1
|
Thomsen MB, Singh A, Thebeau CN, Gao VD, Schulze NF, Avraham O, Yang SX, Koneru S, Geier SS, Landon SM, Pelea A, Cavalli V, Geisler S. Macrophage depletion restores the DRG microenvironment and prevents axon degeneration in bortezomib-induced neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634362. [PMID: 39896673 PMCID: PMC11785175 DOI: 10.1101/2025.01.22.634362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Peripheral neuropathy is a common and debilitating side effect of the chemotherapeutic bortezomib (BTZ). To explore the mechanisms underlying BTZ-induced neuropathy (BIPN), we developed a mouse model that replicates the route of administration and approximates the prolonged BTZ exposure experienced by patients. We find that male mice treated with BTZ experience more severe sensorimotor dysfunction and axon loss compared to females and observed similar results when analyzing human data. Using single cell RNA-sequencing, we reveal that BTZ significantly alters the dorsal root ganglia (DRG) microenvironment in mice, producing pronounced sex-specific changes in satellite glial cells (SGCs) in males and females and dysregulation of the extracellular matrix (ECM), particularly in males. These changes are accompanied by expansion of macrophages, which is more pronounced in males. We identify four macrophage subtypes in the DRG, including a pro-fibrotic population that is exclusively associated with BIPN. Depletion of macrophages via anti-CSF1R treatment in male mice prevents BTZ-induced SGC activation and aberrant collagen deposition in DRGs, potently preserves peripheral axons, and improves functional outcomes. These findings highlight SGCs, neuroinflammation and dysregulation of the ECM as drivers of sex-specific differences in BIPN and suggest that targeting neuroinflammation is a promising therapeutic strategy to treat this disease.
Collapse
Affiliation(s)
| | - Abhishek Singh
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Christina N. Thebeau
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Vivian D. Gao
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Nicholas F. Schulze
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Sarah X. Yang
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Shriya Koneru
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Sami S. Geier
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Shannon M. Landon
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Aidan Pelea
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine in St. Louis; St. Louis, USA
- Hope Center for Neurological Diseases, Washington University School of Medicine in St. Louis; St. Louis, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
- Hope Center for Neurological Diseases, Washington University School of Medicine in St. Louis; St. Louis, USA
- Siteman Cancer Center; St. Louis, USA
| |
Collapse
|
2
|
Raveendran C, Sunaisha Ashrafudeen S, Yadev IP. Bortezomib-induced neuropathy in multiple myeloma manifesting as foot drop due to peroneal nerve palsy. BMJ Case Rep 2024; 17:e260909. [PMID: 39349299 PMCID: PMC11448164 DOI: 10.1136/bcr-2024-260909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
We present the case of a man in his 50s with multiple myeloma who developed foot drop after receiving bortezomib-dexamethasone combination chemotherapy. Diagnostic evaluations, including haematological parameters, nerve conduction studies and imaging, were performed to confirm the diagnosis and assess the extent of neuropathy. He was managed conservatively with analgesics and vitamin supplements, and bortezomib was temporarily withheld. The neuropathy gradually improved, and bortezomib was successfully reintroduced without recurrence of foot drop. Bortezomib-induced foot drop is a rare complication of bortezomib-based therapy in patients with multiple myeloma. Early recognition and intervention are crucial to minimise impact on quality of life. This case report emphasises the safe reintroduction of bortezomib post-neuropathy resolution, emphasising the importance of early recognition and multidisciplinary management.
Collapse
Affiliation(s)
- Ciniraj Raveendran
- Radiation Oncology, Government Medical College Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | | | - I P Yadev
- General Surgery, Government Medical College Thiruvananthapuram, Thiruvananthapuram, Kerala, India
- General Surgery, Government Medical College Kollam, Kollam, Kerala, India
| |
Collapse
|
3
|
Syben A, Weber S, Appelmann I, Rolke R. [N-Check: nerve check to document chemotherapy-induced peripheral neuropathy (CIPN) in incurable cancer]. Schmerz 2024:10.1007/s00482-024-00828-8. [PMID: 39313711 DOI: 10.1007/s00482-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Chemotherapy-induced polyneuropathy (CIPN) encompasses a spectrum of symptoms ranging from hypoesthesia with impaired gait, stance and fine motor skills to painful dysesthesia and allodynia and significantly impairs the quality of life of those affected. In the present pilot study, quantitative sensory testing (QST) was used to investigate CIPN as a common adverse effect of cytostatic drugs in patients with incurable cancer. The QST is a standardized examination procedure that is not yet routinely used in cancer patients. It is used to examine thermal and mechanical perception and pain thresholds to record the subjectively experienced pain phenotype. In the N‑Check pilot project, the QST was used before and after tumor-specific, potentially CIPN-inducing treatment and the data collected was compared in a pre-post analysis. In addition, the specific effects of CIPN on the health-related quality of life of patients treated primarily with a palliative intention were recorded using the Functional Assessment for Cancer Therapy-General (FACT-G) questionnaire. Overall, the patients showed significant heat hypoalgesia after chemotherapy as a sign of damage to small nerve fibers. In addition, there were signs of deterioration of the quality of life. The feasibility of QST in patients with incurable cancer and palliative, neurotoxic chemotherapy was demonstrated in this pilot study.
Collapse
Affiliation(s)
- Annabell Syben
- Klinik für Palliativmedizin, Uniklinik der RWTH, Medizinische Fakultät, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Sascha Weber
- Klinik für Palliativmedizin, Uniklinik der RWTH, Medizinische Fakultät, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Deutschland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Medizinische Fakultät, RWTH Aachen University, Aachen, Deutschland
| | - Iris Appelmann
- Klinik für Palliativmedizin, Uniklinik der RWTH, Medizinische Fakultät, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Roman Rolke
- Klinik für Palliativmedizin, Uniklinik der RWTH, Medizinische Fakultät, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| |
Collapse
|
4
|
Yang Y, Zhao B, Lan H, Sun J, Wei G. Bortezomib-induced peripheral neuropathy: Clinical features, molecular basis, and therapeutic approach. Crit Rev Oncol Hematol 2024; 197:104353. [PMID: 38615869 DOI: 10.1016/j.critrevonc.2024.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Bortezomib is the first-line standard and most effective chemotherapeutic for multiple myeloma; however, bortezomib-induced peripheral neuropathy (BIPN) severely affects the chemotherapy regimen and has long-term impact on patients under maintenance therapy. The pathogenesis of BIPN is poorly understood, and basic research and development of BIPN management drugs are in early stages. Besides chemotherapy dose reduction and regimen modification, no recommended prevention and treatment approaches are available for BIPN apart from the International Myeloma Working Group guidelines for peripheral neuropathy in myeloma. An in-depth exploration of the pathogenesis of BIPN, development of additional therapeutic approaches, and identification of risk factors are needed. Optimizing effective and standardized BIPN treatment plans and providing more decision-making evidence for clinical diagnosis and treatment of BIPN are necessary. This article reviews the recent advances in BIPN research; provides an overview of clinical features, underlying molecular mechanisms, and therapeutic approaches; and highlights areas for future studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China.
| | - Guoli Wei
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Sauer AK, Vigouroux M, Dougherty PM, Cata JP, Ingelmo PM. Pain Experience and Sensory Changes in Astronauts During and After Short-Lasting Commercial Spaceflight: A Proof-of-Concept Study. J Pain Res 2023; 16:4253-4266. [PMID: 38107368 PMCID: PMC10723599 DOI: 10.2147/jpr.s440630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
Space travel has been associated with musculoskeletal pain, yet little is known about the nociceptive changes and pain experience during spaceflight. This preliminary study aims to investigate the pain experience and sensory alterations in astronauts following a 17-day mission to the International Space Station (ISS) on Axiom Space's AX-1 commercial space flight. Two participants were enrolled, and data were collected pre-flight, in-flight, post-flight, and three-month post-flight. Validated pain questionnaires assessed anxiety, catastrophizing, impact on physical and mental health, disability, and overall pain experience. Qualitative interviews were conducted post-landing and conditioned pain modulation (CPM) and quantitative sensory testing (QST) were performed. Both astronauts reported musculoskeletal pain during and after the flight, which was managed with anti-inflammatories and stretching techniques. Pain levels returned to baseline after three months. Pain questionnaires revealed heightened pain experiences in-flight and immediately post-flight, although their adequacy in assessing pain in space is uncertain. Qualitative interviews allowed astronauts to describe their pain experiences during the flight. Sensory changes included increased mechanical touch detection thresholds, temporal pain summation, heat pain thresholds, and differences in conditioned pain modulation post-flight. This preliminary study suggested that spaceflight may affect various aspects of sensory perception and regulation in astronauts, albeit in a variable manner. More data are needed to gain insight of on gain and loss of sensory functions during space missions. Further investigation into the multifactorial stressors affecting the somatosensory system during space travel could contribute to advancements in space and pain medicine.
Collapse
Affiliation(s)
- Andrea K Sauer
- Department of Anesthesia, University of Bonn, Bonn, Germany
| | - Marie Vigouroux
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas – MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Pablo Cata
- Department of Anesthesia and Perioperative Medicine, The University of Texas – MD Anderson Cancer Center, Houston, TX, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Pablo M Ingelmo
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Research Institute, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
6
|
Sprague JM, Yekkirala AS, Singh B, Tochitsky I, Stephens M, Viramontes O, Ivanis J, Biscola NP, Havton LA, Woolf CJ, Latremoliere A. Bortezomib-induced neuropathy is in part mediated by the sensitization of TRPV1 channels. Commun Biol 2023; 6:1228. [PMID: 38052846 PMCID: PMC10698173 DOI: 10.1038/s42003-023-05624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
TRPV1 is an ion channel that transduces noxious heat and chemical stimuli and is expressed in small fiber primary sensory neurons that represent almost half of skin nerve terminals. Tissue injury and inflammation result in the sensitization of TRPV1 and sustained activation of TRPV1 can lead to cellular toxicity though calcium influx. To identify signals that trigger TRPV1 sensitization after a 24-h exposure, we developed a phenotypic assay in mouse primary sensory neurons and performed an unbiased screen with a compound library of 480 diverse bioactive compounds. Chemotherapeutic agents, calcium ion deregulators and protein synthesis inhibitors were long-acting TRPV1 sensitizers. Amongst the strongest TRPV1 sensitizers were proteasome inhibitors, a class that includes bortezomib, a chemotherapeutic agent that causes small fiber neuropathy in 30-50% of patients. Prolonged exposure of bortezomib produced a TRPV1 sensitization that lasted several days and neurite retraction in vitro and histological and behavioral changes in male mice in vivo. TRPV1 knockout mice were protected from epidermal nerve fiber loss and a loss of sensory discrimination after bortezomib treatment. We conclude that long-term TRPV1 sensitization contributes to the development of bortezomib-induced neuropathy and the consequent loss of sensation, major deficits experienced by patients under this chemotherapeutic agent.
Collapse
Affiliation(s)
- Jared M Sprague
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Ajay S Yekkirala
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Michael Stephens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Octavio Viramontes
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Jelena Ivanis
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leif A Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA.
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Wen D, Cao S, Feng Y. Recent advances in the treatment and prevention of peripheral neuropathy after multiple myeloma treatment. IBRAIN 2023; 9:421-430. [PMID: 38680507 PMCID: PMC11045196 DOI: 10.1002/ibra.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 05/01/2024]
Abstract
The incidence of multiple myeloma (MM) is increasing year by year, requiring chemotherapy drugs to control the condition. With the advent of new proteasome inhibitors, immunomodulators, and monoclonal antibodies, the prognosis of patients has improved significantly. However, peripheral neuropathy caused by drugs limits the dose and duration of treatment, which seriously affects patients' quality of life and treatment outcome. Although the neuropathies induced by chemotherapy drugs have attracted much attention, their mechanism and effective prevention and treatment measures are not clear. Therefore, how to alleviate peripheral neuropathy caused by drugs for treatment of MM is a key issue in improving patients' quality of life and prolonging their survival time, which have some clinical value. In this paper, we review the current research on the pathogenesis, pharmacological and nonpharmacological treatment, and prevention, which expects to present instruction for peripheral neuropathy after treatment of MM.
Collapse
Affiliation(s)
- Dan Wen
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yonghuai Feng
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
8
|
Zhi WI, Baser RE, Talukder D, Mei YZ, Harte SE, Bao T. Mechanistic and thermal characterization of acupuncture for chemotherapy-induced peripheral neuropathy as measured by quantitative sensory testing. Breast Cancer Res Treat 2023; 197:535-545. [PMID: 36527520 PMCID: PMC11218902 DOI: 10.1007/s10549-022-06846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating side effect of chemotherapy. Acupuncture is a promising non-pharmacological intervention for CIPN. However, the physiological effects of acupuncture treatment remain poorly understood. We examined the effects of acupuncture on CIPN using semi-objective quantitative sensory testing (QST). METHODS We conducted a randomized controlled trial of real acupuncture (RA) and sham acupuncture (SA) compared to usual care (UC) in cancer survivors with moderate-to-severe CIPN. Treatment response was assessed with QST measures of tactile and vibration detection thresholds in hands and feet, thermal detection, and pain thresholds at weeks 0, 8, and 12. Constrained linear mixed model (cLMM) regression was used for statistical analysis. RESULTS 63 patients completed QST testing. At week 8, vibrational detection thresholds in feet were significantly lower in RA and SA (p = 0.019 and p = 0.046) than in UC, with no difference between RA and SA (p = 0.637). Both RA and SA also showed significantly higher cool thermal detection than UC (p = 0.008 and p = 0.013, respectively), with no difference between RA and SA (p = 0.790). No differences in tactile detection, vibrational detection in hands, warm thermal detection, and thermal pain thresholds were detected among the three arms at weeks 8 and 12. CONCLUSION QST demonstrated different patterns in RA, SA, and UC. After eight weeks of RA, we observed significant improvements in the vibrational detection threshold in feet and cool thermal detection threshold in hands compared to UC. No significant differences were seen when compared to SA. TRIAL REGISTRATION ClinicalTrials.gov (NCT03183037); June 9, 2017.
Collapse
Affiliation(s)
- W Iris Zhi
- Breast Medicine Service, Department of Medicine, Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymond E Baser
- Department of Epidemiology and Biostatistics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dristi Talukder
- Integrative Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Zi Mei
- Barnard College, Columbia University, New York, NY, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ting Bao
- Integrative Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Integrative Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 321 East 61st Street, Room 458, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Suzuki M, Zhou Z, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. Inhibitors of the Mechanistic Target of Rapamycin Can Ameliorate Bortezomib-Induced Peripheral Neuropathy. Biol Pharm Bull 2023; 46:1049-1056. [PMID: 37532556 DOI: 10.1248/bpb.b22-00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Mari Suzuki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Zijian Zhou
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
10
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Cornelissen L, Donado C, Yu TW, Berde CB. Modified Sensory Testing in Non-verbal Patients Receiving Novel Intrathecal Therapies for Neurological Disorders. Front Neurol 2022; 13:664710. [PMID: 35222234 PMCID: PMC8866183 DOI: 10.3389/fneur.2022.664710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Several neurological disorders may be amenable to treatment with gene-targeting therapies such as antisense oligonucleotides (ASOs) or viral vector-based gene therapy. The US FDA has approved several of these treatments; many others are in clinical trials. Preclinical toxicity studies of ASO candidates have identified dose-dependent neurotoxicity patterns. These include degeneration of dorsal root ganglia, the cell bodies of peripheral sensory neurons. Quantitative sensory testing (QST) refers to a series of standardized mechanical and/or thermal measures that complement clinical neurologic examination in detecting sensory dysfunction. QST primarily relies on patient self-report or task performance (i.e., button-pushing). This brief report illustrates individualized pragmatic approaches to QST in non-verbal subjects receiving early phase investigational intrathecal drug therapies as a component of clinical trial safety protocols. Three children with neurodevelopmental disorders that include Neuronal Ceroid Lipofuscinosis Type 7, Ataxia-Telangiectasia, and Epilepsy of Infancy with Migrating Focal Seizures are presented. These case studies discuss individualized testing protocols, accounting for disease presentation, cognitive and motor function. We outline specific considerations for developing assessments for detecting changes in sensory processing in diverse patient groups and safety monitoring trials of early phase investigational intrathecal drug therapies. QST may complement information obtained from the standard neurologic examination, electrophysiologic studies, skin biopsies, and imaging. QST has limitations and challenges, especially in non-verbal subjects, as shown in the three cases discussed in this report. Future directions call for collaborative efforts to generate sensory datasets and share data registries in the pediatric neurology field.
Collapse
Affiliation(s)
- Laura Cornelissen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Carolina Donado
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Timothy W. Yu
- Divisions of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Paediatrics, Harvard Medical School, Boston, MA, United States
| | - Charles B. Berde
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Ramnarine SR, Dougherty PM, Rolke R, Williams LJ, Alessi-Fox C, Coleman AJ, Longo C, Colvin LA, Fallon MT. OUP accepted manuscript. Oncologist 2022; 27:e671-e680. [PMID: 35706109 PMCID: PMC9355818 DOI: 10.1093/oncolo/oyac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is a lack of standardized objective and reliable assessment tools for chemotherapy-induced peripheral neuropathy (CIPN). In vivo reflectance confocal microscopy (RCM) imaging offers a non-invasive method to identify peripheral neuropathy markers, namely Meissner’s corpuscles (MC). This study investigated the feasibility and value of RCM in CIPN. Patients and Methods Reflectance confocal microscopy was performed on the fingertip to evaluate MC density in 45 healthy controls and 9 patients with cancer (prior, during, and post-chemotherapy). Quantification was completed by 2 reviewers (one blinded), with maximum MC count/3 × 3 mm image reported. Quantitative Sensory Testing (QST; thermal and mechanical detection thresholds), Grooved pegboard test, and patient-reported outcomes measures (PROMS) were conducted for comparison. Results In controls (25 females, 20 males; 24-81 years), females exhibited greater mean MC density compared with males (49.9 ± 7.1 vs 30.9 ± 4.2 MC/3 × 3 mm; P = .03). Differences existed across age by decade (P < .0001). Meissner’s corpuscle density was correlated with mechanical detection (ρ = −0.51), warm detection (ρ = −0.47), cold pain (ρ = 0.49) thresholds (P < .01); and completion time on the Grooved pegboard test in both hands (P ≤ .02). At baseline, patients had reduced MC density vs age and gender-matched controls (P = .03). Longitudinal assessment of MC density revealed significant relationships with QST and PROMS. Inter-rater reliability of MC count showed an intraclass correlation of 0.96 (P < .0001). Conclusions The findings support the clinical utility of RCM in CIPN as it provides meaningful markers of sensory nerve dysfunction. Novel, prospective assessment demonstrated the ability to detect subclinical deficits in patients at risk of CIPN and potential to monitor neuropathy progression.
Collapse
Affiliation(s)
- Sabrina R Ramnarine
- Corresponding author: Sabrina R. Ramnarine MBChB, PhD, CLIMP, Guy’s and St. Thomas’ NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK. Tel: +44 207188 7188; ,
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Linda J Williams
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andrew J Coleman
- Clinical Imaging and Medical Physics, Guys’ and St. Thomas’ NHS Foundation Trust, London, UK
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - Lesley A Colvin
- Division of Population Health and Genomics, University of Dundee, Dundee, UK
| | - Marie T Fallon
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
14
|
Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neurosci Lett 2021; 765:136233. [PMID: 34506882 PMCID: PMC8579816 DOI: 10.1016/j.neulet.2021.136233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
15
|
Dasdemir Ilkhan G, Celikhisar H. Evaluation of chemotherapy-related peripheral neuropathy in lung cancer treatment. TUMORI JOURNAL 2021; 107:392-399. [PMID: 34669524 DOI: 10.1177/0300891620975868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Chemotherapy-related peripheral neuropathies are observed frequently in lung cancer treatment in clinical practice. The present study aimed to evaluate the electrophysiologic findings and clinical symptoms in patients treated for lung cancer with different chemotherapy regimens who had the findings of peripheral neuropathy. METHODS Patients who had electromyography (EMG) examinations with the prediagnosis of peripheral neuropathy at two different centers between January 2011 and December 2019 were included. The demographic data, neurologic examination findings, symptoms, EMG findings, and chemotherapeutic agents used in the treatment were evaluated retrospectively. RESULTS A total of 742 patients were included in the study, with 630 (84.90%) male and 112 (15.10%) female patients. Of the patients included in the study, 406 (54.71%) had positive sensorial symptoms, 494 (66.57%) had negative sensorial symptoms, 162 (21.83%) had motor symptoms, and 254 (34.23%) had pain symptoms. The patients were classified into two groups on the basis of the presence of polyneuropathy detected via EMG as group I (n = 500, 67.38%) including the patients with polyneuropathy and group II (n = 242, 32.61%) including the patients without polyneuropathy. Negative sensorial symptoms and motor symptoms in group I along with dysesthesia and paresthesia symptoms in group II were observed at ratios that were higher at a statistically significant level (p = 0.001, p = 0.001, p = 0.001, p = 0.001). CONCLUSION Sensorial symptoms are observed most frequently in chemotherapy-related peripheral neuropathies in lung cancer treatment and motor symptoms may also increase according to the chemotherapy regimen.
Collapse
Affiliation(s)
| | - Hakan Celikhisar
- Chest Diseases Clinic, Izmir Metropolitan Municipality Hospital, Izmir, Turkey
| |
Collapse
|
16
|
Park SH, Eber MR, Fonseca MM, Patel CM, Cunnane KA, Ding H, Hsu FC, Peters CM, Ko MC, Strowd RE, Wilson JA, Hsu W, Romero-Sandoval EA, Shiozawa Y. Usefulness of the measurement of neurite outgrowth of primary sensory neurons to study cancer-related painful complications. Biochem Pharmacol 2021; 188:114520. [PMID: 33741328 PMCID: PMC8154668 DOI: 10.1016/j.bcp.2021.114520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Abnormal outgrowth of sensory nerves is one of the important contributors to pain associated with cancer and its treatments. Primary neuronal cultures derived from dorsal root ganglia (DRG) have been widely used to study pain-associated signal transduction and electrical activity of sensory nerves. However, there are only a few studies using primary DRG neuronal culture to investigate neurite outgrowth alterations due to underlying cancer-related factors and chemotherapeutic agents. In this study, primary DRG sensory neurons derived from mouse, non-human primate, and human were established in serum and growth factor-free conditions. A bovine serum albumin gradient centrifugation method improved the separation of sensory neurons from satellite cells. The purified DRG neurons were able to maintain their heterogeneous subpopulations, and displayed an increase in neurite growth when exposed to cancer-derived conditioned medium, while they showed a reduction in neurite length when treated with a neurotoxic chemotherapeutic agent. Additionally, a semi-automated quantification method was developed to measure neurite length in an accurate and time-efficient manner. Finally, these exogenous factors altered the gene expression patterns of murine primary sensory neurons, which are related to nerve growth, and neuro-inflammatory pain and nociceptor development. Together, the primary DRG neuronal culture in combination with a semi-automated quantification method can be a useful tool for further understanding the impact of exogenous factors on the growth of sensory nerve fibers and gene expression changes in sensory neurons.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Matthew R Eber
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Miriam M Fonseca
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Chirayu M Patel
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Katharine A Cunnane
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Roy E Strowd
- Department of Neurology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - John A Wilson
- Department of Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - Yusuke Shiozawa
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
17
|
Neurophysiologic assessment of small fibre damage in chemotherapy-induced peripheral neuropathy. Clin Neurophysiol 2021; 132:1947-1956. [PMID: 34034962 DOI: 10.1016/j.clinph.2021.02.406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In patients with chemotherapy-induced peripheral neuropathy (CIPN), demonstration of small fibre (SF) damage is important to understand chronic late effects. METHODS Thirty patients having complaints compatible with possible CIPN following treatment with oxaliplatin or docetaxel were compared with 27 healthy subjects. All subjects were evaluated with quantitative sensory testing (QST) assessing SF function and laser evoked potentials (LEP). In addition, SF-damage was assessed using cutaneous silent periods evoked with electrical (El-CSP) and laser (Ls-CSP) stimuli. RESULTS For LEP, N2P2 amplitudes were significantly smaller in patients than controls in both upper (P = 0.007) and lower extremities (P = 0.002), and the N1 amplitude in upper extremities of patients were significantly smaller than in controls (P = 0.001). SF-QST, LEP, Ls-CSP, and El-CSP were abnormal in 10 (33.3%), 16 (53.3%), 19 (63.3%), and 24 (80%) of CIPN patients, respectively. CONCLUSIONS In patients with possible CIPN, El-CSP and Ls-CSP were more often abnormal than LEP and QST. This is probably because El-CSP and Ls-CSP inform mainly about peripheral nociceptive fibres, while LEP and QST inform about peripheral and central nociceptive pathways together. SIGNIFICANCE LEP and QST are established methods to detect SF-damage. El- and Ls-CSP might help clinicians in diagnosing SF-damage.
Collapse
|
18
|
Bonomo R, Cavaletti G. Clinical and biochemical markers in CIPN: A reappraisal. Rev Neurol (Paris) 2021; 177:890-907. [PMID: 33648782 DOI: 10.1016/j.neurol.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The increased survival of cancer patients has raised growing public health concern on associated long-term consequences of antineoplastic treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a primarily sensory polyneuropathy, which may be accompanied by pain, autonomic disturbances, and motor deficit. About 70% of treated cancer patients might develop CIPN during or after the completion of chemotherapy, and in most of them such complication persists after six months from the treatment. The definition of the potential risk of development and resolution of CIPN according to a clinical and biochemical profile would be certainly fundamental to tailor chemotherapy regimen and dosage on individual susceptibility. In recent years, patient-reported and clinician-related tools along with quality of life instruments have been featured as primary outcomes in clinical setting and randomized trials. New studies on metabolomics markers are further pursuing accurate and easily accessible indicators of peripheral nerve damage. The aim of this review is to outline the strengths and pitfalls of current knowledge on CIPN, and to provide a framework for future potential developments of standardized protocols involving clinical and biochemical markers for CIPN assessment and monitoring.
Collapse
Affiliation(s)
- R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
19
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
20
|
Gordon-Williams R, Farquhar-Smith P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000Res 2020; 9. [PMID: 32201575 PMCID: PMC7076330 DOI: 10.12688/f1000research.21625.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause of pain and poor quality of life for those undergoing treatment for cancer and those surviving cancer. Many advances have been made in the pre-clinical science; despite this, these findings have not been translated into novel preventative measures and treatments for CIPN. This review aims to give an update on the pre-clinical science, preventative measures, assessment and treatment of CIPN.
Collapse
Affiliation(s)
- Richard Gordon-Williams
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
21
|
Martland ME, Rashidi AS, Bennett MI, Fallon M, Jones C, Rolke R, Mulvey MR. The use of quantitative sensory testing in cancer pain assessment: A systematic review. Eur J Pain 2020; 24:669-684. [DOI: 10.1002/ejp.1520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Maisie E. Martland
- St Gemma's Academic Unit of Palliative Care Leeds Institute of Health ScienceUniversity of Leeds Leeds UK
| | | | - Michael I. Bennett
- St Gemma's Academic Unit of Palliative Care Leeds Institute of Health ScienceUniversity of Leeds Leeds UK
| | - Marie Fallon
- Edinburgh Cancer Research Centre IGMMUniversity of Edinburgh Edinburgh UK
| | - Chris Jones
- St Gemma's Academic Unit of Palliative Care Leeds Institute of Health ScienceUniversity of Leeds Leeds UK
| | - Roman Rolke
- Department of Palliative Medicine Medical Faculty RWTH Aachen University Aachen Germany
| | - Matthew R. Mulvey
- St Gemma's Academic Unit of Palliative Care Leeds Institute of Health ScienceUniversity of Leeds Leeds UK
| |
Collapse
|
22
|
Segarra A, Arredondo KV, Jaramillo J, Jatem E, Salcedo MT, Agraz I, Ramos N, Carnicer C, Valtierra N, Ostos E. Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. Lupus 2019; 29:118-125. [PMID: 31865857 DOI: 10.1177/0961203319896018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Resistant lupus nephritis (LN) has been associated with the persistence of long-lived plasma cells. Preliminary studies identified bortezomib as a potential treatment option for patients with refractory LN. The aim of this study was to analyze the efficacy and safety of bortezomib in the treatment of severe refractory LN. METHODS This retrospective study included 12 female patients diagnosed for the first time with class IV or IV/V LN with acute or rapidly progressive kidney injury (n = 11) and/or severe nephrotic syndrome (n = 1) who showed resistance to induction therapy with cyclophosphamide, steroids, mycophenolate, and rituximab, and were treated with either intravenous or subcutaneous bortezomib plus intravenous dexamethasone. RESULTS All patients with acute or rapidly progressive kidney injury showed a significant reduction in both biochemical and immunological activity after a mean of 6 (minimum 5, maximum 7) weekly cycles of bortezomib regimen, with a significant increase in C3 levels and a significant decrease of anti-ds DNA antibody titers, Systemic Lupus Erythematosus Disease Activity Index score, serum creatinine, and proteinuria. One patient (8.3%) achieved a complete response, and 10 patients (83.4%) achieved a partial response. During follow-up, all these patients maintained partial responses under treatment with mycophenolate and low-dose glucocorticoids. The patient with refractory nephrotic syndrome showed a partial response but relapsed 11 months after the end of bortezomib treatment and was resistant to treatment. A significant decrease in serum IgG levels after initiation of bortezomib treatment was observed in all patients, five of them (41.6%) showed hypogammaglobulinemia (<500 mg/dl), but no patient suffered from opportunistic infections; in only two patients (16.6%) hypogammaglobulinemia persisted at the end of follow-up. Two patients (16.6%) suffered from sensory neuropathy, which led to bortezomib treatment discontinuation. CONCLUSIONS Bortezomib may be an effective option for refractory LN, but close monitoring must be performed for possible adverse events such as peripheral neuropathy and hypogammaglobulinemia.
Collapse
Affiliation(s)
- A Segarra
- Department of Nephrology, University Hospital Arnau of Vilanova, Biomedical Research institute of Lleida, University of Lleida, Spain
| | - K V Arredondo
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Jaramillo
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Jatem
- Department of Nephrology, University Hospital Arnau of Vilanova, Biomedical Research institute of Lleida, University of Lleida, Spain
| | - M T Salcedo
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| | - I Agraz
- Department of Nephrology, University Hospital Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| | - N Ramos
- Department of Nephrology, University Hospital Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| | - C Carnicer
- Department of Biochemistry, University Hospital Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| | - N Valtierra
- Department of Biochemistry, University Hospital Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| | - E Ostos
- Department of Biochemistry, University Hospital Vall d'Hebron, Barcelona, Autonomous University of Barcelona, Spain
| |
Collapse
|
23
|
Nishiwaki U, Yokote T, Hatooka J, Miyoshi T, Iwaki K, Masuda Y, Fujimoto M, Ueda M, Kinoshita Y, Arita Y, Shimizu M, Yamada T, Tanabe K, Akioka T, Imagawa A. Prediction of bortezomib-induced peripheral neuropathy with the R-R interval variation of the electrocardiogram in plasma cell myeloma: a retrospective study. Leuk Lymphoma 2019; 61:707-713. [PMID: 31642372 DOI: 10.1080/10428194.2019.1678152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bortezomib-induced peripheral neuropathy (BIPN) is a key dose-limiting toxicity in patients with plasma cell myeloma (PCM). This study examined 56 patients with PCM treated with bortezomib to determine the possible predisposing factors to BIPN with the R-R interval variation (RRIV) of the electrocardiogram (ECG). Of all, 17 patients developed Clinically obvious BIPN, grades 2-4 or grade worsening from the baseline neuropathy per the National Cancer Institute's Common Terminology Criteria for Adverse Events (v5.0). In the receiver operating characteristic curve analysis, the optimal RRIV cutoff value to distinguish patients with and without risk to develop BIPN was 1.391. A lower RRIV before bortezomib treatment independently correlated with the onset of Clinically obvious BIPN (p = .002) and the time to the onset of Clinically obvious BIPN (p < 0.001). A lower RRIV of the ECG before the bortezomib treatment is a predictive factor for BIPN in PCM.
Collapse
Affiliation(s)
- Uta Nishiwaki
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Taiji Yokote
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Jun Hatooka
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Takuji Miyoshi
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Kazuki Iwaki
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Yuki Masuda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Mayumi Fujimoto
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Mitsuya Ueda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Yuki Kinoshita
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Yui Arita
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Masatomo Shimizu
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Tomoyuki Yamada
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Kazuki Tanabe
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Toshikazu Akioka
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki City, Japan
| |
Collapse
|
24
|
Aydın Ş, Özdemir C, Turan SA, Başer Y, Kıyık M. Akciğer kanserinin tedavisinde periferiknöropati; Önemli bir komorbidite. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.620534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Höke A, Milbrandt J, DiAntonio A. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 2019; 4:129920. [PMID: 31484833 DOI: 10.1172/jci.insight.129920] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is one of the most prevalent dose-limiting toxicities of anticancer therapy. Development of effective therapies to prevent chemotherapy-induced neuropathies could be enabled by a mechanistic understanding of axonal breakdown following exposure to neuropathy-causing agents. Here, we reveal the molecular mechanisms underlying axon degeneration induced by 2 widely used chemotherapeutic agents with distinct mechanisms of action: vincristine and bortezomib. We showed previously that genetic deletion of SARM1 blocks vincristine-induced neuropathy and demonstrate here that it also prevents axon destruction following administration of bortezomib in vitro and in vivo. Using cultured neurons, we found that vincristine and bortezomib converge on a core axon degeneration program consisting of nicotinamide mononucleotide NMNAT2, SARM1, and loss of NAD+ but engage different upstream mechanisms that closely resemble Wallerian degeneration after vincristine and apoptosis after bortezomib. We could inhibit the final common axon destruction pathway by preserving axonal NAD+ levels or expressing a candidate gene therapeutic that inhibits SARM1 in vitro. We suggest that these approaches may lead to therapies for vincristine- and bortezomib-induced neuropathies and possibly other forms of peripheral neuropathy.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, USA
| | - Ryan A Doan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Galen C Cheng
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Shay X Huang
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ahmet Höke
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey Milbrandt
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, USA.,Department of Genetics and
| | - Aaron DiAntonio
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Timmins HC, Li T, Kiernan MC, Horvath LG, Goldstein D, Park SB. Quantification of Small Fiber Neuropathy in Chemotherapy-Treated Patients. THE JOURNAL OF PAIN 2019; 21:44-58. [PMID: 31325646 DOI: 10.1016/j.jpain.2019.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting side effect of treatment with neurotoxic cancer treatments which can result in long-term impairment. Deficits often reflect a large fiber polyneuropathy, however small fiber involvement resulting in neuropathic pain and autonomic dysfunction can occur. Quantification of both CIPN and small fiber neuropathy (SFN) remains a challenge. Accordingly, the prevalence and pathophysiology of small fiber neuropathy amongst cancer survivors remains poorly understood. This review will provide an overview of the clinical features of SFN associated with neurotoxic cancer treatments as well as a summary of current assessment tools for evaluating small fiber function, and their use in patients treated with neurotoxic chemotherapies. The continued development and utilization of novel measures quantifying small fiber involvement will help elucidate the pathophysiology underlying symptoms of CIPN and assist in informing treatment approaches. Accurately identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medication may reduce the impact of CIPN and improve long-term quality of life as well as provide better categorization of patients for future clinical trials of neuroprotective and treatment strategies for CIPN. PERSPECTIVE: This review provides a critical analysis of SFN associated with neurotoxic cancer treatments and the assessment tools for evaluating small fiber dysfunction in cancer patients. Quantification of small fiber involvement in CIPN will assist in identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medications.
Collapse
Affiliation(s)
- Hannah C Timmins
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Tiffany Li
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia; Royal Prince Alfred Hospital, Camperdown, Australia; Sydney Medical School, The University of Sydney, Australia
| | - Lisa G Horvath
- The Chris O'Brien Lifehouse, Camperdown, Australia; Royal Prince Alfred Hospital, Camperdown, Australia; Sydney Medical School, The University of Sydney, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia; Prince of Wales Hospital, Randwick, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
27
|
Macrophage Toll-like Receptor 9 Contributes to Chemotherapy-Induced Neuropathic Pain in Male Mice. J Neurosci 2019; 39:6848-6864. [PMID: 31270160 DOI: 10.1523/jneurosci.3257-18.2019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.
Collapse
|
28
|
Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160:688-701. [PMID: 30507781 DOI: 10.1097/j.pain.0000000000001448] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
Collapse
|
29
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
30
|
Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2019; 119:737-749. [PMID: 29121279 DOI: 10.1093/bja/aex229] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an update on the current clinical and preclinical understanding of chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on function and quality of life. Early assessment and diagnosis is important, and we discuss tools developed for this purpose. There are no effective strategies to prevent CIPN, with limited evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with extrapolation from other neuropathic pain states generally being used to direct treatment options for CIPN. The preclinical perspective includes a discussion on the development of clinically-relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, immune cells and changes in ion channels from summary of the latest literature in these areas. Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, combination therapies may well be required for most effective management. More effective treatment of CIPN will require closer links between oncology and pain management clinical teams to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration between clinical and preclinical research will facilitate the development of novel treatments for CIPN.
Collapse
Affiliation(s)
- S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - P M Dougherty
- Division of Anaesthesia, Critical Care and Pain Medicine, Department of Pain Medicine Research, The University of Texas M.D. Anderson Cancer Centre, Houston, TX, USA
| | - L A Colvin
- Department of Anaesthesia, Critical Care & Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| |
Collapse
|
31
|
Mao Q, Wu S, Gu X, Du S, Mo K, Sun L, Cao J, Bekker A, Chen L, Tao YX. DNMT3a-triggered downregulation of K 2p 1.1 gene in primary sensory neurons contributes to paclitaxel-induced neuropathic pain. Int J Cancer 2019; 145:2122-2134. [PMID: 30684388 DOI: 10.1002/ijc.32155] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Antineoplastic drugs induce dramatic transcriptional changes in dorsal root ganglion (DRG) neurons, which may contribute to chemotherapy-induced neuropathic pain. K2p 1.1 controls neuronal excitability by setting the resting membrane potential. Here, we report that systemic injection of the chemotherapy agent paclitaxel time-dependently downregulates the expression of K 2p 1.1 mRNA and its coding K2p 1.1 protein in the DRG neurons. Rescuing this downregulation mitigates the development and maintenance of paclitaxel-induced mechanical allodynia and heat hyperalgesia. Conversely, in the absence of paclitaxel administration, mimicking this downregulation decreases outward potassium current and increases excitability in the DRG neurons, leading to the enhanced responses to mechanical and heat stimuli. Mechanically, the downregulation of DRG K 2p 1.1 mRNA is attributed to paclitaxel-induced increase in DRG DNMT3a, as blocking this increase reverses the paclitaxel-induced the decrease of DRG K2p 1.1 and mimicking this increase reduces DRG K2p 1.1 expression. In addition, paclitaxel injection increases the binding of DNMT3a to the K 2p 1.1 gene promoter region and elevates the level of DNA methylation within this region in the DRG. These findings suggest that DNMT3a-triggered downregulation of DRG K2p 1.1 may contribute to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.,Department of Anesthesiology, Daping Hospital, Institute of Surgery Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Xiyao Gu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Kai Mo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Linlin Sun
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jing Cao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Liyong Chen
- Department of Anesthesiology, Daping Hospital, Institute of Surgery Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
32
|
Mandıroğlu S, Çevik C, Aylı M. Acupuncture for Neuropathic Pain Due to Bortezomib in a Patient with Multiple Myeloma. Acupunct Med 2018; 32:194-6. [DOI: 10.1136/acupmed-2013-010491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiple myeloma (MM) is characterised by an increase in plasma cells, particularly in the bone marrow but also in other organs and systems, and with the abnormal production of immunoglobulin. Bortezomib, a current treatment option, inhibits angiogenesis by proteasome inhibition and is known to be effective in the treatment of MM. Peripheral neuropathy (PN) is a common dose-related side effect of bortezomib in patients with MM. We describe a case of PN due to bortezomib treatment which responded dramatically to acupuncture treatment, enabling his bortezomib treatment to continue. The patient was a 74-year-old man with pain, numbness, tingling and weakness in his hands and feet after 22 days of bortezomib treatment given by the haematology clinic. His neuropathic pain score was 8/10. There were no autonomic symptoms. Electroneurophysiological testing confirmed sensorimotor PN. Acupuncture treatment was planned as his neuropathic pain continued. Acupuncture was administered bilaterally to ST36, SP6 and LI4 15 times (every other day in the first five sessions and then twice a week). The numbness, tingling and pain symptoms substantially decreased after the first two treatments. After the 15th session acupuncture treatment was continued once a month. At the end of the sixth month the neuropathic pain assessment score was 0/10. There was no side effect of acupuncture treatment. Acupuncture seems promising as a complementary medical treatment for neuropathic pain from bortezomib-induced PN. Clinical studies involving more cases and electrophysiological studies are necessary to investigate the effectiveness of acupuncture.
Collapse
Affiliation(s)
- Sibel Mandıroğlu
- Department of Physical Medicine and Rehabilitation, Ankara Physical Medicine and Rehabilitation Training and Research Hospital, Ankara, Turkey
| | - Cemal Çevik
- Medicine Faculty, Department of Biochemistry, Gazi University, Ankara, Turkey
| | - Meltem Aylı
- Medicine Faculty, Department of Hematology, Ufuk University, Ankara, Turkey
| |
Collapse
|
33
|
Bechakra M, Nieuwenhoff MD, van Rosmalen J, Groeneveld GJ, Scheltens-de Boer M, Sonneveld P, van Doorn PA, de Zeeuw CI, Jongen JL. Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain. Mol Pain 2018; 14:1744806918797042. [PMID: 30152246 PMCID: PMC6113731 DOI: 10.1177/1744806918797042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. Skin sections were immunostained using anti-protein gene product 9.5 (PGP9.5) and calcitonin gene-related peptide (CGRP) antibodies. Cumulative bortezomib dose and clinical assessment scales indicated light-moderate sensory neuropathy. Pain intensity >4 (numerical rating scale) was present in 77% of the patients. Median pain intensity and overall McGill Pain Questionnaire (MPQ) sum scores indicated moderate to severe neuropathic pain. Sural nerve sensory nerve action potentials were abnormal in 86%, while intraepidermal nerve fiber densities of PGP9.5 and CGRP were not significantly different from healthy controls. However, subepidermal nerve fiber density (SENFD) of PGP9.5 was significantly decreased and the axonal swelling ratio, a predictor of neuropathy, and upper dermis nerve fiber density (UDNFD) of PGP9.5, presumably representing sprouting of parasympathetic fibers, were significantly increased in BiPN patients. Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer.
Collapse
Affiliation(s)
- Malik Bechakra
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands.,2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- 3 Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands.,4 Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | | | - Pieter Sonneveld
- 7 Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I de Zeeuw
- 2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,8 Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, the Netherlands
| | - Joost Lm Jongen
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D, Guastella V. [Chemotherapy-induced peripheral neuropathy: Symptomatology and epidemiology]. Bull Cancer 2018; 105:1020-1032. [PMID: 30244980 DOI: 10.1016/j.bulcan.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is common with specific semiological characteristics. When CIPN appears, there are many difficulties in guaranteeing sustained treatment, especially with optimal protocol. Moreover, CIPN have bad repercussions on quality of life after cancer disease. In this article, we have achieved a current state of CIPN and try to report details about semiological characteristics and topography. We have also produced some epidemiological data. Nonetheless, we have not voluntarily introduced treatment because it will be the topic of further work.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- Délégation à la recherche clinique et à l'innovation, CHU de Clermont-Ferrand, université Clermont-Auvergne, NEURO-DOL, Inserm U1107, 2, rue Braga, 63100 Clermont-Ferrand, France
| | - Aurore Collin
- Université Clermont-Auvergne, NEURO-DOL, Inserm U1107, 2, rue Braga, 63100 Clermont-Ferrand, France
| | - Sakhalé Condé
- CHU de Clermont-Ferrand, université Clermont-Auvergne, neurologie, NEURO-DOL, Inserm U1107, 2, rue Braga, 63100 Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU de Clermont-Ferrand, hématologie clinique adulte, 1, rue Lucie-Aubrac, 63100 Clermont-Ferrand, France
| | - Denis Pezet
- CHU Clermont-Ferrand, université Clermont-Auvergne, chirurgie et oncologie digestive, Inserm U1071, 28, place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - David Balayssac
- Délégation à la recherche clinique et à l'innovation, CHU de Clermont-Ferrand, université Clermont-Auvergne, NEURO-DOL, Inserm U1107, 2, rue Braga, 63100 Clermont-Ferrand, France
| | - Virginie Guastella
- CHU de Clermont-Ferrand, centre de soins palliatifs, route de Chateaugay, 63118 Cébazat, France.
| |
Collapse
|
35
|
Cold therapy to prevent paclitaxel-induced peripheral neuropathy. Support Care Cancer 2018; 26:3461-3469. [PMID: 29681015 DOI: 10.1007/s00520-018-4199-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE This case-control study was designed to assess the efficacy of cryotherapy to prevent paclitaxel-induced painful peripheral neuropathy in women with breast cancer. METHODS Participants served as their own paired control, with randomization of the cooled glove/sock to either the dominant or the non-dominant hand/foot, worn for 15 min prior to, during, and 15 min after completion of the paclitaxel infusion. Outcome measures included the Neuropathic Pain Symptom Inventory, the Brief Pain Inventory, and quantitative sensory testing. Data were measured at each of six time points-baseline, post-treatment (approximately 2 weeks after the last paclitaxel infusion), and at the first, fifth, ninth, and final weekly paclitaxel treatments. RESULTS Of 29 randomized participants, 20 (69%) received at least one cryotherapy treatment, and 11 (38%) received all four cryotherapy treatments. Ten (34%) participants could not tolerate the cryotherapy, and six (21%) declined further participation at some point during the trial. Only seven participants (24%) were available for the final post-chemotherapy QST and questionnaires. There were no significant differences in measures of neuropathy or pain between treated and untreated hands or feet. CONCLUSIONS Strategies to prevent painful peripheral neuropathy are urgently needed. In this current trial, dropout due to discomfort precluded adequate power to fully understand the potential benefits of cryotherapy. Much more research is needed to discover safe and effective preventive strategies that can be easily implemented within busy infusion centers.
Collapse
|
36
|
Liu CC, Huang ZX, Li X, Shen KF, Liu M, Ouyang HD, Zhang SB, Ruan YT, Zhang XL, Wu SL, Xin WJ, Ma C. Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Exp Neurol 2018; 302:104-111. [PMID: 29339053 DOI: 10.1016/j.expneurol.2018.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/16/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
Painful neuropathy, as a severe side effect of chemotherapeutic bortezomib, is the most common reason for treatment discontinuation. However, the mechanism by which administration of bortezomib leads to painful neuropathy remains unclear. In the present study, we found that application of bortezomib significantly increased the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and phosphorylated signal transducer and activator of transcription-3 (STAT3) in dorsal root ganglion (DRG). Intrathecal injection of NLRP3 siRNA significantly prevented the mechanical allodynia induced by bortezomib treatment, and intrathecal injection of recombinant adeno-associated virus vector encoding NLRP3 markedly decreased paw withdrawal threshold of naive rats. Furthermore, the expressions of p-STAT3 were colocalized with NLRP3-positive cells in DRG neurons, and inhibition of STAT3 by intrathecal injection of AAV-Cre-GFP into STAT3flox/flox mice or inhibitor S3I-201 suppressed the upregulation of NLRP3 and mechanical allodynia induced by bortezomib treatment. Chromatin immunoprecipitation further found that bortezomib increased the recruitment of STAT3, as well as the acetylation of histone H3 and H4, in the NLRP3 promoter region in DRG neurons. Importantly, inhibition of the STAT3 activity by using S3I-201 or DRG local deficiency of STAT3 also significantly prevented the upregulated H3 and H4 acetylation in the NLRP3 promoter region following bortezomib treatment. Altogether, our results suggest that the upregulation of NLRP3 in DRG via STAT3-dependent histone acetylation is critically involved in bortezomib-induced mechanical allodynia.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhu-Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han-Dong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Su-Bo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yu-Ting Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiao-Long Zhang
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
37
|
Cardoso ACLR, Araújo DDD, Chianca TCM. Risk prediction and impaired tactile sensory perception among cancer patients during chemotherapy. Rev Lat Am Enfermagem 2018; 25:e2957. [PMID: 29319742 PMCID: PMC5768208 DOI: 10.1590/1518-8345.1979.2957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Objectives: to estimate the prevalence of impaired tactile sensory perception, identify risk
factors, and establish a risk prediction model among adult patients receiving
antineoplastic chemotherapy. Method: historical cohort study based on information obtained from the medical files of
127 patients cared for in the cancer unit of a private hospital in a city in Minas
Gerais, Brazil. Data were analyzed using descriptive and bivariate statistics,
with survival and multivariate analysis by Cox regression. Results: 57% of the 127 patients included in the study developed impaired tactile sensory
perception. The independent variables that caused significant impact, together
with time elapsed from the beginning of treatment up to the onset of the
condition, were: bone, hepatic and regional lymph node metastases; alcoholism;
palliative chemotherapy; and discomfort in lower limbs. Conclusion: impaired tactile sensory perception was common among adult patients during
chemotherapy, indicating the need to implement interventions designed for early
identification and treatment of this condition.
Collapse
|
38
|
Duggett NA, Flatters SJL. Characterization of a rat model of bortezomib-induced painful neuropathy. Br J Pharmacol 2017; 174:4812-4825. [PMID: 28972650 PMCID: PMC5727311 DOI: 10.1111/bph.14063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose Bortezomib (Velcade®) is a breakthrough treatment for multiple myeloma, significantly improving patient survival. However, its use is limited by painful neuropathy often resulting in dose reduction/cessation of first‐line treatment due to lack of treatment. The aim of this study was to characterize a clinically relevant rat model of bortezomib‐induced painful neuropathy, using established evoked measures and novel ethological techniques, to aid drug discovery. Experimental Approach Adult male Sprague–Dawley rats were injected i.p. with 0.1 and 0.2 mg·kg−1 bortezomib, or its vehicle, on days 0, 3, 7 and 10. Multiple behavioural approaches were utilized: mechanical hypersensitivity, cold allodynia, heat hypersensitivity, motor co‐ordination, burrowing and voluntary wheel running. At maximal bortezomib‐induced mechanical hypersensitivity, 200 mg·kg−1 ethosuximide/vehicle and 100 mg·kg−1 phenyl N‐tert‐butylnitrone (PBN)/vehicle were administered i.p. in separate experiments, and mechanical hypersensitivity assessed 1, 3 and 24 h later. Key Results Bortezomib induced dose‐related mechanical hypersensitivity for up to 80 days. Bortezomib induced short‐term cold allodynia, but no significant change in heat hypersensitivity, motor co‐ordination, voluntary wheel running and burrowing behaviour compared to vehicle‐treated controls. Systemic PBN and ethosuximide significantly ameliorated bortezomib‐induced mechanical hypersensitivity. Conclusions and Implications These data characterize a reproducible rat model of clinical‐grade bortezomib‐induced neuropathy demonstrating long‐lasting pain behaviours to evoked stimuli. Inhibition by ethosuximide and PBN suggests involvement of calcium and/or ROS in bortezomib‐induced painful neuropathy. These drugs could be used as preclinical positive controls to assess novel analgesics. As ethosuximide is widely used clinically, translation to the clinic to treat bortezomib‐induced painful neuropathy may be possible.
Collapse
Affiliation(s)
- Natalie A Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Bakogeorgos M, Georgoulias V. Risk-reduction and treatment of chemotherapy-induced peripheral neuropathy. Expert Rev Anticancer Ther 2017; 17:1045-1060. [PMID: 28868935 DOI: 10.1080/14737140.2017.1374856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN), a common adverse effect of several chemotherapeutic agents, has a significant impact on quality of life and may even compromise treatment efficacy, requiring chemotherapy dose reduction or discontinuation. CIPN is predominantly related with sensory rather than motor symptoms and the most common related cytotoxic agents are platinum compounds, taxanes and vinca alkaloids. CIPN symptoms may resolve after treatment cessation, but they can also be permanent and continue for years. Areas covered: We present an overview of CIPN pathophysiology, clinical assessment, prevention and treatment identified through a Pubmed search. Expert commentary: No substantial progress has been made in the last few years within the field of prevention and/or treatment of CIPN, in spite of remarkable efforts. Continuous research could expand our knowledge about chemotherapeutic-specific neuropathic pathways and eventually lead to the conception of innovative and targeted agents for the prevention and/or treatment of this debilitating chemotherapy adverse effect.
Collapse
|
40
|
Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity. Neurotox Res 2017; 32:555-562. [DOI: 10.1007/s12640-017-9760-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/03/2023]
|
41
|
Cascella M. Chemotherapy-induced peripheral neuropathy: limitations in current prophylactic strategies and directions for future research. Curr Med Res Opin 2017; 33:981-984. [PMID: 28097895 DOI: 10.1080/03007995.2017.1284051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marco Cascella
- a Division of Anesthesia, Department of Anesthesia , Endoscopy and Cardiology Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS , Naples , Italy
| |
Collapse
|
42
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
43
|
Paice JA, Mulvey M, Bennett M, Dougherty PM, Farrar JT, Mantyh PW, Miaskowski C, Schmidt B, Smith TJ. AAPT Diagnostic Criteria for Chronic Cancer Pain Conditions. THE JOURNAL OF PAIN 2017; 18:233-246. [PMID: 27884691 PMCID: PMC5439220 DOI: 10.1016/j.jpain.2016.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Chronic cancer pain is a serious complication of malignancy or its treatment. Currently, no comprehensive, universally accepted cancer pain classification system exists. Clarity in classification of common cancer pain syndromes would improve clinical assessment and management. Moreover, an evidence-based taxonomy would enhance cancer pain research efforts by providing consistent diagnostic criteria, ensuring comparability across clinical trials. As part of a collaborative effort between the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) and the American Pain Society (APS), the ACTTION-APS Pain Taxonomy initiative worked to develop the characteristics of an optimal diagnostic system. After the establishment of these characteristics, a working group consisting of clinicians and clinical and basic scientists with expertise in cancer and cancer-related pain was convened to generate core diagnostic criteria for an illustrative sample of 3 chronic pain syndromes associated with cancer (ie, bone pain and pancreatic cancer pain as models of pain related to a tumor) or its treatment (ie, chemotherapy-induced peripheral neuropathy). A systematic review and synthesis was conducted to provide evidence for the dimensions that comprise this cancer pain taxonomy. Future efforts will subject these diagnostic categories and criteria to systematic empirical evaluation of their feasibility, reliability, and validity and extension to other cancer-related pain syndromes. PERSPECTIVE The ACTTION-APS chronic cancer pain taxonomy provides an evidence-based classification for 3 prevalent syndromes, namely malignant bone pain, pancreatic cancer pain, and chemotherapy-induced peripheral neuropathy. This taxonomy provides consistent diagnostic criteria, common features, comorbidities, consequences, and putative mechanisms for these potentially serious cancer pain conditions that can be extended and applied with other cancer-related pain syndromes.
Collapse
Affiliation(s)
- Judith A Paice
- Division of Hematology-Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| | - Matt Mulvey
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Michael Bennett
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Patrick M Dougherty
- The Division of Anesthesia and Critical Care Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - John T Farrar
- Department of Epidemiology, Neurology, and Anesthesia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California, San Francisco, California
| | - Brian Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Thomas J Smith
- Department of Oncology, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
44
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front Pharmacol 2017; 8:86. [PMID: 28286483 PMCID: PMC5323411 DOI: 10.3389/fphar.2017.00086] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-induced peripheral neuropathy (CIPN). The health consequences of CIPN remain worrying as it is associated with several comorbidities and affects a specific population of patients already impacted by cancer, a strong driver for declines in older adults. The purpose of this review is to present a comprehensive overview of the long-term effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet fully understood but involve neuronopathy and/or axonopathy, mainly associated with DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral neuropathy with a “stocking and glove” distribution characterized by sensory loss, paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain in the most serious cases. Several risk factors can promote CIPN as a function of the anticancer drug considered, such as cumulative dose, treatment duration, history of neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain questionable, notably in the case of platinum-based anticancer drugs and taxanes, for which CIPN may last several years after the end of anticancer chemotherapies. These long-term effects are associated with comorbidities such as depression, insomnia, falls and decreases of health-related quality of life in cancer patients and survivors. However, it is noteworthy that these long-term effects remain poorly studied, and only limited data are available such as in the case of bortezomib and thalidomide-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| | - Aurore Collin
- INSERM U1107, NEURO-DOL, Université Clermont Auvergne Clermont-Ferrand, France
| | - Sakahlé Condé
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Neurologie, Université Clermont Auvergne Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU Clermont-Ferrand, Hématologie Clinique Adulte Clermont-Ferrand, France
| | - Denis Pezet
- INSERM U1071, CHU Clermont-Ferrand, Chirurgie et Oncologie Digestive, Université Clermont Auvergne Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
45
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
46
|
Zeng L, Alongkronrusmee D, van Rijn RM. An integrated perspective on diabetic, alcoholic, and drug-induced neuropathy, etiology, and treatment in the US. J Pain Res 2017; 10:219-228. [PMID: 28176937 PMCID: PMC5268333 DOI: 10.2147/jpr.s125987] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain (NeuP) is a syndrome that results from damaged nerves and/or aberrant regeneration. Common etiologies of neuropathy include chronic illnesses and medication use. Chronic disorders, such as diabetes and alcoholism, can cause neuronal injury and consequently NeuP. Certain medications with antineoplastic effects also carry an exquisitely high risk for neuropathy. These culprits are a few of many that are fueling the NeuP epidemic, which currently affects 7%-10% of the population. It has been estimated that approximately 10% and 7% of US adults carry a diagnosis of diabetes and alcohol disorder, respectively. Despite its pervasiveness, many physicians are unfamiliar with adequate treatment of NeuP, partly due to the few reviews that are available that have integrated basic science and clinical practice. In light of the recent Centers for Disease Control and Prevention guidelines that advise against the routine use of μ-opioid receptor-selective opioids for chronic pain management, such a review is timely. Here, we provide a succinct overview of the etiology and treatment options of diabetic and alcohol- and drug-induced neuropathy, three different and prevalent neuropathies fusing the combined clinical and preclinical pharmacological expertise in NeuP of the authors. We discuss the anatomy of pain and pain transmission, with special attention to key ion channels, receptors, and neurotransmitters. An understanding of pain neurophysiology will lead to a better understanding of the rationale for the effectiveness of current treatment options, and may lead to better diagnostic tools to help distinguish types of neuropathy. We close with a discussion of ongoing research efforts to develop additional treatments for NeuP.
Collapse
Affiliation(s)
- Lily Zeng
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
47
|
Tonello R, Fusi C, Materazzi S, Marone IM, De Logu F, Benemei S, Gonçalves MC, Coppi E, Castro-Junior CJ, Gomez MV, Geppetti P, Ferreira J, Nassini R. The peptide Phα1β, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br J Pharmacol 2016; 174:57-69. [PMID: 27759880 DOI: 10.1111/bph.13652] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 09/07/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Peptides from venomous animals have long been important for understanding pain mechanisms and for the discovery of pain treatments. Here, we hypothesized that Phα1β, a peptide from the venom of the armed spider Phoneutria nigriventer, produces analgesia by blocking the TRPA1 channel. EXPERIMENTAL APPROACH Cultured rat dorsal root ganglion (DRG) neurons, human fetal lung fibroblasts (IMR90) or HEK293 cells expressing the human TRPA1 (hTRPA1-HEK293), human TRPV1 (hTRPV1-HEK293) or human TRPV4 channels (hTRPV4-HEK293), were used for calcium imaging and electrophysiology. Nociceptive responses induced by TRPA1, TRPV1 or TRPV4 agonists or by bortezomib were investigated in mice. KEY RESULTS Phα1β selectively inhibited calcium responses and currents evoked by the TRPA1 agonist, allyl isothiocyanate (AITC), on hTRPA1-HEK293, IMR90 fibroblasts and DRG neurons. Phα1β did not affect calcium responses evoked by selective TRPV1 (capsaicin) or TRPV4 (GSK 1016790A) agonists on the various cell types. Intrathecal (i.t.) and intraplantar (i.pl.) administration of low doses of Phα1β (up to 300 pmol per paw) attenuated acute nociception and mechanical and cold hyperalgesia evoked by AITC (i.t. or i.pl.), without affecting responses produced by capsaicin or hypotonic solution. Notably, Phα1β abated the TRPA1-dependent neuropathic pain-like responses induced by bortezomib. In vitro and in vivo inhibition of TRPA1 by Phα1β was reproduced by a recombinant form of the peptide, CTK 01512-2. CONCLUSIONS AND IMPLICATIONS Phα1β and CTK 01512-2 selectively target TRPA1, but not other TRP channels. This specific action underlines the potential of Phα1β and CTK 01512-2 for pain treatment.
Collapse
Affiliation(s)
- Raquel Tonello
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Departmento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Camilla Fusi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Ilaria M Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Silvia Benemei
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Muryel C Gonçalves
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Celio J Castro-Junior
- Núcleo de Pós-graduação, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Marcus Vinicius Gomez
- Núcleo de Pós-graduação, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Juliano Ferreira
- Departmento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
48
|
Grammatico S, Cesini L, Petrucci MT. Managing treatment-related peripheral neuropathy in patients with multiple myeloma. Blood Lymphat Cancer 2016; 6:37-47. [PMID: 31360079 PMCID: PMC6467335 DOI: 10.2147/blctt.s91251] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy is one of the most important complications of multiple myeloma treatment. Neurological damage can be observed at the onset of the disease, due to the effect of monoclonal protein or radicular compression, but more often is treatment related. Vinca alkaloids in the past era, and more recently, thalidomide and bortezomib are mainly responsible. Degeneration of dorsal root ganglion is common, prevalently related to angiogenesis inhibition and cytokine modulation in the case of thalidomide and inhibition of the ubiquitin proteasome system in the case of bortezomib. Sensory neuropathy and neuropathic pain are more common; motor neuropathy and autonomic damage are less frequently observed. Neurotoxicity often affects patient's quality of life and requires dose modification or withdrawal of therapy, with a possible effect on the overall response. A prompt recognition of predisposing factors (such as diabetes mellitus, alcohol abuse, vitamin deficiencies, or viral infections) and appearance of signs and symptoms, through a periodic neurological assessment with appropriate scales, is extremely important. Effective management of treatment at the emergence of peripheral neuropathy can minimize the incidence and severity of this complication and preserve therapeutic efficacy. Dose adjustment could be necessary during treatment; moreover, gabapentin or pregabalin, tricyclic antidepressants, serotonin and norepinephrine reuptake inhibitors, carbamazepine, and opioid-type analgesics are suggested according to the pain severity. Some authors reported that patients who develop peripheral neuropathy during their multiple myeloma treatments presented a particular gene expression profile; therefore, future studies could be helpful for a better understanding of possible biological pathways underlying neurotoxicity.
Collapse
Affiliation(s)
- Sara Grammatico
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| | - Laura Cesini
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy,
| |
Collapse
|
49
|
Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 2016; 10:119-128. [PMID: 27054288 PMCID: PMC4982532 DOI: 10.1097/spc.0000000000000204] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. RECENT FINDINGS We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on antidepressants, opioids, and gabapentinoids given their broad usage. SUMMARY The review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain, and sex. Preclinical data support many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem.
Collapse
Affiliation(s)
- Holly L. Hopkins
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Sarah J.L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| |
Collapse
|
50
|
Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, Dougherty PM. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. THE JOURNAL OF PAIN 2016; 17:775-86. [PMID: 26979998 DOI: 10.1016/j.jpain.2016.02.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chemotherapy-induced peripheral neuropathy (CIPN) is a disruptive and persistent side effect of cancer treatment with paclitaxel. Recent reports showed that paclitaxel treatment results in the activation of Toll-like receptor 4 (TLR4) signaling and increased expression of monocyte chemoattractant protein 1 (MCP-1) in dorsal root ganglion cells. In this study, we sought to determine whether an important consequence of this signaling and also a key step in the CIPN phenotype was the recruitment and infiltration of macrophages into dorsal root ganglia (DRG). Here, we show that macrophage infiltration does occur in a time course that matches the onset of the behavioral CIPN phenotype in Sprague-Dawley rats. Moreover, depletion of macrophages by systemic administration of liposome-encapsulated clodronate (clophosome) partially reversed behavioral signs of paclitaxel-induced CIPN as well as reduced tumor necrosius factor α expression in DRG. Intrathecal injection of MCP-1 neutralizing antibodies reduced paclitaxel-induced macrophage recruitment into the DRG and also blocked the behavioral signs of CIPN. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-RS (LPS-RS) blocked mechanical hypersensitivity, reduced MCP-1 expression, and blocked the infiltration of macrophages into the DRG in paclitaxel-treated rats. The inhibition of macrophage infiltration into DRG after paclitaxel treatment with clodronate or LPS-RS prevented the loss of intraepidermal nerve fibers (IENFs) observed after paclitaxel treatment alone. These results are the first to indicate a mechanistic link such that activation of TLR4 by paclitaxel leads to increased expression of MCP-1 by DRG neurons resulting in macrophage infiltration to the DRG that express inflammatory cytokines and the combination of these events results in IENF loss and the development of behavioral signs of CIPN. PERSPECTIVE This paper shows that activation of innate immunity by paclitaxel results in a sequence of signaling events that results in the infiltration of the dorsal root ganglia by activated macrophages. Macrophages appear to drive the development of behavioral hypersensitivity and the loss of distal epidermal nerve fibers, and hence play an important role in the mechanism of paclitaxel-related neuropathy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Marianna de Carvalho-Barbosa
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Phillip J Albrecht
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|