Zoledronic Acid. Front Bioeng Biotechnol 2022; 10:890583. [PMID: 35547164 PMCID: PMC9081530 DOI: 10.3389/fbioe.2022.890583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Bisphosphonates (BPs) such as Zoledronic acid (ZA) are a subset of synthetic small molecules, which are now marketed as the main drugs to stimulate the growth and differentiation of osteoblast cells, thereby increasing bone formation as well as preventing bone loss. Also, Halloysite Nanotubes (HNTs)-polymer composites have attracted a lot of attention due to their high surface-to-volume ratio, low density, and high hydrophilicity, and are easily dispersed in hydrophilic biopolymers. In addition, their ability to carry enough amounts of drugs and the ability to control release has been demonstrated. Based on studies, the Gelatin-based scaffold with Halloysite nanotube (HNT) has the capacity as a drug carrier and Zoledronic acid (ZA) sustains release. Previous studies show that using ZA intravenously has some severe side effects and limitations. But by attention to the advantages of its osteogenesis, the current study has been done in order to reduce the side effects of local delivery of it. The 3-dimensional scaffolds were prepared by the Freeze-drying method. Characterization methods such as FE-SEM, FTIR, XRD, and release behavior of the scaffold has been performed to evaluate the features of the scaffolds. In fact, as-prepared Gel-HNT/ZA release 49% ZA in Phosphate Buffered Saline (PBS) within 21 days. The mechanical properties have been increased after adding HNTs and ZA from 10.27 to 26.18 MPa. Also, the water absorption has been increased after adding HNTs and ZA from 1.67 to 5.02 (g/g). Seeded human Adipose stem cells (hASCs) on the prepared scaffolds showed that the ZA effectively elevated the proliferation of the hASCs and also the MTT results proved the non-toxicity of all prepared scaffolds by high cell viability (˃80%). The osteogenic differentiation has been accelerated as displayed by ALP and Ca assay. The results propose that the HNTs-loaded Gelatin scaffold could control the releasing of ZA and its localized delivery at the defect site, simultaneously promoting the mechanical and osteogenesis ability of gelatin-based scaffolds.
Collapse
Affiliation(s)
- Sayed Behnam Abdulahy
- Biomaterial and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Faculty of New Science and Technology, University of Tehran (UT), Tehran, Iran
| | | | - Mohammad Reza Vaezi
- Department of Nanotechnology and Advanced Material, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Mehrdad Moosazadeh Moghaddam, ,
| |
Collapse
|
10
|
Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioact Mater 2022; 18:354-367. [PMID: 35415306 PMCID: PMC8965913 DOI: 10.1016/j.bioactmat.2022.02.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The improved corrosion resistance, osteogenic activity, and antibacterial ability are the key factors for promoting the large-scale clinical application of magnesium (Mg)-based implants. In the present study, a novel nanocomposite coating composed of inner magnesium hydroxide, middle graphene oxide, and outer hydroxyapatite (Mg(OH)2/GO/HA) is constructed on the surface of Mg-0.8Ca–5Zn-1.5Ag by a combined strategy of hydrothermal treatment, electrophoretic deposition, and electrochemical deposition. The results of material characterization and electrochemical corrosion test showed that all the three coatings have high bonding strength, hydrophilicity and corrosion resistance. In vitro studies show that Mg(OH)2 indeed improves the antibacterial activity of the substrate. The next GO and GO/HA coating procedures both promote the osteogenic differentiation of MC3T3-E1 cells and show no harm to the antibacterial activity of Mg(OH)2 coating, but the latter exhibits the best promoting effect. In vivo studies demonstrate that the Mg alloy with the composite coating not only ameliorates osteolysis induced by bacterial invasion but also promotes bone regeneration under both normal and infected conditions. The current study provides a promising surface modification strategy for developing multifunctional Mg-based implants with good corrosion resistance, antibacterial ability and osteogenic activity to enlarge their biomedical applications. A Mg(OH)2/GO/HA composite coating with high bonding strength was constructed on the surface of Mg–Ca–Zn–Ag alloy. The outer HA layer with excellent osteogenic activity recovered the high corrosion resistance of inner Mg(OH)2 layer. The Mg(OH)2/GO/HA composite coating promoted new bone regeneration significantly under both normal and infected conditions.
Collapse
|
11
|
Ye Li, Xu J, Mi J, He X, Pan Q, Zheng L, Zu H, Chen Z, Dai B, Li X, Pang Q, Zou L, Zhou L, Huang L, Tong W, Li G, Qin L. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials 2021; 275:120984. [PMID: 34186235 DOI: 10.1016/j.biomaterials.2021.120984] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023]
Abstract
Critical size bone defects are frequently caused by accidental trauma, oncologic surgery, and infection. Distraction osteogenesis (DO) is a useful technique to promote the repair of critical size bone defects. However, DO is usually a lengthy treatment, therefore accompanied with increased risks of complications such as infections and delayed union. Here, we demonstrated that magnesium (Mg) nail implantation into the marrow cavity degraded gradually accompanied with about 4-fold increase of new bone formation and over 5-fold of new vessel formation as compared with DO alone group in the 5 mm femoral segmental defect rat model at 2 weeks after distraction. Mg nail upregulated the expression of calcitonin gene-related peptide (CGRP) in the new bone as compared with the DO alone group. We further revealed that blockade of the sensory nerve by overdose capsaicin blunted Mg nail enhanced critical size bone defect repair during the DO process. CGRP concentration-dependently promoted endothelial cell migration and tube formation. Meanwhile, CGRP promoted the phosphorylation of focal adhesion kinase (FAK) at Y397 site and elevated the expression of vascular endothelial growth factor A (VEGFA). Moreover, inhibitor/antagonist of CGRP receptor, FAK, and VEGF receptor blocked the Mg nail stimulated vessel and bone formation. We revealed, for the first time, a CGRP-FAK-VEGF signaling axis linking sensory nerve and endothelial cells, which may be the main mechanism underlying Mg-enhanced critical size bone defect repair when combined with DO, suggesting a great potential of Mg implants in reducing DO treatment time for clinical applications.
Collapse
Affiliation(s)
- Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Science, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Pan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Science, China
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qianqian Pang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; CHUK Hong Kong - Shenzhen Innovation and Technology Institute (Futian), China.
| |
Collapse
|
12
|
Chow DHK, Wang J, Wan P, Zheng L, Ong MTY, Huang L, Tong W, Tan L, Yang K, Qin L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact Mater 2021; 6:4176-4185. [PMID: 33997501 PMCID: PMC8099917 DOI: 10.1016/j.bioactmat.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Displaced fractures of patella often require open reduction surgery and internal fixation to restore the extensor continuity and articular congruity. Fracture fixation with biodegradable magnesium (Mg) pins enhanced fracture healing. We hypothesized that fixation with Mg pins and their degradation over time would enhance healing of patellar fracture radiologically, mechanically, and histologically. Transverse patellar fracture surgery was performed on thirty-two 18-weeks old female New Zealand White Rabbits. The fracture was fixed with a pin made of stainless steel or pure Mg, and a figure-of-eight stainless steel band wire. Samples were harvested at week 8 or 12, and assessed with microCT, tensile testing, microindentation, and histology. Microarchitectural analysis showed that Mg group showed 12% higher in the ratio of bone volume to tissue volume at week 8, and 38.4% higher of bone volume at week 12. Tensile testing showed that the failure load and stiffness of Mg group were 66.9% and 104% higher than the control group at week 8, respectively. At week 12, Mg group was 60.8% higher in ultimate strength than the control group. Microindentation showed that, compared to the Control group, Mg group showed 49.9% higher Vickers hardness and 31% higher elastic modulus at week 8 and 12, respectively. At week 12, the new bone of Mg group remodelled to laminar bone, but those of the control group remained woven bone-like. Fixation of transverse patellar fracture with Mg pins and its degradation enhanced new bone formation and mechanical properties of the repaired patella compared to the Control group. Kirschner wires (K-wire) with tension band wire is widely used fixation implants for repairing of displaced patellar fractures. Fixation of patellar fracture with Mg pins enhanced new bone formation and mechanical properties of the repaired patella. With a stainless steel tension band wire, Mg pins may be an alternative to K-wire for fixation of patellar fractures.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peng Wan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.,School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
13
|
Kumari S, Tiyyagura HR, Pottathara YB, Sadasivuni KK, Ponnamma D, Douglas TEL, Skirtach AG, Mohan MK. Surface functionalization of chitosan as a coating material for orthopaedic applications: A comprehensive review. Carbohydr Polym 2020; 255:117487. [PMID: 33436247 DOI: 10.1016/j.carbpol.2020.117487] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Metallic implants have dominated the biomedical implant industries for the past century for load-bearing applications, while the polymeric implants have shown great promise for tissue engineering applications. The surface properties of such implants are critical as the interaction of implant surfaces, and the body tissues may lead to unfavourable reactions. Desired implant properties are biocompatibility, corrosion resistance, and antibacterial activity. A polymer coating is an efficient and economical way to produce such surfaces. A lot of research has been carried out on chitosan (CS)-modified metallic and polymer scaffolds in the last decade. Different methods such as electrophoretic deposition, sol-gel methods, dip coating and spin coating, electrospinning, etc. have been utilized to produce CS coatings. However, a systematic review of chitosan coatings on scaffolds focussing on widely employed techniques is lacking. This review surveys literature concerning the current status of orthopaedic applications of CS for the purpose of coatings. In this review, the various preparation methods of coating, and the role of the surface functionalities in determining the efficiency of coatings are discussed. Effect of nanoparticle additions on the polymeric interfaces and in regulating the properties of surface coatings are also investigated in detail.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal, Telangana, 506004, India; Department of Biotechnology, Coupure Links 653, 9000 Gent, Belgium
| | - Hanuma Reddy Tiyyagura
- Alterno Labs d.o.o, Brnčičeva ulica 29, 1231 Ljubljana, Slovenia; Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, Maribor SI-2000, Slovenia.
| | - Yasir Beeran Pottathara
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, Maribor SI-2000, Slovenia
| | | | | | | | - Andre G Skirtach
- Department of Biotechnology, Coupure Links 653, 9000 Gent, Belgium
| | - M K Mohan
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
14
|
Boran G, Tavakoli S, Dierking I, Kamali AR, Ege D. Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci Rep 2020; 10:7827. [PMID: 32385391 PMCID: PMC7211009 DOI: 10.1038/s41598-020-64760-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Zoledronic acid (ZOL) is a third generation bisphosphonate which can be used as a drug for the treatment of osteoporosis and metastasis. In this study, graphene oxide (GO) is conjugated with ZOL, and the nanostructured material is evaluated in terms viability, proliferation and differentiation. Furthermore, the associated morphological changes of bone marrow-derived mesenchymal stem cells (BM-MSC), and Michigan Cancer Foundation-7 (MCF-7) breast cancer cells, as well as the effect of the drugs on mineralization of BM-MSCs are investigated using a variety of characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM) as well as alamar blue, acridine orange, and alizarin red assays. Nanostructured ZOL-GO with an optimum performance is synthesized using ZOL and GO suspensions with the concentration of 50 µM and 2.91 ng/ml, respectively. ZOL-GO nanostructures can facilitate the mineralization of BM-MSC cells, demonstrated by the formation of clusters around the cells. The results obtained confirm the performance of ZOL-GO nanostructures as promising drug complexes for the treatment of osteoporosis and metastasis.
Collapse
Affiliation(s)
- Gökçen Boran
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Sepideh Tavakoli
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
- Northeastern University, College of Engineering, Boston, Massachusetts USA 02115, Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368
| | - Ingo Dierking
- University of Manchester, Department of Physics and Astronomy, Manchester, M13 9PL, United Kingdom
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang, China, 110819
| | - Duygu Ege
- Boğaziçi University, Institute of Biomedical Engineering, İstanbul, Turkey, 34368.
| |
Collapse
|
15
|
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong
| | - Ling Qin
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong
| |
Collapse
|