1
|
Matuska W, Matuska J, Skorupska E, Siwek M, Herrero P, Santafé MM. Can Myofascial Trigger Points Involve Nociplastic Pain? A Scoping Review on Animal Models. J Pain Res 2023; 16:3747-3758. [PMID: 38026452 PMCID: PMC10640827 DOI: 10.2147/jpr.s422885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Nociplastic pain is a non-specific, regional pain lasting more than three months, characterised by the onset of hypersensitivity, despite no clear evidence of tissue damage. It is a relatively new classified type of pain. As a result, there has not yet been much work describing its precise modelling. The mechanism of its formation needs to be clearly explained. Authors point out that the occurrence of myofascial trigger points (MTrPs) can lead to this type of pain as one possibility. This paper summarises the available literature on modelling nociplastic pain and MTrPs. It complies with studies describing animal model creation and presents the results of performed experiments. The literature search was conducted in December 2022 and included the following databases: PubMed, Scopus, and Web of Science. In this scoping review, six studies were included. Two described the creation of animal models of nociplastic pain, one adapted old models to nociplastic pain, and three described the modelling of MTrPs. This is the first paper pointing in the possible direction of detecting and studying the correlation between MTrPs and nociplastic pain in animal models. However, there is currently insufficient evidence to describe MTrPs as nociplastic, as few studies with animal models exist.
Collapse
Affiliation(s)
- Wiktoria Matuska
- Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznań, Poland
| | - Jakub Matuska
- Department of Physiotherapy, University of Medical Sciences, Poznań, Poland
| | - Elżbieta Skorupska
- Department of Physiotherapy, University of Medical Sciences, Poznań, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, University of Science and Technology, Bydgoszcz, Poland
| | - Pablo Herrero
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, Zaragoza, Spain
| | - Manel M Santafé
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira I Virgili University, Reus, Spain
| |
Collapse
|
2
|
Álvarez-Pérez B, Deulofeu M, Homs J, Merlos M, Vela JM, Verdú E, Boadas-Vaello P. Long-lasting reflexive and nonreflexive pain responses in two mouse models of fibromyalgia-like condition. Sci Rep 2022; 12:9719. [PMID: 35691979 PMCID: PMC9189106 DOI: 10.1038/s41598-022-13968-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Nociplastic pain arises from altered nociception despite no clear evidence of tissue or somatosensory system damage, and fibromyalgia syndrome can be highlighted as a prototype of this chronic pain subtype. Currently, there is a lack of effective treatments to alleviate both reflexive and nonreflexive pain responses associated with fibromyalgia condition, and suitable preclinical models are needed to assess new pharmacological strategies. In this context, although in recent years some remarkable animal models have been developed to mimic the main characteristics of human fibromyalgia, most of them show pain responses in the short term. Considering the chronicity of this condition, the present work aimed to develop two mouse models showing long-lasting reflexive and nonreflexive pain responses after several reserpine (RIM) or intramuscular acid saline solution (ASI) injections. To our knowledge, this is the first study showing that RIM6 and ASI mouse models show reflexive and nonreflexive responses up to 5-6 weeks, accompanied by either astro- or microgliosis in the spinal cord as pivotal physiopathology processes related to such condition development. In addition, acute treatment with pregabalin resulted in reflexive pain response alleviation in both the RIM6 and ASI models. Consequently, both may be considered suitable experimental models of fibromyalgia-like condition, especially RIM6.
Collapse
Affiliation(s)
- Beltrán Álvarez-Pérez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.,University School of Health and Sport (EUSES), University of Girona, Girona, Catalonia, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
3
|
Jibira Y, Boakye-Gyasi E, Mensah Abotsi WK, Amponsah IK, Duah P, Baah FK, Woode E. Antinociceptive effects of a hydroethanolic stem bark extract of Burkea africana. Heliyon 2022; 8:e08917. [PMID: 35198779 PMCID: PMC8851081 DOI: 10.1016/j.heliyon.2022.e08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Pain is a major symptom of many clinical disorders and its relief has long been a concern for individuals across the globe. There is therefore an unmet need to search for new efficacious agents for the effective management of pain. The stem bark of the savanna tree Burkea africana (Hook) (Family: Leguminosae) is used in the Ghanaian traditional medicine for the treatment and management of various pain-related diseases. Method An acute oral toxicity study in mice was conducted by administering BAE (50–5000 mg kg−1p.o.). Antinociceptive effect of BAE (50–1000 mg kg−1p.o.) was evaluated using the acetic acid-induced abdominal constriction, acidic saline-induced muscle pain and formalin-induced pain models. The antinociceptive mechanism of BAE was also assessed using the formalin-induced pain model. Results The LD50 of BAE was thus estimated to be above 5000 mg kg−1 since none of the animals died in the acute toxicity study. Pretreatment with BAE (50–1000 mg kg−1p.o.) significantly reduced the number of writhes after acetic-acid administration compared to the vehicle treated group. BAE also produced a significant and dose-dependent reversal of mechanical hyperalgesia induced by the injection of the acidic saline. Administration of BAE was able to significantly suppress both phases of the formalin test. This effect of the extract was however reversed by pretreatment with naloxone and granisetron. Conclusions BAE exhibits antinociceptive effects in rodent pain models with a possible involvement of 5-HT3 receptors and opioidergic pathways. Burkea africana stem bark extract. Acetic acid-induced abdominal constriction. Acidic saline-induced muscle pain. Formalin-induced pain.
Collapse
Affiliation(s)
- Yakubu Jibira
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Department of Pharmacology and Toxicology, University for Development Studies, Tamale, Northern Region, Ghana
- Corresponding author.
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wonder Kofi Mensah Abotsi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Isaac Kingsley Amponsah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Peter Duah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Frederick Kwadwo Baah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| |
Collapse
|
4
|
Páez O, Segura-Chama P, Almanza A, Pellicer F, Mercado F. Properties and Differential Expression of H + Receptors in Dorsal Root Ganglia: Is a Labeled-Line Coding for Acid Nociception Possible? Front Physiol 2021; 12:733267. [PMID: 34764880 PMCID: PMC8576393 DOI: 10.3389/fphys.2021.733267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pain by chemical irritants is one of the less well-described aspects of nociception. The acidic substance is the paradigm of the chemical noxious compound. An acidic insult on cutaneous, subcutaneous and muscle tissue results in pain sensation. Acid (or H+) has at least two main receptor channels in dorsal root ganglia (DRG) nociceptors: the heat receptor transient receptor potential vanilloid 1 (TRPV1) and the acid-sensing ionic channels (ASICs). TRPV1 is a low-sensitivity H+ receptor, whereas ASIC channels display a higher H+ sensitivity of at least one order of magnitude. In this review, we first describe the functional and structural characteristics of these and other H+-receptor candidates and the biophysics of their responses to low pH. Additionally, we compile reports of the expression of these H+-receptors (and other possible complementary proteins) within the DRG and compare these data with mRNA expression profiles from single-cell sequencing datasets for ASIC3, ASIC1, transient receptor potential Ankiryn subtype 1 (TRPA1) and TRPV1. We show that few nociceptor subpopulations (discriminated by unbiased classifications) combine acid-sensitive channels. This comparative review is presented in light of the accumulating evidence for labeled-line coding for most noxious sensory stimuli.
Collapse
Affiliation(s)
- Omar Páez
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Pedro Segura-Chama
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- Cátedras CONACyT, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
5
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int J Mol Sci 2021; 22:ijms22083891. [PMID: 33918736 PMCID: PMC8068842 DOI: 10.3390/ijms22083891] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations in sleep and mood. It is estimated that two to eight percent of the world population is affected by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects. It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by the dysfunction of neuro-circuits, which involves the perception, transmission and processing of afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all quadrants of the body for at least three months and when pain is caused by digital pressure in at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic damage, and several diagnostic approaches have been developed in recent years, including the analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone to developing the disease than men. Unfortunately, the conventional medical therapies that target this pathology produce limited benefits. They remain largely pharmacological in nature and tend to treat the symptomatic aspects of various disorders reported by the patient. The statistics, however, highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to manage their symptoms.
Collapse
|
7
|
Lacagnina MJ, Li J, Lorca S, Rice KC, Sullivan K, O'Callaghan JP, Grace PM. A role for neuroimmune signaling in a rat model of Gulf War Illness-related pain. Brain Behav Immun 2021; 91:418-428. [PMID: 33127584 PMCID: PMC7749855 DOI: 10.1016/j.bbi.2020.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
More than a quarter of veterans of the 1990-1991 Persian Gulf War suffer from Gulf War Illness (GWI), a chronic, multi-symptom illness that commonly includes musculoskeletal pain. Exposure to a range of toxic chemicals, including sarin nerve agent, are a suspected root cause of GWI. Moreover, such chemical exposures induce a neuroinflammatory response in rodents, which has been linked to several GWI symptoms in rodents and veterans with GWI. To date, a neuroinflammatory basis for pain associated with GWI has not been investigated. Here, we evaluated development of nociceptive hypersensitivity in a model of GWI. Male Sprague Dawley rats were treated with corticosterone in the drinking water for 7 days, to mimic high physiological stress, followed by a single injection of the sarin nerve agent surrogate, diisopropyl fluorophosphate. These exposures alone were insufficient to induce allodynia. However, an additional sub-threshold challenge (a single intramuscular injection of pH 4 saline) induced long-lasting, bilateral allodynia. Such allodynia was associated with elevation of markers for activated microglia/macrophages (CD11b) and astrocytes/satellite glia (GFAP) in the lumbar dorsal spinal cord and dorsal root ganglia (DRG). Additionally, Toll-like receptor 4 (TLR4) mRNA was elevated in the lumbar dorsal spinal cord, while IL-1β and IL-6 were elevated in the lumbar dorsal spinal cord, DRG, and gastrocnemius muscle. Demonstrating a casual role for such neuroinflammatory signaling, allodynia was reversed by treatment with either minocycline, the TLR4 inhibitor (+)-naltrexone, or IL-10 plasmid DNA. Together, these results point to a role for neuroinflammation in male rats in the model of musculoskeletal pain related to GWI. Therapies that alleviate persistent immune dysregulation may be a strategy to treat pain and other symptoms of GWI.
Collapse
Affiliation(s)
- Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiahe Li
- Drug Design and Synthesis Section, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA
| | - Sabina Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenner C Rice
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Abd-ellatief R, Mohamed H, Kotb H. Reactive Astrogliosis in an Experimental Model of Fibromyalgia: Effect of Dexmedetomidine. Cells Tissues Organs 2018; 205:105-119. [DOI: 10.1159/000488757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
To our knowledge, this is the first study which investigates the induction of neuroinflammation in rats using an acidic-saline model of fibromyalgia. It is well known that the hippocampus has a fundamental role in pain perception, and astrocytes play a crucial role in pain signaling. Our aim is to evaluate the ability of dexmedetomidine to attenuate the inflammatory responses induced in astrocytes. In a group of healthy rats, induction of chronic muscle pain by intramuscular injection of 100 µL of acidic saline on days 0 and 5 resulted in peripheral sensitization (measured using the von Frey test) and significant (<i>p</i> < 0.05) increases in IL-1β (160.2 ± 1.1 to 335.2 ± 1.8), IL-6 (100.1 ± 1.4 to 202.4 ± 1.1), and TNF-α (60.0 ± 0.7 to 115.5 ± 1). Light and electron microscopy revealed degenerative changes in the hippocampus and reactive astrogliosis. Immunohistochemistry showed increased expression of glial fibrillary acid protein and inducible nitric oxide synthase. Surprisingly, treatment with a single dose of an α<sub>2</sub>-adrenergic agonist, dexmedetomidine (5 µg/kg i.p.), attenuated these changes. This trial suggests that dexmedetomidine possibly directly acts on astrocytes, and a peripheral action is also suggested.
Collapse
|
10
|
Ghasemi H, Tamaddonfard E, Soltanalinejad F. Role of thalamic ventral posterolateral nucleus histamine H 2 and opiate receptors in modulation of formalin-induced muscle pain in rats. Pharmacol Rep 2017; 69:1393-1401. [DOI: 10.1016/j.pharep.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
|
11
|
Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep 2017; 2:e618. [PMID: 29392233 PMCID: PMC5777681 DOI: 10.1097/pr9.0000000000000618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022] Open
Abstract
The current study shows that blockade of opioid receptors systemically in the periaqueductal gray and the rostral ventromedial medulla prevents analgesia by 8 weeks of wheel running in a chronic muscle pain model. We further show increases in serotonin transporter expression and reversal of hyperalgesia with a selective reuptake inhibitor in the rostral ventromedial medulla in the chronic muscle pain model, and exercise normalizes serotonin transporter expression. Introduction: It is generally believed that exercise produces its effects by activating central opioid receptors; there are little data that support this claim. The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are key nuclei in opioid-induced analgesia, and opioids interact with serotonin to produce analgesia. Objectives: The purpose was to examine central inhibitory mechanisms involved in analgesia produced by wheel running. Methods: C57/Black6 mice were given access to running wheels in their home cages before induction of chronic muscle hyperalgesia and compared with those without running wheels. Systemic, intra-PAG, and intra-RVM naloxone tested the role of central opioid receptors in the antinociceptive effects of wheel running in animals with muscle insult. Immunohistochemistry for the serotonin transporter (SERT) in the spinal cord and RVM, and pharmacological blockade of SERT, tested whether the serotonin system was modulated by muscle insult and wheel running. Results: Wheel running prevented the development of muscle hyperalgesia. Systemic naloxone, intra-PAG naloxone, and intra-RVM naloxone reversed the antinociceptive effect of wheel running in animals that had received muscle insult. Induction of chronic muscle hyperalgesia increased SERT in the RVM, and blockade of SERT reversed the hyperalgesia in sedentary animals. Wheel running reduced SERT expression in animals with muscle insult. The serotonin transporter in the superficial dorsal horn of the spinal cord was unchanged after muscle insult, but increased after wheel running. Conclusion: These data support the hypothesis that wheel running produced analgesia through central inhibitory mechanisms involving opioidergic and serotonergic systems.
Collapse
|
12
|
Nasir H, Mahboubi H, Gyawali S, Ding S, Mickeviciute A, Ragavendran JV, Laferrière A, Stochaj U, Coderre TJ. Consistent sex-dependent effects of PKMζ gene ablation and pharmacological inhibition on the maintenance of referred pain. Mol Pain 2016; 12:1744806916675347. [PMID: 27899695 PMCID: PMC5131814 DOI: 10.1177/1744806916675347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Persistently active PKMζ has been implicated in maintaining spinal nociceptive sensitization that underlies pain hypersensitivity. However, evidence for PKMζ in the maintenance of pain hypersensitivity comes exclusively from short-term studies in males using pharmacological agents of questionable selectivity. The present study examines the contribution of PKMζ to long-lasting allodynia associated with neuropathic, inflammatory, or referred visceral and muscle pain in males and females using pharmacological inhibition or genetic ablation. RESULTS Pharmacological inhibition or genetic ablation of PKMζ reduced mild formalin pain and slowly developing contralateral allodynia in nerve-injured rats, but not moderate formalin pain or ipsilateral allodynia in models of neuropathic and inflammatory pain. Pharmacological inhibition or genetic ablation of PKMζ also effectively reduced referred visceral and muscle pain in male, but not in female mice and rats. CONCLUSION We show pharmacological inhibition and genetic ablation of PKMζ consistently attenuate long-lasting pain hypersensitivity. However, differential effects in models of referred versus inflammatory and neuropathic pain, and in males versus females, highlight the roles of afferent input-dependent masking and sex differences in the maintenance of pain hypersensitivity.
Collapse
Affiliation(s)
- Hibatulnaseer Nasir
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sandeep Gyawali
- Division of Pharmacology & Toxicology, School of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Stephanie Ding
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Aiste Mickeviciute
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - J Vaigunda Ragavendran
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - André Laferrière
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Terence J Coderre
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Abdelhamid RE, Sluka KA. ASICs Mediate Pain and Inflammation in Musculoskeletal Diseases. Physiology (Bethesda) 2016; 30:449-59. [PMID: 26525344 DOI: 10.1152/physiol.00030.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic musculoskeletal pain is debilitating and affects ∼ 20% of adults. Tissue acidosis is present in painful musculoskeletal diseases like rheumatoid arthritis. ASICs are located on skeletal muscle and joint nociceptors as well as on nonneuronal cells in the muscles and joints, where they mediate nociception. This review discusses the properties of different types of ASICs, factors affecting their pH sensitivity, and their role in musculoskeletal hyperalgesia and inflammation.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| |
Collapse
|
14
|
Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 2016; 338:114-129. [PMID: 27291641 DOI: 10.1016/j.neuroscience.2016.06.006] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven.
Collapse
|
15
|
Differential contributions of A- and C-nociceptors to primary and secondary inflammatory hypersensitivity in the rat. Pain 2016; 156:1074-1083. [PMID: 25760474 PMCID: PMC4535358 DOI: 10.1097/j.pain.0000000000000151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is sensitization to thermal A-nociceptor activation in arthritic secondary hyperalgesia, with enhanced activation of spinal lamina I neurons. Primary hyperalgesia is characterized by increased responsiveness to both heat and mechanical stimulation in the area of injury. By contrast, secondary hyperalgesia is generally associated with increased responses to mechanical but not heat stimuli. We tested the hypothesis that sensitization in secondary hyperalgesia is dependent on the class of peripheral nociceptor (C- or A-nociceptor) rather than the modality of stimulation (mechanical vs heat). A- and C-nociceptors were selectively activated using contact heat ramps applied to the hind paw dorsum in animals with hind paw inflammation (primary hyperalgesia) and knee inflammatory arthritis (secondary hyperalgesia). Sensitization to A- and C-nociceptor activation in primary and secondary hyperalgesia was assessed by reflex withdrawal thresholds and by Fos immunocytochemistry in the dorsal horn of the spinal cord, as an index of neuronal activation. In primary hyperalgesia, only C-nociceptor-evoked withdrawal reflexes were sensitized. This was associated with increased spinal lamina I neuronal activation to both A- and C-nociceptor activation. Fos-like immunoreactivity (FLI) was unchanged in other dorsal horn laminae. In secondary hyperalgesia, only A-nociceptor-evoked withdrawal reflexes were sensitized, and FLI was increased in both superficial and deep dorsal laminae. Neurons in the superficial dorsal horn receive and process nociceptor inputs from the area of primary hyperalgesia, resulting in functional sensitization to C-nociceptive inputs. In inflammatory arthritis, secondary hyperalgesia is evoked by A-nociceptor thermal stimulation, suggesting that secondary hyperalgesia is A-nociceptor, rather than stimulus modality (mechanical vs thermal), dependent. Fos-like immunoreactivity evoked by A-nociceptor stimulation in secondary hyperalgesia suggests that the sensitization is underpinned by spinal neuronal sensitization in laminae I and IV/V.
Collapse
|
16
|
Sato H, Castrillon E, Cairns B, Bendixen K, Wang K, Nakagawa T, Wajima K, Svensson P. Intramuscular pH modulates glutamate-evoked masseter muscle pain magnitude in humans. Eur J Pain 2015; 20:106-15. [DOI: 10.1002/ejp.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 11/10/2022]
Affiliation(s)
- H. Sato
- Department of Dentistry & Oral Surgery; School of Medicine; Keio University; Tokyo Japan
- Department of Dentistry & Oral Surgery; Kawasaki Municipal Kawasaki Hospital; Japan
| | - E.E. Castrillon
- Department of Clinical Oral Physiology; School of Dentistry; Aarhus University; Denmark
- Scandinavian Center for Orofacial Neuroscience (SCON); Huddinge Sweden
| | - B.E. Cairns
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver Canada
- Center for Sensory-Motor Interaction; The Faculty of Medicine; Department of Health Science and Technology; Aalborg University; Denmark
| | - K.H. Bendixen
- Department of Clinical Oral Physiology; School of Dentistry; Aarhus University; Denmark
- Scandinavian Center for Orofacial Neuroscience (SCON); Huddinge Sweden
| | - K. Wang
- Center for Sensory-Motor Interaction; The Faculty of Medicine; Department of Health Science and Technology; Aalborg University; Denmark
| | - T. Nakagawa
- Department of Dentistry & Oral Surgery; School of Medicine; Keio University; Tokyo Japan
| | - K. Wajima
- Department of Dentistry & Oral Surgery; School of Medicine; Keio University; Tokyo Japan
| | - P. Svensson
- Department of Clinical Oral Physiology; School of Dentistry; Aarhus University; Denmark
- Scandinavian Center for Orofacial Neuroscience (SCON); Huddinge Sweden
- Department of Dental Medicine; Karolinska Institute; Huddinge Sweden
| |
Collapse
|
17
|
Sutton BC, Opp MR. Acute increases in intramuscular inflammatory cytokines are necessary for the development of mechanical hypersensitivity in a mouse model of musculoskeletal sensitization. Brain Behav Immun 2015; 44:213-20. [PMID: 25449670 DOI: 10.1016/j.bbi.2014.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022] Open
Abstract
Musculoskeletal pain is a widespread health problem in the United States. Back pain, neck pain, and facial pain are three of the most prevalent types of chronic pain, and each is characterized as musculoskeletal in origin. Despite its prevalence, preclinical research investigating musculoskeletal pain is limited. Musculoskeletal sensitization is a preclinical model of muscle pain that produces mechanical hypersensitivity. In a rodent model of musculoskeletal sensitization, mechanical hypersensitivity develops at the hind paws after injection of acidified saline (pH 4.0) into the gastrocnemius muscle. Inflammatory cytokines contribute to pain during a variety of pathologies, and in this study we investigate the role of local, intramuscular cytokines in the development of mechanical hypersensitivity after musculoskeletal sensitization in mice. Local intramuscular concentrations of interleukin-1β (IL-1), IL-6 and tumor necrosis factor-α (TNF) were quantified following injection of normal (pH 7.2) or acidified saline into the gastrocnemius muscle. A cell-permeable inhibitor was used to determine the impact on mechanical hypersensitivity of inhibiting nuclear translocation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) prior to musculoskeletal sensitization. The role of individual cytokines in mechanical hypersensitivity following musculoskeletal sensitization was assessed using knockout mice lacking components of the IL-1, IL-6 or TNF systems. Collectively, our data demonstrate that acidified saline injection increases intramuscular IL-1 and IL-6, but not TNF; that intramuscular pre-treatment with an NF-κB inhibitor blocks mechanical hypersensitivity; and that genetic manipulation of the IL-1 and IL-6, but not TNF systems, prevents mechanical hypersensitivity following musculoskeletal sensitization. These data establish that actions of IL-1 and IL-6 in local muscle tissue play an acute regulatory role in the development of mechanical hypersensitivity following musculoskeletal sensitization.
Collapse
Affiliation(s)
- Blair C Sutton
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA, United States; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Mark R Opp
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA, United States; Program in Neurobiology and Behavior University of Washington, Seattle, WA, United States.
| |
Collapse
|
18
|
Chopade AR, Sayyad FJ, Pore YV. Molecular Docking Studies of Phytocompounds from the Phyllanthus Species as Potential Chronic Pain Modulators. Sci Pharm 2014; 83:243-67. [PMID: 26839814 PMCID: PMC4727797 DOI: 10.3797/scipharm.1408-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/08/2014] [Indexed: 12/19/2022] Open
Abstract
The study of inflammatory pain has been one of the most rapidly advancing and expanding areas of pain research in recent years. Studies from our lab have demonstrated the chronic pain-modulating potential of the Phyllanthus species and their probable interaction with various inflammatory mediators involving enzymes like COX-2 and PGE synthase, cytokines like TNF-alpha and IL-1 beta, and with the NMDA receptor. Inflammatory mediators which play a crucial role in chronic inflammatory hyperalgesia and its subsequent modulation were selected for their interactions with 86 structurally diverse phytoconstituents identified from the Phyllanthus species. The docking analysis of the target proteins with the phytochemical ligands was performed using VLifeMDS software. The docking scores and analysis of the interactions of the phytocompounds with target proteins suggest that important molecules like lupeol, phyllanthin, hypopyllanthin, corilagin, epicatechin, and most of the other compounds have the ability to bind to multiple targets involved in inflammatory hyperalgesia. Our study strongly suggests that the findings of the present study could be exploited in the future for designing ligands in order to obtain novel molecules for the treatment and management of chronic pain.
Collapse
Affiliation(s)
- Atul R Chopade
- Department of Pharmacology and Pharmacognosy, Government College of Pharmacy, Karad, District Satara, 415124 Maharashtra, India; Department of Pharmacology, Rajarambapu College of Pharmacy, Kasegaon, District-Sangli, 415404 Maharashtra, India
| | - Fahim J Sayyad
- Department of Pharmacology and Pharmacognosy, Government College of Pharmacy, Karad, District Satara, 415124 Maharashtra, India; Department of Pharmacology, Rajarambapu College of Pharmacy, Kasegaon, District-Sangli, 415404 Maharashtra, India
| | - Yogesh V Pore
- Department of Pharmaceutical chemistry, Government College of Pharmacy, Karad, District Satara, 415124 Maharashtra, India
| |
Collapse
|
19
|
Abstract
Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles.
Collapse
|
20
|
Sugimura N, Ikeuchi M, Izumi M, Kawano T, Aso K, Kato T, Ushida T, Yokoyama M, Tani T. Repeated intra-articular injections of acidic saline produce long-lasting joint pain and widespread hyperalgesia. Eur J Pain 2014; 19:629-38. [PMID: 25158678 DOI: 10.1002/ejp.584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Synovial fluid in inflamed joint shows a drop in pH, which activates proton-gated ion channels in nociceptors. No studies have ever tried to develop and characterize acid-induced joint pain. METHODS Rats were injected intra-articularly with pH 4.0 acidic saline twice, 5 days apart. Pain-related behaviour tests including weight-bearing asymmetry, paw withdrawal threshold and knee compression threshold were conducted. To clarify the roles of proton-gated ion channels, rats were injected intra-articularly with selective antagonists for ASIC1a, ASIC3 and TRPV1 on day 5 (before the second injection) or on day 14. Underlying peripheral and central pain mechanisms were evaluated using joint histology, interleukin-1β concentrations in the synovium, single-fibre recording of the knee afferent and expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein (p-CREB) in the spinal dorsal horn. RESULTS Repeated injections of acidic saline induced weight-bearing asymmetry, decrease in paw withdrawal threshold and knee compression threshold bilaterally, which lasted until day 28. Early administration of ASIC3 antagonist reduced the bilateral and long-lasting hyperalgesia. Neither articular degeneration nor synovial inflammation was observed. C-fibre of the knee afferent was activated by acidic saline, which was attenuated by pre-injection of ASIC3 antagonist. p-CREB expression was transiently up-regulated bilaterally on day 6, but not on day 14. CONCLUSION We developed and characterized a model of acid-induced long-lasting bilateral joint pain. Peripheral ASIC3 and spinal p-CREB played important roles for the development of hyperalgesia. This animal model gives insights into the mechanisms of joint pain, which is helpful in developing better pain treatments.
Collapse
Affiliation(s)
- N Sugimura
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chopade A, Sayyad F. Antifibromyalgic activity of standardized extracts of Phyllanthus amarus and Phyllanthus fraternus in acidic saline induced chronic muscle pain. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Sutton BC, Opp MR. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization. Sleep 2014; 37:515-24. [PMID: 24587574 DOI: 10.5665/sleep.3488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. DESIGN This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. METHODS Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. RESULTS Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased numbers of sleep-wake state transitions during the light and dark periods; changes in nonrapid eye movement (NREM) sleep, rapid eye movement sleep, and wakefulness; and altered delta power during NREM sleep. These effects persisted for at least 3 weeks postsensitization. CONCLUSIONS Our data demonstrate that sleep fragmentation combined with musculoskeletal sensitization exacerbates the physiological and behavioral responses of mice to musculoskeletal sensitization, including mechanical hypersensitivity and sleep-wake behavior. These data contribute to increasing literature demonstrating bidirectional relationships between sleep and pain. The prevalence and incidence of insufficient sleep and pathologies characterized by chronic musculoskeletal pain are increasing in the United States. These demographic data underscore the need for research focused on insufficient sleep and chronic pain so that the quality of life for the millions of individuals with these conditions may be improved.
Collapse
Affiliation(s)
- Blair C Sutton
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA ; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Mark R Opp
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA ; Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Sutton BC, Opp MR. Musculoskeletal sensitization and sleep: chronic muscle pain fragments sleep of mice without altering its duration. Sleep 2014; 37:505-13. [PMID: 24587573 DOI: 10.5665/sleep.3486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Musculoskeletal pain in humans is often associated with poor sleep quality. We used a model in which mechanical hypersensitivity was induced by injection of acidified saline into muscle to study the impact of musculoskeletal sensitization on sleep of mice. DESIGN A one month pre-clinical study was designed to determine the impact of musculoskeletal sensitization on sleep of C57BL/6J mice. METHODS We instrumented mice with telemeters to record the electroencephalogram (EEG) and body temperature. We used an established model of musculoskeletal sensitization in which mechanical hypersensitivity was induced using two unilateral injections of acidified saline (pH 4.0). The injections were given into the gastrocnemius muscle and spaced five days apart. EEG and body temperature recordings started prior to injections (baseline) and continued for three weeks after musculoskeletal sensitization was induced by the second injection. Mechanical hypersensitivity was assessed using von Frey filaments at baseline (before any injections) and on days 1, 3, 7, 14, and 21 after the second injection. RESULTS Mice injected with acidified saline developed bilateral mechanical hypersensitivity at the hind paws as measured by von Frey testing and as compared to control mice and baseline data. Sleep during the light period was fragmented in experimental mice injected with acidified saline, and EEG spectra altered. Musculoskeletal sensitization did not alter the duration of time spent in wakefulness, non-rapid eye movement sleep, or rapid eye movement sleep. CONCLUSIONS Musculoskeletal sensitization in this model results in a distinct sleep phenotype in which sleep is fragmented during the light period, but the overall duration of sleep is not changed. This study suggests the consequences of musculoskeletal pain include sleep disruption, an observation that has been made in the clinical literature but has yet to be studied using preclinical models.
Collapse
Affiliation(s)
- Blair C Sutton
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA ; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Mark R Opp
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA ; Program of Neurobiology and Behavior University of Washington, Seattle, WA
| |
Collapse
|
24
|
Castrillon EE, Cairns B, List T, Svensson P, Ernberg M. Acidic saline-induced pain as a model for experimental masseter myalgia in healthy subjects. Eur J Pain 2013; 17:1438-46. [PMID: 23649906 DOI: 10.1002/j.1532-2149.2013.00324.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Repeated injection of acidic saline into skeletal muscles of the leg in rodents induces a prolonged bilateral mechanical hyperalgesia that persists for up to 30 days and may be useful to model widespread muscle pain conditions. In this study, repeated injection of acidic (pH 3.3) saline solution into the masseter muscle of healthy human subjects was undertaken to determine if these injections are painful and whether they would induce a prolonged period of muscle sensitization to artificial and/or natural mechanical stimulation of the masseter and temporalis muscles. METHODS Eighteen subjects (10 male, 8 female) participated in the study. Subjects received two injections of 0.5 mL acidic or regular isotonic saline 2 days apart, in a randomized, double blind, crossover design. RESULTS There was no significant difference in pain intensity ratings when acidic saline injections were compared with regular saline injections. Pain area drawings were, however, significantly larger in response to the first injection of acidic saline than to the second injection of acidic saline or to either the first or second injection of regular saline. Repeated injection of acidic saline did not significantly alter pressure pain thresholds from the masseter or temporalis muscles on either the injected side or the opposite side over the 10-day post injection monitoring period. There was also no effect of injections on chewing. CONCLUSION These findings indicate that, unlike in some rodent models, repeated injection of low pH solutions into jaw muscles of humans fails to induce a period of prolonged muscle hyperalgesia.
Collapse
Affiliation(s)
- E E Castrillon
- Section of Clinical Oral Physiology, Department of Dentistry, Aarhus University, Denmark; Section of Orofacial Pain and Jaw Function, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
25
|
Ernberg M, Castrillon EE, Ghafouri B, Larsson B, Gerdle B, List T, Svensson P. Experimental myalgia induced by repeated infusion of acidic saline into the human masseter muscle does not cause the release of algesic substances. Eur J Pain 2012; 17:539-50. [PMID: 23132643 DOI: 10.1002/j.1532-2149.2012.00216.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND Animal studies have shown that two repeated intramuscular injections of acidic saline induce mechanical allodynia that lasts for 4 weeks with spread to the contralateral side. In this study, we tested the hypothesis that two repeated intramuscular infusions of acidic saline into the human masseter muscle is associated with pain, mechanical allodynia and release of algesic substances. Eighteen healthy volunteers participated. On day 1, 2.5 mL of acidic saline (pH 3.3) was infused into one of the masseter muscles and isotonic saline (pH 6.0) into the other (randomized and single-blind). Two days later, intramuscular microdialysis was performed to sample serotonin, glutamate, pyruvate, lactate and glucose, during which the saline infusions were repeated. Pain and pressure pain thresholds (PPTs) were recorded before and after infusions on both days. RESULTS Pain intensity induced by the infusions was higher after acidic than that after isotonic saline (p < 0.05). PPTs were decreased on both sides after microdialysis compared with baseline day 1 (p's < 0.05), but there were no differences in PPTs between sides at any time point. The levels of serotonin, glutamate, pyruvate, lactate or glucose did not change significantly during microdialysis. CONCLUSION Infusion of acidic saline caused low levels of muscle pain, but no mechanical allodynia and no increased release of algesic substances. The value of this model appears modest, but future studies could be performed with larger sample size and higher flow rate before definite conclusions about the validity of the model for craniofacial myalgia can be drawn.
Collapse
Affiliation(s)
- M Ernberg
- Section of Orofacial Pain and Jaw Function, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
ASICs Do Not Play a Role in Maintaining Hyperalgesia Induced by Repeated Intramuscular Acid Injections. PAIN RESEARCH AND TREATMENT 2011; 2012:817347. [PMID: 22191025 PMCID: PMC3236358 DOI: 10.1155/2012/817347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/04/2011] [Indexed: 11/30/2022]
Abstract
Repeated intramuscular acid injections produce long-lasting mechanical hyperalgesia that depends on activation of ASICs. The present study investigated if pH-activated currents in sensory neurons innervating muscle were altered in response to repeated acid injections, and if blockade of ASICs reverses existing hyperalgesia. In muscle sensory neurons, the mean acid-evoked current amplitudes and the biophysical properties of the ASIC-like currents were unchanged following acidic saline injections when compared to neutral pH saline injections or uninjected controls. Moreover, increased mechanical sensitivity of the muscle and paw after the second acid injection was unaffected by local blockade of ASICs (A-317567) in the muscle. As a control, electron microscopic analysis showed that the tibial nerve was undamaged after acid injections. Our previous studies demonstrated that ASICs are important in the development of hyperalgesia to repeated acid injections. However, the current data suggest that ASICs are not involved in maintaining hyperalgesia to repeated intramuscular acid injections.
Collapse
|
27
|
Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci 2011; 31:13728-38. [PMID: 21957236 DOI: 10.1523/jneurosci.3637-11.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Musculoskeletal pain affects nearly half of all adults, most of whom are vitamin D deficient. Previous findings demonstrated that putative nociceptors ("pain-sensing" nerves) express vitamin D receptors (VDRs), suggesting responsiveness to 1,25-dihydroxyvitamin D. In the present study, rats receiving vitamin D-deficient diets for 2-4 weeks showed mechanical deep muscle hypersensitivity, but not cutaneous hypersensitivity. Muscle hypersensitivity was accompanied by balance deficits and occurred before onset of overt muscle or bone pathology. Hypersensitivity was not due to hypocalcemia and was actually accelerated by increased dietary calcium. Morphometry of skeletal muscle innervation showed increased numbers of presumptive nociceptor axons (peripherin-positive axons containing calcitonin gene-related peptide), without changes in sympathetic or skeletal muscle motor innervation. Similarly, there was no change in epidermal innervation. In culture, sensory neurons displayed enriched VDR expression in growth cones, and sprouting was regulated by VDR-mediated rapid response signaling pathways, while sympathetic outgrowth was not affected by different concentrations of 1,25-dihydroxyvitamin D. These findings indicate that vitamin D deficiency can lead to selective alterations in target innervation, resulting in presumptive nociceptor hyperinnervation of skeletal muscle, which in turn is likely to contribute to muscular hypersensitivity and pain.
Collapse
|
28
|
Sharma NK, McCarson K, Van Dillen L, Lentz A, Khan T, Cirstea CM. Primary somatosensory cortex in chronic low back pain - a H-MRS study. J Pain Res 2011; 4:143-50. [PMID: 21647218 PMCID: PMC3100229 DOI: 10.2147/jpr.s19297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 12/25/2022] Open
Abstract
The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC), are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP). Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and glutamine/glutamate (Glx) were measured with proton magnetic resonance spectroscopy (1H-MRS) in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001) and decreased Cho (P = 0.04) along with lower correlations between all metabolites in right SSC (P = 0.007) in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls) and between left mI and right Cho (P = 0.048 vs P = 0.6). Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively) while right Glx was positively correlated with pain severity (P = 0.04). Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration and right neuronal-glial alterations to pain severity. Thus, the 1H-MRS approach proposed here can be used to quantify relevant cerebral metabolite changes in chronic pain, and consequently increase our knowledge of the factors leading from these changes to clinical outcomes.
Collapse
Affiliation(s)
- Neena K Sharma
- Department of Physical Therapy and Rehabilitation Science
| | | | | | | | | | | |
Collapse
|
29
|
Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neurosci Lett 2011; 495:173-7. [DOI: 10.1016/j.neulet.2011.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/19/2011] [Accepted: 02/03/2011] [Indexed: 11/20/2022]
|
30
|
Niu KY, Ro JY. Changes in intramuscular cytokine levels during masseter inflammation in male and female rats. Neurosci Lett 2010; 487:223-7. [PMID: 20969918 DOI: 10.1016/j.neulet.2010.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/02/2010] [Accepted: 10/09/2010] [Indexed: 02/07/2023]
Abstract
The present study was conducted to examine cytokine profiles in the masseter muscle before and after complete Freund's adjuvant (CFA)-induced inflammation and possible sex differences in the cytokine levels. Age matched male and female Sprague Dawley rats were injected with CFA in the mid-region of the masseter muscle. Muscle tissue surrounding the injection site was extracted 6h, 1, 3 and 7 days after the injection to measure TNF-α, IL-1β, IL-6 and IL-4 levels with Luminex multi-analyte profiling (xMAP) technology. The cytokine levels were compared to those obtained from naïve rats. CFA injection into the masseter muscle led to a significant time effect in the level of TNF-α compared to that of naïve rats. The pattern of changes in TNF-α level after CFA injection was significantly different between the male and female rats owing to the differences in basal levels. CFA injection induced significant time-dependent increases in the levels of IL-1β and IL-6 in the masseter muscle in both male and female rats. The level of IL-4 was slightly, but significantly, reduced in both sexes at 6h and 3 days after CFA-induced inflammation. No significant sex differences were observed in the levels of IL-1β, IL-6 or IL-4. The results provided novel information about distinct cytokine profiles during CFA-induced muscle inflammation, and the basis for further pursuing contributions of each cytokine in pain processing and analgesic responses in both sexes.
Collapse
Affiliation(s)
- Katelyn Y Niu
- University of Maryland Baltimore, Department of Neural and Pain Sciences, Baltimore, MD 21201, USA
| | | |
Collapse
|
31
|
Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Phys Ther 2010; 90:714-25. [PMID: 20338916 PMCID: PMC3171655 DOI: 10.2522/ptj.20090168] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Present literature and clinical practice provide strong support for the use of aerobic exercise in reducing pain and improving function for individuals with chronic musculoskeletal pain syndromes. However, the molecular basis for the positive actions of exercise remains poorly understood. Recent studies suggest that neurotrophin-3 (NT-3) may act in an analgesic fashion in various pain states. OBJECTIVE The purpose of the present study was to examine the effects of moderate-intensity aerobic exercise on pain-like behavior and NT-3 in an animal model of widespread pain. DESIGN This was a repeated-measures, observational cross-sectional study. METHODS Forty female mice were injected with either normal (pH 7.2; n=20) or acidic (pH 4.0; n=20) saline in the gastrocnemius muscle to induce widespread hyperalgesia and exercised for 3 weeks. Cutaneous (von Frey monofilament) and muscular (forceps compression) mechanical sensitivity were assessed. Neurotrophin-3 was quantified in 2 hind-limb skeletal muscles for both messenger RNA (mRNA) and protein levels after exercise training. Data were analyzed with 2-factor analysis of variance for repeated measures (group x time). RESULTS Moderate-intensity aerobic exercise reduced cutaneous and deep tissue hyperalgesia induced by acidic saline and stimulated NT-3 synthesis in skeletal muscle. The increase in NT-3 was more pronounced at the protein level compared with mRNA expression. In addition, the increase in NT-3 protein was significant in the gastrocnemius muscle but not in the soleus muscle, suggesting that exercise can preferentially target NT-3 synthesis in specific muscle types. LIMITATIONS Results are limited to animal models and cannot be generalized to chronic pain syndromes in humans. CONCLUSIONS This is the first study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in a rodent model of pain and providing a possible molecular basis for exercise training in reducing muscular pain.
Collapse
|
32
|
Systemic minocycline differentially influences changes in spinal microglial markers following formalin-induced nociception. J Neuroimmunol 2010; 221:25-31. [PMID: 20202692 DOI: 10.1016/j.jneuroim.2010.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/27/2022]
Abstract
In the present study, intraperitoneal administration of minocycline attenuated enhancing nociceptive behaviors in those rats receiving dual formalin injections (5% formalin followed at 7 days later by 1% formalin). The minocycline treatment did not prevent the increase in OX-42 and MHC class I labeling and morphological changes, but significantly attenuated upregulation of phospho-p38 in activated microglia. These results suggest that the later days of microglial activation with upregulated immune markers in the spinal cord contributes to enhancing long-term pain response by a pathway of p38 activation in microglia.
Collapse
|