1
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
2
|
Wang J, Liu M, Yang C, Pan Y, Ji S, Han N, Sun G. Biomaterials for bone defect repair: Types, mechanisms and effects. Int J Artif Organs 2024; 47:75-84. [PMID: 38166512 DOI: 10.1177/03913988231218884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Bone defects or bone discontinuities caused by trauma, infection, tumours and other diseases have led to an increasing demand for bone grafts and biomaterials. Autologous bone grafts, bone grafts with vascular tips, anastomosed vascular bone grafts and autologous bone marrow components are all commonly used in clinical practice, while oversized bone defects require the use of bone tissue engineering-related biomaterials to repair bone defects and promote bone regeneration. Currently, inorganic components such as polysaccharides and bioceramics, as well as a variety of bioactive proteins, metal ions and stem cells can be loaded into hydrogels or 3D printed scaffold materials to achieve better therapeutic results. In this review, we provide an overview of the types of materials, applications, potential mechanisms and current developments in the repair of bone defects.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yutao Pan
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengchao Ji
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Han
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Ying Y, Cai K, Cai X, Zhang K, Qiu R, Jiang G, Luo K. Recent advances in the repair of degenerative intervertebral disc for preclinical applications. Front Bioeng Biotechnol 2023; 11:1259731. [PMID: 37811372 PMCID: PMC10557490 DOI: 10.3389/fbioe.2023.1259731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
The intervertebral disc (IVD) is a load-bearing, avascular tissue that cushions pressure and increases flexibility in the spine. Under the influence of obesity, injury, and reduced nutrient supply, it develops pathological changes such as fibular annulus (AF) injury, disc herniation, and inflammation, eventually leading to intervertebral disc degeneration (IDD). Lower back pain (LBP) caused by IDD is a severe chronic disorder that severely affects patients' quality of life and has a substantial socioeconomic impact. Patients may consider surgical treatment after conservative treatment has failed. However, the broken AF cannot be repaired after surgery, and the incidence of re-protrusion and reoccurring pain is high, possibly leading to a degeneration of the adjacent vertebrae. Therefore, effective treatment strategies must be explored to repair and prevent IDD. This paper systematically reviews recent advances in repairing IVD, describes its advantages and shortcomings, and explores the future direction of repair technology.
Collapse
Affiliation(s)
- Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiongxiong Cai
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Yin P, Jiang Y, Fang X, Wang D, Li Y, Chen M, Deng H, Tang P, Zhang L. Cell-Based Therapies for Degenerative Musculoskeletal Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207050. [PMID: 37199688 PMCID: PMC10375105 DOI: 10.1002/advs.202207050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Degenerative musculoskeletal diseases (DMDs), including osteoporosis, osteoarthritis, degenerative disc disease, and sarcopenia, present major challenges in the aging population. Patients with DMDs present with pain, functional decline, and reduced exercise tolerance, which result in long-term or permanent deficits in their ability to perform daily activities. Current strategies for dealing with this cluster of diseases focus on relieving pain, but they have a limited capacity to repair function or regenerate tissue. Cell-based therapies have attracted considerable attention in recent years owing to their unique mechanisms of action and remarkable effects on regeneration. In this review, current experimental attempts to use cell-based therapies for DMDs are highlighted, and the modes of action of different cell types and their derivatives, such as exosomes, are generalized. In addition, the latest findings from state-of-the-art clinical trials are reviewed, approaches to improve the efficiency of cell-based therapies are summarized, and unresolved questions and potential future research directions for the translation of cell-based therapies are identified.
Collapse
Affiliation(s)
- Pengbin Yin
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yuheng Jiang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
- Department of OrthopedicsGeneral Hospital of Southern Theater Command of PLANo. 111, Liuhua AvenueGuangzhou510010China
| | - Xuan Fang
- Department of Anatomy, Histology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Daofeng Wang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yi Li
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Ming Chen
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Hao Deng
- Department of OrthopedicsThird Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning Province121000China
| | - Peifu Tang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Licheng Zhang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| |
Collapse
|
5
|
Han F, Tu Z, Zhu Z, Liu D, Meng Q, Yu Q, Wang Y, Chen J, Liu T, Han F, Li B. Targeting Endogenous Reactive Oxygen Species Removal and Regulating Regenerative Microenvironment at Annulus Fibrosus Defects Promote Tissue Repair. ACS NANO 2023; 17:7645-7661. [PMID: 37022700 DOI: 10.1021/acsnano.3c00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The excessive reactive oxygen species (ROS) level, inflammation, and weak tissue regeneration ability after annulus fibrosus (AF) injury constitute an unfavorable microenvironment for AF repair. AF integrity is crucial for preventing disc herniation after discectomy; however, there is no effective way to repair the AF. Herein, a composite hydrogel integrating properties of antioxidant, anti-inflammation, and recruitment of AF cells is developed through adding mesoporous silica nanoparticles modified by ceria and transforming growth factor β3 (TGF-β3) to the hydrogels. The nanoparticle loaded gelatin methacrylate/hyaluronic acid methacrylate composite hydrogels eliminate ROS and induce anti-inflammatory M2 type macrophage polarization. The released TGF-β3 not only plays a role in recruiting AF cells but is also responsible for promoting extracellular matrix secretion. The composite hydrogels can be solidified in situ in the defect area to effectively repair AF in rats. The strategies targeting endogenous ROS removal and improving the regenerative microenvironment by the nanoparticle-loaded composite hydrogels have potential applications in AF repair and intervertebral disc herniation prevention.
Collapse
Affiliation(s)
- Feng Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhengdong Tu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhuang Zhu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qifan Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jianquan Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Tao Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
6
|
Wei Q, Liu D, Chu G, Yu Q, Liu Z, Li J, Meng Q, Wang W, Han F, Li B. TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact Mater 2023; 19:581-593. [PMID: 35600980 PMCID: PMC9108517 DOI: 10.1016/j.bioactmat.2022.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022] Open
Abstract
Annulus fibrosus (AF) repair remains a challenge because of its limited self-healing ability. Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair. Although the unique and beneficial characteristics of decellularized extracellular matrix (ECM) in tissue repair have been demonstrated, the poor mechanical property of ECM hydrogels largely hinders their applications in tissue regeneration. In the present study, we combined polyethylene glycol diacrylate (PEGDA) and decellularized annulus fibrosus matrix (DAFM) to develop an injectable, photocurable hydrogel for AF repair. We found that the addition of PEGDA markedly improved the mechanical strength of DAFM hydrogels while maintaining their porous structure. Transforming growth factor-β1 (TGF-β1) was further incorporated into PEGDA/DAFM hydrogels, and it could be continuously released from the hydrogel. The in vitro experiments showed that TGF-β1 facilitated the migration of AF cells. Furthermore, PEGDA/DAFM/TGF-β1 hydrogels supported the adhesion, proliferation, and increased ECM production of AF cells. In vivo repair performance of the hydrogels was assessed using a rat AF defect model. The results showed that the implantation of PEGDA/DAFM/TGF-β1 hydrogels effectively sealed the AF defect, prevented nucleus pulposus atrophy, retained disc height, and partially restored the biomechanical properties of disc. In addition, the implanted hydrogel was infiltrated by cells resembling AF cells and well integrated with adjacent AF tissue. In summary, findings from this study indicate that TGF-β1-supplemented DAFM hydrogels hold promise for AF repair.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingchen Meng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Han F, Yu Q, Chu G, Li J, Zhu Z, Tu Z, Liu C, Zhang W, Zhao R, Mao H, Han F, Li B. Multifunctional Nanofibrous Scaffolds with Angle-Ply Microstructure and Co-Delivery Capacity Promote Partial Repair and Total Replacement of Intervertebral Disc. Adv Healthc Mater 2022; 11:e2200895. [PMID: 35834429 DOI: 10.1002/adhm.202200895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Indexed: 01/27/2023]
Abstract
There is an urgent clinical need for the treatment of annulus fibrosus (AF) impairment caused by intervertebral disc (IVD) degeneration or surgical injury. Although repairing injured AF through tissue engineering is promising, the approach is limited by the complicated angle-ply microstructure, inflammatory microenvironment, poor self-repairing ability of AF cells and deficient matrix production. In this study, electrospinning technology is used to construct aligned core-shell nanofibrous scaffolds loaded with transforming growth factor-β3 (TGFβ3) and ibuprofen (IBU), respectively. The results confirm that the rapid IBU release improves the inflammatory microenvironment, while sustained TGFβ3 release enhances nascent extracellular matrix (ECM) formation. Biomaterials for clinical applications must repair local AF defects during herniectomy and enable AF regeneration during disc replacement, so a box defect model and total IVD replacement model in rat tail are constructed. The dual-drug delivering electrospun scaffolds are assembled into angle-ply structure to form a highly biomimetic AF that is implanted into the box defect or used to replace the disc. In two animal models, it is found that biomimetic scaffolds with good anti-inflammatory ability enhance ECM formation and maintain the mechanical properties of IVD. Findings from this study demonstrate that the multifunctional nanofibrous scaffolds provide inspirations for IVD repair.
Collapse
Affiliation(s)
- Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qifan Yu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaying Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhuang Zhu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhengdong Tu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Changjiang Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Weidong Zhang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Runze Zhao
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310000, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
8
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
10
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
11
|
Ma J, Li J, Hu S, Wang X, Li M, Xie J, Shi Q, Li B, Lafu S, Chen H. Collagen Modified Anisotropic PLA Scaffold as a base for Peripheral Nerve Regeneration. Macromol Biosci 2022; 22:e2200119. [PMID: 35526091 DOI: 10.1002/mabi.202200119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. Topographical and mechanical stimulations play important roles to repair peripheral nerve injury. The synergistic effects of topography and mechanical rigidity may significantly accelerate nerve regeneration. In this work, we developed a nerve-guiding collagen/polylactic acid (PLA) electrospun scaffold to facilitate peripheral nerve repair. The obtained anisotropic PLA electrospun scaffolds simulated the directional arranged structure of nerve realistically and promoted axonal regeneration after sciatic nerve injury when compared with the isotropic PLA electrospun scaffolds. Moreover, the collagen-modified PLA electrospun scaffolds further provided sufficient mechanical support and favorable microenvironment for axon regeneration. In addition, we observed that collagen-modified PLA electrospun scaffolds facilitated the axon regeneration by regulating YAP molecular pathway. Taken together, we engineered collagen-modified anisotropic PLA electrospun scaffolds may be a potential candidate to combine topography and mechanical rigidity for peripheral nerve regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Sihan Hu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingran Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meimei Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jile Xie
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Shi
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Saiji Lafu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hao Chen
- Affiliated Hospital & Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
13
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
14
|
Li C, Chen J, Lv Y, Liu Y, Guo Q, Wang J, Wang C, Hu P, Liu Y. Recent Progress in Electrospun Nanofiber-Based Degenerated Intervertebral Disc Repair. ACS Biomater Sci Eng 2021; 8:16-31. [PMID: 34913688 DOI: 10.1021/acsbiomaterials.1c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Annulus fibrosus fissure and fibrosis of nucleus pulposus are severe morphological characteristics of intervertebral disc degeneration. Currently, surgery or drugs are used to relieve pain in such cases. Tissue engineering is a new multidisciplinary strategy with great potential for use in joint replacement and organ regeneration. Based on the natural anatomy of intervertebral discs, intervertebral disc scaffolds are fabricated by exploiting the special arrangement of extracellular matrix fibers. Electrospun nanofibers possess clear advantages in repairing degenerated intervertebral discs. This article reviews and summarizes recently developed methods for improving and fabricating electrospun nanofiber annulus fibrosus scaffolds in terms of nanofiber alignment, material selection, loading additives, and the progress made in combining other advanced technologies with electrospun nanofibers. In addition, the improvement in mechanical properties and biocompatibility of nucleus pulposus scaffolds by electrospun nanofiber-reinforced hydrogels is discussed. Finally, complete intervertebral disc scaffolds can be fabricated using the disc-like angle-ply structure and other emerging fabrication methods. Taken together, electrospun nanofiber intervertebral disc scaffolds are promising for clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yueqi Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanyi Guo
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Division of Breast Surgery, Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fan Y, Cui C, Li P, Bi R, Lyu P, Li Y, Zhu S. Fibrocartilage Stem Cells in the Temporomandibular Joint: Insights From Animal and Human Studies. Front Cell Dev Biol 2021; 9:665995. [PMID: 33987185 PMCID: PMC8111285 DOI: 10.3389/fcell.2021.665995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular disorders (TMD) are diseases involving the temporomandibular joint (TMJ), masticatory muscles, and osseous components. TMD has a high prevalence, with an estimated 4.8% of the U.S. population experiencing signs and symptoms, and represents a financial burden to both individuals and society. During TMD progression, the most frequently affected site is the condylar cartilage. Comprising both fibrous and cartilaginous tissues, condylar cartilage has restricted cell numbers but lacks a vascular supply and has limited regenerative properties. In 2016, a novel stem cell niche containing a reservoir of fibrocartilage stem cells (FCSCs) was discovered in the condylar cartilage of rats. Subsequently, FCSCs were identified in mouse, rabbit, and human condylar cartilage. Unlike mesenchymal stem cells or other tissue-specific stem/progenitor cells, FCSCs play a unique role in the development and regeneration of fibrocartilage. More importantly, engraftment treatment of FCSCs has been successfully applied in animal models of TMD. In this context, FCSCs play a major role in the regeneration of newly formed cartilage. Furthermore, FCSCs participate in the regeneration of intramembranous bone by interacting with endothelial cells in bone defects. This evidence highlights the potential of FCSCs as an ideal stem cell source for the regeneration of oral maxillofacial tissue. This review is intended to detail the current knowledge of the characteristics and function of FCSCs in the TMJ, as well as the potential therapeutic applications of FCSCs. A deep understanding of the properties of FCSCs can thus inform the development of promising, biologically based strategies for TMD in the future.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Zhou P, Wei B, Guan J, Chen Y, Zhu Y, Ye Y, Meng Y, Guan J, Mao Y. Mechanical Stimulation and Diameter of Fiber Scaffolds Affect the Differentiation of Rabbit Annulus Fibrous Stem Cells. Tissue Eng Regen Med 2021; 18:49-60. [PMID: 33145743 PMCID: PMC7862471 DOI: 10.1007/s13770-020-00305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Degeneration of the annulus fibrosus (AF), an important structure of the intervertebral disc, is one of the main causes of degenerative disc disease. Fabrication of scaffolds replicating the stratified microstructure of the AF is critical for the successful regeneration of AF. METHODS In this study, we cultured rabbit AF-derived stem cells (AFSCs) using fabricated electrospun fibrous poly-L-lactic acid scaffolds with different diameters. We applied cyclic tensile strain (CTS) on the scaffolds to regulate the differentiation of AFSCs into specific cell types that resided at the inner, middle, and outer zones of the AF. RESULTS We found that the morphologies of AFSCs on the smaller-fiber-diameter scaffolds were nearly round, whereas spindle-like cells morphologies were observed on large-diameter scaffolds. CTS enhanced these phenomena and made the cells slender. The expression levels of collagen-I in cells increased as a function of the fiber diameter, whereas collagen-II and aggrecan exhibited opposite trends. Moreover, the application of CTS upregulated the gene expressions of collagen-I, collagen-II, and aggrecan. CONCLUSION Overlaying the scaffolds with different CTS-stimulated cells could eventually lead to engineered AF tissues with hierarchical structures that approximated the native AF tissue. Thus, the proposed methodologies could be potentially applied for AF regeneration.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Bangguo Wei
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Yu Chen
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Department of Plastic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yansong Zhu
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Yuchen Ye
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Yue Meng
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
18
|
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| | - Di Chen
- Shenzhen Institutes of Advanced Technology, Shenzhen University of Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|