1
|
Teng JF, Lu XY, Long JH, Shi Y, Hu XQ, Sui JF, Wang P, Zeng LL, Li X, Xu JH, Ou ZZ, Hu KH, Liu SL. The projection from the rostral anterior cingulate cortex to the ventral tegmental area regulates 5-HT-induced itch aversion and scratching in rats. Neurobiol Dis 2025; 207:106844. [PMID: 39956463 DOI: 10.1016/j.nbd.2025.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
Many studies in humans and rodents have shown that the anterior cingulate cortex (ACC) plays a critical role in the regulation of pain-related aversion and that the projection from the rostral ACC (rACC) to the ventral tegmental area (VTA) is implicated in this modulation process. The ACC is also reported to be involved in the regulation of itch-scratch behavior. However, it remains unclear whether the ACC is involved in the modulation of the negative emotions induced by acute itch sensation. In this study, we investigated the pruritogen-induced conditioned place aversion (CPA) and itch-scratching behavior in rats after pharmacogenetic inhibition of the activities of rACC-VTA pathway or the rACC neurons, respectively. Pharmacogenetic inhibition of glutamatergic neurons of rACC projecting to the VTA alleviated the CPA responses and itch-scratching behavior induced by the subcutaneous injection of 5-HT, a nonhistamine-dependent pruritogen. However, pharmacogenetic inhibition of rACC neurons did not change the CPA behavior associated with itch and, conversely, increased itch-scratching behavior. These results reveal that a specific subpopulation of rACC neurons projecting to the VTA positively regulates itch sensation and the negative emotion accompanying itch, whereas the global rACC negatively modulates acute non-histaminergic itch in rats. Postsynaptic GABAergic neurons in the VTA may mediate emotion modulation of the rACC-VTA pathway. The current findings contribute to a better understanding of the circuit mechanisms underlying the processing of different components of itch, such as sensation and emotion.
Collapse
Affiliation(s)
- Jun-Fei Teng
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Xing-Yu Lu
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Jun-Hui Long
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Ying Shi
- Department of Rheumatology, The Ninth People's Hospital of Chongqing, Chongqing 400799, China
| | - Xue-Qiang Hu
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Jian-Feng Sui
- Department of Rehabilitation Medicine, SuiNing Central Hospital, SuiNing 629000, China; Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ping Wang
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Lian-Lin Zeng
- Department of Rehabilitation Medicine, SuiNing Central Hospital, SuiNing 629000, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jin-He Xu
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Zu-Zhen Ou
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Ke-Hui Hu
- Department of Rehabilitation Medicine, SuiNing Central Hospital, SuiNing 629000, China.
| | - Shu-Lei Liu
- Department of Dermatology of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China.
| |
Collapse
|
2
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
3
|
Wang SY, Chiu CC, Wang JJ, Chen YW, Chou AK, Hung CH. Treadmill workouts alleviate neuropathic allodynia and scratching behavior in rats following thoracotomy. Neurol Res 2022; 44:524-533. [PMID: 35001813 DOI: 10.1080/01616412.2021.2024719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the experiment was to investigate the effects of treadmill exercise on postthoracotomy pain and the expression of spinal pro-inflammatory and anti-inflammatory cytokines. METHODS Animals were randomly distributed into four groups: (a) sham surgery, (b) rats following 60 min thoracotomy and rib retraction (thoracotomy), (c) thoracotomy rats received treadmill training (thoracotomy+treadmill), and (d) sham surgery rats received treadmill training (sham surgery+treadmill). Treadmill workouts were started on postoperative day 10 (POD10) and lasted for 6 weeks (5 days per week). Rats were examined for cold allodynia using acetone and mechanical allodynia using von Frey hairs (in grams) at the surgical site. Spinal pro-inflammatory and anti-inflammatory cytokines were analyzed on PODs 28 and 49. RESULTS Both thoracotomy and thoracotomy+treadmill groups exhibited a decrease in mechanical force thresholds (g) and an increase in scratches per min on POD10. Mechanical hypersensitivity and incremental scratches lasted from POD14 and POD49 in the thoracotomy group. Although force thresholds and scratches remained not return to baseline, incremental force thresholds (p < 0.001) and diminutive scratches (p < 0.001) occurred after 6-week treadmill workouts. The rise in spinal interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations or the decline in spinal IL-10 concentration in thoracotomy+treadmill rats was less (p < 0.05) than thoracotomy rats without exercise. CONCLUSIONS Mechanical allodynia using von Frey filament testing and cold allodynia by acetone testing were improved in thoracotomy rats after treadmill workouts.. Treadmill exercise restrained excess pro-inflammatory cytokine expression but increased anti-inflammatory cytokine level in a rib retraction model.
Collapse
Affiliation(s)
- Siao-Yuan Wang
- Department of Physical Therapy, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan Tainan Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - An-Kuo Chou
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Chou AK, Chiu CC, Liu CC, Wang JJ, Chen YW, Hung CH. Pulsed Ultrasound Remedies Post-thoracotomy Hypersensitivity and Increases Spinal Anti-inflammatory Cytokine in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3296-3304. [PMID: 32891426 DOI: 10.1016/j.ultrasmedbio.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
The purpose of the experiment was to study the effect of pulsed ultrasound (PUS) on post-thoracotomy pain and local tissue temperature and to correlate the findings with the alteration in spinal anti-inflammatory and pro-inflammatory cytokines. Mechanical sensitivity, subcutaneous temperature and spinal interleukin-10 (IL-10), IL-6 or tumor necrosis factor-alpha (TNF-α) expression were examined in a rat model of experimental post-thoracotomy pain. Group 1 received a sham surgery where thoracotomy was performed except for rib retraction. Group 2 underwent thoracotomy with rib retraction (TRR). Group 3 received the TRR procedure followed by PUS. Group 4 underwent the TRR procedure followed by only the massage with the ultrasound turned off. Compared with group 1 (sham), groups 2-4 showed a decrease in mechanical withdrawal thresholds on postoperative days (PODs) 10 and 11. On PODs 16, 23 and 30, group 3 (TRR+PUS-1) displayed an increase in mechanical withdrawal thresholds compared with groups 2 and 4. Subcutaneous and body temperatures in group 3 were not prominently different from group 1, group 2 (TRR only) or group 4 (TRR+PUS-0). Compared with group 2, group 3 had an increase in spinal IL-10 level on POD 30 and a decrease in spinal IL-6 or TNF-α expression on PODs 16 and 30. We concluded that mechanical hypersensitivity after TRR is postponed by PUS, and its effect continues for 3 wk. A PUS dose not increase local tissue temperature. The beneficial effect of PUS appears related to upregulation of spinal anti-inflammatory cytokine and downregulation of spinal pro-inflammatory cytokines.
Collapse
Affiliation(s)
- An-Kuo Chou
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chen-Chih Liu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Allied AI Biomed Center, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Abdus-Saboor I, Fried NT, Lay M, Burdge J, Swanson K, Fischer R, Jones J, Dong P, Cai W, Guo X, Tao YX, Bethea J, Ma M, Dong X, Ding L, Luo W. Development of a Mouse Pain Scale Using Sub-second Behavioral Mapping and Statistical Modeling. Cell Rep 2020; 28:1623-1634.e4. [PMID: 31390574 PMCID: PMC6724534 DOI: 10.1016/j.celrep.2019.07.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/18/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023] Open
Abstract
Rodents are the main model systems for pain research, but determining their pain state is challenging. To develop an objective method to assess pain sensation in mice, we adopt high-speed videography to capture sub-second behavioral features following hind paw stimulation with both noxious and innocuous stimuli and identify several differentiating parameters indicating the affective and reflexive aspects of nociception. Using statistical modeling and machine learning, we integrate these parameters into a single index and create a "mouse pain scale," which allows us to assess pain sensation in a graded manner for each withdrawal. We demonstrate the utility of this method by determining sensations triggered by three different von Frey hairs and optogenetic activation of two different nociceptor populations. Our behavior-based "pain scale" approach will help improve the rigor and reproducibility of using withdrawal reflex assays to assess pain sensation in mice.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan T Fried
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Rutgers University, Camden, NJ 08102, USA
| | - Mark Lay
- Howard Hughes Medical Institute and Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Justin Burdge
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn Swanson
- Department of Biology, Drexel University, College of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Roman Fischer
- Department of Biology, Drexel University, College of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Jessica Jones
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weihua Cai
- Department of Anesthesiology, Rutgers University Medical School, Newark, NJ 07101, USA
| | - Xinying Guo
- Department of Anesthesiology, Rutgers University Medical School, Newark, NJ 07101, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers University Medical School, Newark, NJ 07101, USA
| | - John Bethea
- Department of Biology, Drexel University, College of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinzhong Dong
- Howard Hughes Medical Institute and Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Long Ding
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Yang Y, Wang X, Zhang X, You S, Feng L, Zhang Y, Shi Y, Xu Y, Zhang H. <p>Sonic Hedgehog Signaling Contributes to Chronic Post-Thoracotomy Pain via Activating BDNF/TrkB Pathway in Rats</p>. J Pain Res 2020; 13:1737-1746. [PMID: 32765048 PMCID: PMC7360429 DOI: 10.2147/jpr.s245515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Some patients undergoing thoracotomy may suffer from chronic post-thoracotomy pain (CPTP). Treatment of CPTP has been a clinical challenge and the underlying mechanisms of CPTP remain elusive. Recently, sonic hedgehog (Shh) signaling has been shown to be associated with various pain states but its role in the pathogenesis of CPTP is still unclear. Methods CPTP was induced in rats by thoracotomy. Rats were divided into CPTP group and non-CPTP group based on the mechanical withdrawal threshold (MWT). Rats were administered with Shh signaling inhibitor cyclopamine and activator smoothened agonist (SAG), and then evaluated by MWT and cold allodynia testing. The expressions of Shh signaling (Shh ligand, patched and smoothened receptor, Gli transcription factors), brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase receptor B (Trk-B), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) in rat T4-5 spinal cord dorsal horn (SDH) were detected by Western blotting and immunohistochemistry. Results The expression of Shh signaling significantly increased and the BDNF/TrkB pathway was activated in T4-5 SDH of CPTP rats. Cyclopamine attenuated hyperalgesia and down-regulated the expressions of Gil1, BDNF, p-TrkB, p-PI3K and p-Akt in CPTP rats. SAG induced hyperalgesia in non-CPTP rats and elevated the expressions of Gil1, BDNF, p-TrkB, p-PI3K and p-Akt. Conclusion Shh signaling may contribute to CPTP via activating BDNF/TrkB signaling pathway, and inhibition of Shh signaling may effectively alleviate CPTP.
Collapse
Affiliation(s)
- Yitian Yang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
| | - Xiaoyan Wang
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100037, People’s Republic of China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin300060, People’s Republic of China
| | - Shaohua You
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
| | - Long Feng
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
| | - Yunliang Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
| | - Yizheng Shi
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing100142, People’s Republic of China
| | - Hong Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing100853, People’s Republic of China
- Correspondence: Hong Zhang; Yitian Yang Email ;
| |
Collapse
|
8
|
Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain 2020; 161:2830-2840. [DOI: 10.1097/j.pain.0000000000001970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yang Y, Song Y, Zhang X, Zhao W, Ma T, Liu Y, Ma P, Zhao Y, Zhang H. Ketamine relieves depression-like behaviors induced by chronic postsurgical pain in rats through anti-inflammatory, anti-oxidant effects and regulating BDNF expression. Psychopharmacology (Berl) 2020; 237:1657-1669. [PMID: 32125485 DOI: 10.1007/s00213-020-05490-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Clinically, chronic postsurgical pain (CPSP) is very common. Many CPSP patients may experience depression. Thus far, little is known about the mechanism of the comorbidity of CPSP and depression. Ketamine has been confirmed to possess analgesic and rapid antidepressant effects, but it is unclear whether ketamine can relieve the comorbidity of CPSP and depression. OBJECTIVES The present study evaluated the effects of ketamine in rats with the comorbidity of CPSP and depression. METHODS We induced CPSP in rats by thoracotomy and screened for rats with or without depression-like phenotype by hierarchical cluster analysis based on the results of depression-related behavioral experiments. Subsequently, rats were intraperitoneally injected with ketamine (20 mg/kg) and were evaluated by mechanical withdrawal threshold, cold hyperalgesia test, sucrose preference test, forced swimming test, and open field test. The inflammatory-related cytokines (IL-1, IL-6, TNF-α, nuclear factor-kappaB), oxidative stress parameters (superoxide dismutase, malondialdehyde, glutathione, catalase), and brain-derived neurotrophic factor (BDNF) in rat hippocampus were detected. RESULTS In the hippocampus of rats with the comorbidity of CPSP and depression, IL-1, IL-6, TNF-α, nuclear factor-kappaB, and malondialdehyde were significantly increased, while superoxide dismutase, glutathione, catalase, and BDNF were significantly decreased. Ketamine relieved depression but did not attenuate hyperalgesia in CPSP rats. Additionally, ketamine reduced proinflammatory cytokines, inhibited oxidative stress, and elevated BDNF levels in rat hippocampus. CONCLUSIONS Ketamine can rapidly relieve CPSP-induced depression in rats, which may be related to the reduction of proinflammatory cytokines, regulating oxidative stress and increasing BDNF in the hippocampus.
Collapse
Affiliation(s)
- Yitian Yang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Yuxiang Song
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Weixing Zhao
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Tao Ma
- Department of Anesthesiology, Rocket Army Characteristic Medical Center, Beijing, 100088, China
| | - Yi Liu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Penglei Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Yifan Zhao
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, Beijing, 100037, China
| | - Hong Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
10
|
Xiang A, Liu H, Qu X, Liu S, Shen X. Approach Behavior Induced by 10.6-μm Laser Stimulation at Acupoint ST36 in a Rat Model of Incisional Pain. Photobiomodul Photomed Laser Surg 2020; 38:385-391. [DOI: 10.1089/photob.2019.4762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anfeng Xiang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyi Qu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
The projections from the anterior cingulate cortex to the nucleus accumbens and ventral tegmental area contribute to neuropathic pain-evoked aversion in rats. Neurobiol Dis 2020; 140:104862. [PMID: 32251841 DOI: 10.1016/j.nbd.2020.104862] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
Although the anterior cingulate cortex (ACC) plays a vital role in neuropathic pain-related aversion, the underlying mechanisms haven't been fully studied. The mesolimbic dopamine system encodes reward and aversion, and participates in the exacerbation of chronic pain. Therefore, we investigated whether the ACC modulates aversion to neuropathic pain via control of the mesolimbic dopamine system, in a rat model of chronic constriction injury (CCI) to the sciatic nerve. Using anterograde and retrograde tracings, we confirmed that a subgroup of ACC neurons projected to the nucleus accumbens (NAc) and ventral tegmental area (VTA), which are two crucial nodes of the mesolimbic dopamine system. Combining electrophysiology in juvenile rats 7 days post-CCI, we found that the NAc/VTA-projecting neurons were hyperexcitable after CCI. Chemogenetic inhibition of these projections induced conditioned place preference in young adult rats 10-14 days post-CCI, without modulating the evoked pain threshold, whereas activation of these projections in sham rats mimicked aversive behavior. Furthermore, the function of the ACC projections was probably mediated by NAc D2-type medium spiny neurons and VTA GABAergic neurons. Taken together, our findings suggest that projections from the ACC to the NAc and VTA mediate neuropathic pain-related aversive behavior.
Collapse
|
12
|
Ren Y, Shi W, Chen C, Li H, Zheng X, Zheng X, Niu C. Efficacy of dexmedetomidine as an adjuvant to local wound infiltration anaesthesia in abdominal surgery: A meta-analysis of randomised controlled trials. Int Wound J 2019; 16:1206-1213. [PMID: 31418529 DOI: 10.1111/iwj.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
To assess the efficacy and safety of dexmedetomidine (DEX) as an adjuvant to local wound infiltration anaesthesia in abdominal surgery, we conducted this meta-analysis. First, the systematic search strategy was performed on PubMed, Embase, and Cochrane Library and five randomised controlled trials (RCTs) involving 294 patients were included. Then, the outcome data were extracted from the studies and their effect sizes were calculated using Review Manager 5. As a result, the addition of DEX significantly reduced visual analogy scores at 6 hours after surgery (mean difference = -0.53[-0.82, -0.25], P < .001), 12 hours after surgery (mean difference = -0.39 [-0.73, -0.05]; P = .03), and 24 hours after surgery (mean difference = -0.20 [-0.29, -0.11], P < .001) and reduced total analgesic consumption within 24 hours after surgery (mean difference = -4.92 [-9.00, -0.84]; P = .02) compared with placebo groups. However, there was no difference in the incidence of postoperative nausea and vomiting (risk ratio = 0.68 [0.41, 1.14]; P = .14). In summary, DEX as a local anaesthetic adjuvant added for local wound infiltration anaesthesia in abdominal surgery could reduce visual analogy scores and postoperative analgesic consumption without changing incidence of postoperative nausea and vomiting.
Collapse
Affiliation(s)
- Yifeng Ren
- Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Shi
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengzhe Chen
- Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China.,Department of Anesthesiology, First Affiliated Hospital of Henan University, Kaifeng, China
| | - Huifang Li
- Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China.,Department of Anesthesiology, First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaozhen Zheng
- Department of Anesthesiology, First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xuemei Zheng
- Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China
| | - Chenguang Niu
- Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Lin WY, Cheng YT, Huang YH, Lin FS, Sun WZ, Yen CT. Synergistic symptom-specific effects of ketorolac-tramadol and ketorolac-pregabalin in a rat model of peripheral neuropathy. J Chin Med Assoc 2019; 82:457-463. [PMID: 31180945 DOI: 10.1097/jcma.0000000000000115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although current neuropathic pain treatment guidelines do not recommend the use of nonsteroidal anti-inflammatory drugs (NSAIDs), whether NSAIDs can serve as a useful adjuvant to conventional multimodal therapy remains unclear. METHODS The spared nerve injury (SNI) rats rapidly developed profound and long-lasting spontaneous and evoked pain behaviors, including mechanical and cold allodynia of the ipsilateral hind paw. At day 5, we first characterized the nociceptive responses to ketorolac, tramadol, pregabalin, and their combinations. RESULTS We found that tramadol and pregabalin exerted dose-dependent analgesic effects on both spontaneous and evoked behaviors. However, ketorolac alone did not suppress any behaviors regardless of the dose. Ketorolac-tramadol and ketorolac-pregabalin produced variable degrees of additive suppression of spontaneous and evoked behavioral responses. Cold allodynia was profoundly diminished after ketorolac was added to ineffective pregabalin or tramadol. Mechanical allodynia was markedly attenuated by ketorolac-pregabalin but less so by ketorolac-tramadol mixtures. CONCLUSION Our data demonstrated that an NSAID alone failed to relieve spontaneous or evoked pain behaviors in the rat SNI model, but when combined with a weak opioid and α-2-δ-ligand produced a profound synergistic analgesic effect on cold allodynia and discrepant efficacy for mechanical allodynia and spontaneous pain.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yu-Ting Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Hsin Huang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Feng-Sheng Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Lin HT, Chiu CC, Liu CC, Chen YW, Wang JJ, Hung CH. Ultrasound therapy reduces persistent post-thoracotomy tactile allodynia and spinal substance P expression in rats. Reg Anesth Pain Med 2019; 44:604-608. [PMID: 30902913 DOI: 10.1136/rapm-2018-100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic ultrasound (TU) alleviates nerve injury-associated pain, while the molecular mechanisms are less clear. This is an investigator-initiated experimental study to evaluate the mechanisms and effects of ultrasound on prolonged post-thoracotomy pain in a rodent model. METHODS The rats were randomly separated into four groups (n=8 per group): sham-operation (sham; group 1), thoracotomy and rib retraction (TRR; group 2), and TRR procedure followed by TU (TRR+TU-3; group 3) or TU with the ultrasound power turned off (TRR+TU-0; group 4). TU was delivered daily, beginning on postoperative day 11 (POD 11) for the next 2 weeks. Mechanical sensitivity, subcutaneous tissue temperature, and spinal substance P and interleukin-1 beta (IL-1β) were evaluated on PODs 11 and 23. RESULTS Group 3, which received ultrasound treatment (3 MHz; 1.0 W/cm2) for 5 min each day, demonstrated higher mechanical withdrawal thresholds when compared with the group without ultrasound intervention (group 2) or sham ultrasound (group 4). Ultrasound treatment also inhibited the upregulation of spinal substance P and IL-1β measured from spinal cord dorsal horns extract and increased subcutaneous temperature. CONCLUSIONS The results of this study suggest an increase in mechanical withdrawal thresholds and subcutaneous temperature, as well as a downregulation of spinal substance P and IL-1β, in the group which received ultrasound treatment. The regulation of spinal substance P and IL-1β may mediate potential effects of this non-invasive treatment.
Collapse
Affiliation(s)
- Heng-Teng Lin
- Department of Physical Medicine and Rehabilitation, Madou Sin-Lau Hospital, Tainan, Taiwan
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chen-Chih Liu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Allied AI Biomed Center, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
16
|
Gerb SA, Cook JE, Gochenauer AE, Young CS, Fulton LK, Grady AW, Freeman KB. Ketamine Tolerance in Sprague-Dawley Rats after Chronic Administration of Ketamine, Morphine, or Cocaine. Comp Med 2019; 69:29-34. [PMID: 30696519 DOI: 10.30802/aalas-cm-18-000053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ketamine is one of the most commonly used anesthetics in human and veterinary medicine, but its clinical effectiveness is often compromised due to tolerance to its anesthetic effects. Although ketamine tolerance has been demonstrated in a number of behavioral measures, no published work has investigated tolerance to ketamine's anesthetic effects other than duration of anesthesia. In addition, a reported practice in anesthesiology is to alter anesthetic doses for procedures when the patient has a history of drug abuse. Empirically investigating the effects of administration of a drug of abuse on ketamine's potency and efficacy to produce anesthesia could help in the creation of anesthetic plans that maximize safety for both clinicians and patients. The goal of the current study was to test the effects of repeated administration of ketamine, morphine, or cocaine on ketamine's ability to produce anesthesia. In 2 studies, male Sprague-Dawley rats received daily injections of ketamine (32 or 100 mg/kg IP), morphine (3.2 or 5.6 mg/kg IP), or cocaine (3.2 or 10 mg/kg IP) for 14 consecutive days and then were tested on day 15 for ketamine-induced anesthesia by using a cumulative-dosing procedure (32 to 320 mg/kg IP). Chronic treatment with either ketamine or morphine-but not cocaine-produced tolerance to ketamine's anesthetic effects in a dose-dependent manner. These results suggest that ketamine's clinical effectiveness as an anesthetic will vary as a function of its history of use. Furthermore, given that chronic morphine administration produced tolerance to ketamine's anesthetic effects, various pain medications may reduce ketamine's effectiveness for anesthesia.
Collapse
Affiliation(s)
- Samantha A Gerb
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi;,
| | - Jemma E Cook
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Camille S Young
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lindak K Fulton
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrew W Grady
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
17
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Hung CH, Chiu CC, Liu CC, Chen YW. Local Application of Ultrasound Attenuates Neuropathic Allodynia and Proinflammatory Cytokines in Rats After Thoracotomy. Reg Anesth Pain Med 2018; 43:193-199. [PMID: 29278606 DOI: 10.1097/aap.0000000000000717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES We aimed to investigate the effect of therapeutic ultrasound (TU) on pain sensitivity and the concentration inflammatory cytokines in a thoracotomy rat model. METHODS Rats were distributed randomly into 4 groups: (1) sham operated, (2) thoracotomy and rib retraction (TRR), (3) TRR rats that received TU (TRR + TU-1), and (4) TRR rats that received TU with the ultrasound turned off (TRR + TU-0). Ultrasound was set at 1-MHz frequency (1.0-W/cm intensity and 100% duty cycle for 5 minutes), began on postoperative day (POD) 10, and then continued once per day, 5 days a week for 3 weeks. RESULTS The TRR and TRR + TU-0 rats encountered tactile hypersensitivity from PODs 10 to 28. Mechanical withdrawal thresholds were increased (all P < 0.05) following 5 days of TU, but thresholds remained significantly lower than baseline values. Therapeutic ultrasound increased the subcutaneous, but not body temperature. All groups receiving TRR demonstrated an increase in concentration of interleukin 1β and tumor necrosis factor α (TNF-α) on POD 14; however, the rise in TNF-α concentration was less in the TU-treated group than in the others. The decrease in concentration was greatest in the TRR + TU-1 group and similar between the TRR and TRR + TU-0 groups. CONCLUSIONS Mechanical allodynia was partially resolved with TU. Tissue temperature increased with ultrasound, while TU restricted the up-regulation of interleukin 1β and TNF-α around the injured intercostal nerve.
Collapse
|
19
|
Moriarty O, Harrington L, Beggs S, Walker SM. Opioid analgesia and the somatosensory memory of neonatal surgical injury in the adult rat. Br J Anaesth 2018; 121:314-324. [PMID: 29935586 PMCID: PMC6200106 DOI: 10.1016/j.bja.2017.11.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background Nociceptive input during early development can produce somatosensory memory that influences future pain response. Hind-paw incision during the 1st postnatal week in the rat enhances re-incision hyperalgesia in adulthood. We now evaluate its modulation by neonatal analgesia. Methods Neonatal rats [Postnatal Day 3 (P3)] received saline, intrathecal morphine 0.1 mg kg−1 (IT), subcutaneous morphine 1 mg kg−1 (SC), or sciatic levobupivacaine block (LA) before and after plantar hind-paw incision (three×2 hourly injections). Six weeks later, behavioural thresholds and electromyography (EMG) measures of re-incision hyperalgesia were compared with an age-matched adult-only incision (IN) group. Morphine effects on spontaneous (conditioned place preference) and evoked (EMG sensitivity) pain after adult incision were compared with prior neonatal incision and saline or morphine groups. The acute neonatal effects of incision and analgesia on behavioural hyperalgesia at P3 were also evaluated. Results Adult re-incision hyperalgesia was not prevented by neonatal peri-incision morphine (saline, IT, and SC groups > IN; P<0.05–0.01). Neonatal sciatic block, but not morphine, prevented the enhanced re-incision reflex sensitivity in adulthood (LA < saline and morphine groups, P<0.01; LA vs IN, not significant). Morphine efficacy in adulthood was altered after morphine alone in the neonatal period, but not when administered with neonatal incision. Morphine prevented the acute incision-induced hyperalgesia in neonatal rats, but only sciatic block had a preventive analgesic effect at 24 h. Conclusions Long-term effects after neonatal injury highlight the need for preventive strategies. Despite effective analgesia at the time of neonatal incision, morphine as a sole analgesic did not alter the somatosensory memory of early-life surgical injury.
Collapse
Affiliation(s)
- O Moriarty
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK
| | - L Harrington
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - S Beggs
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK; Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - S M Walker
- Developmental Neurosciences Programme (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Wang YJ, Zuo ZX, Wu C, Liu L, Feng ZH, Li XY. Cingulate Alpha-2A Adrenoceptors Mediate the Effects of Clonidine on Spontaneous Pain Induced by Peripheral Nerve Injury. Front Mol Neurosci 2017; 10:289. [PMID: 28955200 PMCID: PMC5600928 DOI: 10.3389/fnmol.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
The anterior cingulate cortex (ACC) is an important brain area for the regulation of neuropathic pain. The α2A adrenoceptor is a good target for pain management. However, the role of cingulate α2A adrenoceptors in the regulation of neuropathic pain has been less studied. In this study, we investigated the involvement of cingulate α2A adrenoceptors in the regulation of neuropathic pain at different time points after peripheral nerve injury in mice. The application of clonidine, either systemically (0.5 mg/kg intraperitoneally) or specifically to the ACC, increased paw withdrawal thresholds (PWTs) and induced conditioned place preference (CPP) at day 7 after nerve injury, suggesting that cingulate α2 adrenoceptors are involved in the regulation of pain-like behaviors. Quantitative real-time PCR data showed that α2A adrenoceptors are the dominant α2 adrenoceptors in the ACC. Furthermore, the expression of cingulate α2A adrenoceptors was increased at day 3 and day 7 after nerve injury, but decreased at day 14, while no change was detected in the concentration of adrenaline or noradrenaline. BRL-44408 maleate, a selective antagonist of α2A adrenoceptors, was microinfused into the ACC. This blocking of cingulate α2A adrenoceptors activity abolished the CPP induced by clonidine (0.5 mg/kg intraperitoneally) but not the effects on PWTs at day 7. However, clonidine applied systemically or specifically to the ACC at day 14 increased the PWTs but failed to induce CPP; this negative effect was reversed by the overexpression of cingulate α2A adrenoceptors. These results suggest that cingulate α2A adrenoceptors are necessary for the analgesic effects of clonidine on spontaneous pain.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zhen-Xing Zuo
- Department of Surgery, Tongji Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Li Liu
- Core Facility of School of Medicine, Zhejiang UniversityHangzhou, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
21
|
Assessment of Behavioral Disruption in Rats with Abdominal Inflammation Using Visual Cue Titration and the Five-choice Serial-reaction Time Task. Anesthesiology 2017; 127:372-381. [PMID: 28542002 DOI: 10.1097/aln.0000000000001702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Both acute and chronic pain result in a number of behavioral symptoms in patients, including cognitive effects such as decreased attention and working memory. Intraperitoneal administration of dilute lactic acid in rodents has been used to induce abdominal inflammation and produce effects in behavioral assays of both sensory-discriminative and affective pain modalities. METHODS Intraperitoneal injection of dilute lactic acid was used to study the impact of abdominal inflammation on an operant task requiring sustained visual attention in rats (N = 7 to 15/group) that adapts dynamically to performance ability. The effects of ketoprofen and morphine on lactic acid-induced impairment were compared with those on the disruptive effects of scopolamine. RESULTS Lactic acid impaired performance in a concentration-dependent manner, increasing the duration of cue presentation required to maintain optimal performance from 0.5 ± 0.2 s (mean ± SD) to 17.2 ± 11.4 s after the administration of 1.8% (v/v) (N = 13). The latency to emit correct responses and to retrieve the food reward were both increased by lactic acid. All effects of lactic acid injection were reversed by both ketoprofen and morphine in a dose-dependent manner. Scopolamine, however, produced dose-dependent, nonpain-related disruption in sustained attention that was not altered by either ketoprofen or morphine. CONCLUSIONS These data demonstrate that abdominal inflammation induced by lactic acid produces robust disruption in a visual attention-based operant task and that this disruption is reversed by analgesics. Future studies will focus on pain-related circuitry and its impact on both limbic forebrain and frontal cortical mechanisms.
Collapse
|
22
|
A role for neurokinin-1 receptor neurons in the rostral ventromedial medulla in the development of chronic postthoracotomy pain. Pain 2017. [DOI: 10.1097/j.pain.0000000000000919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Tsai KL, Huang PC, Wang LK, Hung CH, Chen YW. Incline treadmill exercise suppresses pain hypersensitivity associated with the modulation of pro-inflammatory cytokines and anti-inflammatory cytokine in rats with peripheral nerve injury. Neurosci Lett 2017; 643:27-31. [PMID: 28215879 DOI: 10.1016/j.neulet.2017.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the impact of 3 weeks of incline treadmill exercise (TE) on withdrawal responses elicited by thermal and mechanical stimuli, and on anti-inflammatory cytokine (interleukin-10, IL-10) and pro-inflammatory cytokines (IL-6 and tumor necrosis factor-alpha [TNF-α]) expression in the sciatic nerve of rats underwent chronic constriction injury (CCI). Group 1 received a sham-operation where the sciatic nerve was exposed but not ligated, while Group 2 underwent a sham-operation followed by exercising on an 8%-incline treadmill (TE8). Group 3 underwent only the CCI procedure, and Groups 4 and 5 underwent the CCI procedure followed by exercising on an 0%-incline treadmill (TE0) and TE8, respectively. Mechanical and thermal sensitivity and protein expression of IL-10, IL-6 and TNF-α were evaluated on postoperative days 12 and 26. Among the five groups, Group 5 displayed the least weight gain. Compared with Group 3, Group 5 had smaller decreases in mechanical withdrawal thresholds and heat withdrawal latencies. The CCI rats who received TE at 8% incline showed the downregulation of TNF-α and IL-6 in their sciatic nerves on postoperative days 12 and 26, as was found in the Group 3 rats. TE at 8% incline also prevented the downregulation of IL-10 in their sciatic nerves on postoperative day 12. The results demonstrated that increased incline improves the anti-nociceptive effects of treadmill running. Inclined exercise reduces the levels of pro-inflammatory cytokines and increases the level of an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ching Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Health Care, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Wang JCF, Strichartz GR. Prevention of Chronic Post-Thoracotomy Pain in Rats By Intrathecal Resolvin D1 and D2: Effectiveness of Perioperative and Delayed Drug Delivery. THE JOURNAL OF PAIN 2017; 18:535-545. [PMID: 28063958 DOI: 10.1016/j.jpain.2016.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022]
Abstract
Thoracotomy results in a high frequency of chronic postoperative pain. Resolvins are endogenous molecules, synthesized and released by activated immune cells, effective against inflammatory and neuropathic pain. Different resolvins have differential actions on selective neuronal and glial receptors and enzymes. This article examines the ability of intrathecal resolvin D1 and resolvin D2 to reduce chronic post-thoracotomy pain in rats. Thoracotomy, involving intercostal incision and rib retraction, resulted in a decrease in the mechanical force threshold to induce nocifensive behavior, an enlargement of the pain-sensitive area, and an increase in the fraction of rats showing nocifensive behavior, all for at least 5 weeks. The qualitative nature of the behavioral responses to tactile stimulation changed dramatically after thoracotomy, including the appearance of vigorous behaviors, such as turning, shuddering, and squealing, all absent in naive rats. Intrathecal delivery of resolvin D1 (30 ng/30 μL), at surgery or 4 days later, halved the spread of the mechanosensitive area, lowered by 60% the percent of rats with tactile hypersensitivity, and reduced the drop in threshold for a nocifensive response, along with a reduction in the occurrence of vigorous nocifensive responses. Resolvin D2's actions on threshold changes were statistically the same. These findings suggest that intrathecal resolvins, delivered preoperatively or several days later, can prevent chronic postoperative hyperalgesia. PERSPECTIVE In studies of rats, the injection of the proresolving compounds of the resolvin-D series into spinal fluid, before or just after thoracotomy surgery, prevents the occurrence of acute and chronic pain. If these chemicals, which have shown no side-effects, were used in humans it might greatly reduce chronic postoperative pain.
Collapse
Affiliation(s)
- Jeffery Chi-Fei Wang
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Local Administration of Thiamine Ameliorates Ongoing Pain in a Rat Model of Second-Degree Burn. J Burn Care Res 2017; 38:e842-e850. [DOI: 10.1097/bcr.0000000000000502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
An automated method by which effects of compounds on locomotor activity and spontaneous neuropathic pain-specific movements can be simultaneously evaluated in rats with chronic-constriction nerve injury. Eur J Pharm Sci 2017; 96:551-559. [DOI: 10.1016/j.ejps.2016.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/10/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022]
|
27
|
Pitzer C, Kuner R, Tappe-Theodor A. EXPRESS: Voluntary and evoked behavioral correlates in neuropathic pain states under different housing conditions. Mol Pain 2016; 12:12/0/1744806916656635. [PMID: 27306409 PMCID: PMC4956152 DOI: 10.1177/1744806916656635] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background There is an urgent need to develop and incorporate novel behavioral tests in classically used preclinical pain models. Most rodent studies are based upon stimulus-evoked hindpaw measurements even though chronic pain is usually a day and night experience. Chronic pain is indeed a debilitating condition that influences the sociability and the ability for voluntary tasks, but the relevant behavioral readouts for these aspects are mostly under-represented in the literature. Moreover, we lack standardization in most behavioral paradigms to guarantee reproducibility and ensure adequate discussion between different studies. This concerns not only the combination, application, and duration of particular behavioral tasks but also the effects of different housing conditions implicating social isolation. Results Our aim was to thoroughly characterize the classically used spared nerve injury model for 12 weeks following surgery. We used a portfolio of classical stimulus-evoked response measurements, detailed gait analysis with two different measuring systems (Dynamic weight bearing (DWB) system and CatWalk), as well as observer-independent voluntary wheel running and home cage monitoring (Laboras system). Additionally, we analyzed the effects of social isolation in all behavioral tasks. We found that evoked hypersensitivity temporally matched changes in static gait parameters, whereas some dynamic gait parameters were changed in a time-dependent manner. Interestingly, voluntary wheel running behavior was not affected in spared nerve injury mice but by social isolation. Besides a reduced climbing activity, spared nerve injury mice did not showed tremendous alterations in the home cage activity. Conclusion This is the first longitudinal study providing detailed insights into various voluntary behavioral parameters related to pain and highlights the importance of social environment on spontaneous non-evoked behaviors in a mouse model of chronic neuropathy. Our results provide fundamental considerations for future experimental planning and discussion of pain-related behavioral changes.
Collapse
|