1
|
Gallucci A, Varoli E, Del Mauro L, Hassan G, Rovida M, Comanducci A, Casarotto S, Lo Re V, Romero Lauro LJ. Multimodal approaches supporting the diagnosis, prognosis and investigation of neural correlates of disorders of consciousness: A systematic review. Eur J Neurosci 2024; 59:874-933. [PMID: 38140883 DOI: 10.1111/ejn.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/24/2023]
Abstract
The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
| | - Erica Varoli
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Margherita Rovida
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Zhuo M. Cortical synaptic basis of consciousness. Eur J Neurosci 2024; 59:796-806. [PMID: 38013403 DOI: 10.1111/ejn.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Consciousness is one of final questions for humans to tackle in neuroscience. Due to a lack of understanding of basic brain networks and mechanisms of functions, our knowledge of consciousness mainly stays at a theoretical level. Recent studies using brain imaging in humans and modern neuroscience techniques in animal studies reveal the basic brain network for consciousness. The projection from the thalamus to different cortical regions forms a network of activities to maintain consciousness in humans and animals. These feedback and feedforward circuits maintain consciousness even in certain brain injury conditions. Pterions and ion channels that contribute to these circuit neural activities are targets for drugs and manipulations that affect consciousness such as anesthetic agents. Synaptic plasticity that trains synapses during learning and information recall modified the circuits and contributes to a high level of consciousness in a certain population.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
4
|
Bonin EAC, Lejeune N, Szymkowicz E, Bonhomme V, Martial C, Gosseries O, Laureys S, Thibaut A. Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review. Front Syst Neurosci 2023; 17:1112206. [PMID: 37021037 PMCID: PMC10067681 DOI: 10.3389/fnsys.2023.1112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.
Collapse
Affiliation(s)
- Estelle A. C. Bonin
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre Hospitalier Neurologique (CHN) William Lennox, Saint-Luc Hospital Group, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liège University Hospital, Liège, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et Services Sociaux (CIUSS), University Laval, Québec City, QC, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- *Correspondence: Aurore Thibaut,
| |
Collapse
|
5
|
Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol 2022; 42:348-362. [PMID: 36100229 DOI: 10.1055/s-0042-1755562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic options for patients with disorders of consciousness (DoC) are still underexplored. Noninvasive brain stimulation (NIBS) techniques modulate neural activity of targeted brain areas and hold promise for the treatment of patients with DoC. In this review, we provide a summary of published research using NIBS as therapeutic intervention for DoC patients, with a focus on (but not limited to) randomized controlled trials (RCT). We aim to identify current challenges and knowledge gaps specific to NIBS research in DoC. Furthermore, we propose possible solutions and perspectives for this field. Thus far, the most studied technique remains transcranial electrical stimulation; however, its effect remains moderate. The identified key points that NIBS researchers should focus on in future studies are (1) the lack of large-scale RCTs; (2) the importance of identifying the endotypes of responders; and (3) the optimization of stimulation parameters to maximize the benefits of NIBS.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
6
|
Cortese MD, Arcuri F, Nemirovsky IE, Lucca LF, Tonin P, Soddu A, Riganello F. Nociceptive Response Is a Possible Marker of Evolution in the Level of Consciousness in Unresponsive Wakefulness Syndrome Patients. Front Neurosci 2021; 15:771505. [PMID: 34975378 PMCID: PMC8714733 DOI: 10.3389/fnins.2021.771505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The Nociception Coma Scale (NCS) and its revised version (NCS-R) were used to evaluate behavioral responses to pain in non-communicative patients. We hypothesized that if patients demonstrate changes to their NCS(-R) scores over time, their evolving behavioral abilities could indicate a forthcoming diagnostic improvement with the Coma Recovery Scale-Revised (CRS-R). Forty-three Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients were enrolled in the study. The patients were assessed weekly using the CRS-R and NCS(-R) for four consecutive weeks. The first assessment was within 10 days after hospitalization. The assessments were performed between 09:30 and 11:30 AM in a room with constant levels of humidity, light and temperature, as well as an absence of transient noise. Noxious stimuli were administered using a Newton-meter, with pressure applied to the fingernail bed for a maximum of 5 s unless interrupted by a behavioral response from subjects. Seventeen patients demonstrated improvements in their level of consciousness, 13 of whom showed significant behavioral changes through the NCS(-R) before being diagnosed with a Minimally Conscious State (MCS) according to the CRS-R. The behavioral changes observed using the NCS(-R) corresponded to a high probability of observing an improvement from VS/UWS to MCS. To characterize the increased likelihood of this transition, our results present threshold scores of ≥5 for the NCS (accuracy 86%, sensitivity 87%, and specificity 86%) and ≥3 for the NCS-R (accuracy 77%, sensitivity 89%, and specificity 73%). In conclusion, a careful evaluation of responses to nociceptive stimuli in DOC patients could constitute an effective procedure in assessing their evolving conscious state.
Collapse
Affiliation(s)
- Maria Daniela Cortese
- Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris, Crotone, Italy
| | - Francesco Arcuri
- Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris, Crotone, Italy
| | - Idan E. Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, Western University, London, ON, Canada
| | - Lucia Francesca Lucca
- Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris, Crotone, Italy
| | - Paolo Tonin
- Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris, Crotone, Italy
| | - Andrea Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, Western University, London, ON, Canada
| | - Francesco Riganello
- Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris, Crotone, Italy
| |
Collapse
|
7
|
Yu Y, Zheng W, Tan X, Li X, Zhang X, Gao J, Pan G, Wu D, Luo B. Microstructural profiles of thalamus and thalamocortical connectivity in patients with disorder of consciousness. J Neurosci Res 2021; 99:3261-3273. [PMID: 34766648 DOI: 10.1002/jnr.24921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023]
Abstract
Thalamus and thalamocortical connectivity are crucial for consciousness; however, their microstructural changes in patients with a disorder of consciousness (DOC) have not yet been thoroughly characterized. In the present study, we applied the novel fixel-based analysis to comprehensively investigate the thalamus-related microstructural abnormalities in 10 patients with DOC using 7-T diffusion-weighted imaging data. We found that compared to healthy controls, patients with DOC showed reduced fiber density (FD) and fiber density and cross-section (FDC) in the mediodorsal, anterior, and ventral anterior thalamic nuclei, while fiber-bundle cross-section (FC) was not significantly altered in the thalamus. Impaired thalamocortical connectivity in the DOC cohort was mainly connected to the middle frontal gyrus, anterior cingulate gyrus, fusiform gyrus, and sensorimotor cortices, including the precentral gyrus and postcentral gyrus, with predominant microstructural abnormalities in FD and FDC. Correlation analysis showed that FC of the right mediodorsal thalamus was negatively correlated with the level of consciousness. Our results suggest that microstructural abnormalities of thalamus and thalamocortical connectivity in DOC were mainly attributed to axonal injury. In particular, the microstructural integrity of the thalamus is a vital factor in consciousness generation.
Collapse
Affiliation(s)
- Yamei Yu
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihao Zheng
- School of Information Science and Egineering, Lanzhou University, Lanzhou, China
| | - Xufei Tan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xiaoxia Li
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jian Gao
- Hangzhou Ming Zhou Nao Kang Rehabilitation Hospital, Hangzhou, China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Riganello F, Vatrano M, Carozzo S, Russo M, Lucca LF, Ursino M, Ruggiero V, Cerasa A, Porcaro C. The Timecourse of Electrophysiological Brain-Heart Interaction in DoC Patients. Brain Sci 2021; 11:750. [PMID: 34198911 PMCID: PMC8228557 DOI: 10.3390/brainsci11060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Disorders of Consciousness (DOC) are a spectrum of pathologies affecting one's ability to interact with the external world. Two possible conditions of patients with DOC are Unresponsive Wakefulness Syndrome/Vegetative State (UWS/VS) and Minimally Conscious State (MCS). Analysis of spontaneous EEG activity and the Heart Rate Variability (HRV) are effective techniques in exploring and evaluating patients with DOC. This study aims to observe fluctuations in EEG and HRV parameters in the morning/afternoon resting-state recording. The study enrolled 13 voluntary Healthy Control (HC) subjects and 12 DOC patients (7 MCS, 5 UWS/VS). EEG and EKG were recorded. PSDalpha, PSDtheta powerband, alpha-blocking, alpha/theta of the EEG, Complexity Index (CI) and SDNN of EKG were analyzed. Higher values of PSDalpha, alpha-blocking, alpha/theta and CI values and lower values of PSD theta characterized HC individuals in the morning with respect to DOC patients. In the afternoon, we detected a significant difference between groups in the CI, PSDalpha, PSDtheta, alpha/theta and SDNN, with lower PSDtheta value for HC. CRS-R scores showed a strong correlation with recorded parameters mainly during evaluations in the morning. Our finding put in evidence the importance of the assessment, as the stimulation of DOC patients in research for behavioural response, in the morning.
Collapse
Affiliation(s)
- Francesco Riganello
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Martina Vatrano
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Simone Carozzo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Miriam Russo
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Lucia Francesca Lucca
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Maria Ursino
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Valentina Ruggiero
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
| | - Antonio Cerasa
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Institute for Biomedical Research and Innovation (IRIB)—National Research Council of Italy (CNR), 87050 Mangone, Italy
| | - Camillo Porcaro
- S.Anna Institute—Research in Advanced Neurorehabilitation, 88900 Crotone, Italy; (M.V.); (S.C.); (M.R.); (L.F.L.); (M.U.); (V.R.); (A.C.); (C.P.)
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), 00185 Rome, Italy
| |
Collapse
|
9
|
Calabrò RS, Pignolo L, Müller-Eising C, Naro A. Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective. Brain Sci 2021; 11:665. [PMID: 34065349 PMCID: PMC8161058 DOI: 10.3390/brainsci11050665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.
Collapse
Affiliation(s)
| | | | | | - Antonino Naro
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| |
Collapse
|
10
|
Cortese D, Riganello F, Arcuri F, Lucca L, Tonin P, Schnakers C, Laureys S. The Trace Conditional Learning of the Noxious Stimulus in UWS Patients and Its Prognostic Value in a GSR and HRV Entropy Study. Front Hum Neurosci 2020; 14:97. [PMID: 32327985 PMCID: PMC7161674 DOI: 10.3389/fnhum.2020.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
The assessment of the consciousness level of Unresponsive Wakefulness Syndrome (UWS) patients often depends on a subjective interpretation of the observed spontaneous and volitional behavior. To date, the misdiagnosis level is around 30%. The aim of this study was to observe the behavior of UWS patients, during the administration of noxious stimulation by a Trace Conditioning protocol, assessed by the Galvanic Skin Response (GSR) and Heart Rate Variability (HRV) entropy. We recruited 13 Healthy Control (HC) and 30 UWS patients at 31 ± 9 days from the acute event evaluated by Coma Recovery Scale–Revised (CRS-R) and Nociception Coma Scale (NCS). Two different stimuli [musical stimulus (MUS) and nociceptive stimulus (NOC)], preceded, respectively by two different tones, were administered following the sequences (A) MUS1 – NOC1 – MUS2 – MUS3 – NOC2 – MUS4 – NOC3 – NOC*, and (B) MUS1*, NOC1*, NOC2*, MUS2*, NOC3*, MUS3*, NOC4*, MUS4*. All the (*) indicate the only tones administration. CRS-R and NCS assessments were repeated for three consecutive weeks. MUS4, NOC3, and NOC* were compared for GSR wave peak magnitude, time to reach the peak, and time of wave's decay by Wilcoxon's test to assess the Conditioned Response (CR). The Sample Entropy (SampEn) was recorded in baseline and both sequences. Machine Learning approach was used to identify a rule to discriminate the CR. The GSR magnitude of CR was higher comparing music stimulus (p < 0.0001) and CR extinction (p < 0.002) in nine patients and in HC. Patients with CR showed a higher SampEn in sequence A compared to patients without CR. Within the third and fourth weeks from protocol administration, eight of the nine patients (88.9%) evolved into MCS. The Machine-learning showed a high performance to differentiate presence/absence of CR (≥95%). The possibility to observe the CR to the noxious stimulus, by means of the GSR and SampEn, can represent a potential method to reduce the misdiagnosis in UWS patients.
Collapse
Affiliation(s)
- Daniela Cortese
- Research in Advanced NeuroRehabilitation, Istituto Sant'Anna, Crotone, Italy
| | - Francesco Riganello
- Research in Advanced NeuroRehabilitation, Istituto Sant'Anna, Crotone, Italy.,Coma Science Group, GIGA-Consciousness, University & Hospital of Liege, Liege, Belgium
| | - Francesco Arcuri
- Research in Advanced NeuroRehabilitation, Istituto Sant'Anna, Crotone, Italy
| | - Lucia Lucca
- Research in Advanced NeuroRehabilitation, Istituto Sant'Anna, Crotone, Italy
| | - Paolo Tonin
- Research in Advanced NeuroRehabilitation, Istituto Sant'Anna, Crotone, Italy
| | - Caroline Schnakers
- Neurosurgery Department, University of California, Los Angeles, Los Angeles, CA, United States.,Research Institute, Casa Colina Hospital and Centers of Healthcare, Pomona, CA, United States
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University & Hospital of Liege, Liege, Belgium
| |
Collapse
|
11
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
12
|
Riganello F, Larroque SK, Di Perri C, Prada V, Sannita WG, Laureys S. Measures of CNS-Autonomic Interaction and Responsiveness in Disorder of Consciousness. Front Neurosci 2019; 13:530. [PMID: 31293365 PMCID: PMC6598458 DOI: 10.3389/fnins.2019.00530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroimaging studies have demonstrated functional interactions between autonomic (ANS) and brain (CNS) structures involved in higher brain functions, including attention and conscious processes. These interactions have been described by the Central Autonomic Network (CAN), a concept model based on the brain-heart two-way integrated interaction. Heart rate variability (HRV) measures proved reliable as non-invasive descriptors of the ANS-CNS function setup and are thought to reflect higher brain functions. Autonomic function, ANS-mediated responsiveness and the ANS-CNS interaction qualify as possible independent indicators for clinical functional assessment and prognosis in Disorders of Consciousness (DoC). HRV has proved helpful to investigate residual responsiveness in DoC and predict clinical recovery. Variability due to internal (e.g., homeostatic and circadian processes) and environmental factors remains a key independent variable and systematic research with this regard is warranted. The interest in bidirectional ANS-CNS interactions in a variety of physiopathological conditions is growing, however, these interactions have not been extensively investigated in DoC. In this brief review we illustrate the potentiality of brain-heart investigation by means of HRV analysis in assessing patients with DoC. The authors' opinion is that this easy, inexpensive and non-invasive approach may provide useful information in the clinical assessment of this challenging patient population.
Collapse
Affiliation(s)
- Francesco Riganello
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
- S. Anna Institute, Research in Advanced Neurorehabilitation, Crotone, Italy
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
| | - Carol Di Perri
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences, Polyclinic Hospital San Martino IRCCS, University of Genoa, Genoa, Italy
| | - Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences, Polyclinic Hospital San Martino IRCCS, University of Genoa, Genoa, Italy
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
13
|
Rizkallah J, Annen J, Modolo J, Gosseries O, Benquet P, Mortaheb S, Amoud H, Cassol H, Mheich A, Thibaut A, Chatelle C, Hassan M, Panda R, Wendling F, Laureys S. Decreased integration of EEG source-space networks in disorders of consciousness. NEUROIMAGE-CLINICAL 2019; 23:101841. [PMID: 31063944 PMCID: PMC6503216 DOI: 10.1016/j.nicl.2019.101841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
Increasing evidence links disorders of consciousness (DOC) with disruptions in functional connectivity between distant brain areas. However, to which extent the balance of brain network segregation and integration is modified in DOC patients remains unclear. Using high-density electroencephalography (EEG), the objective of our study was to characterize the local and global topological changes of DOC patients' functional brain networks. Resting state high-density-EEG data were collected and analyzed from 82 participants: 61 DOC patients recovering from coma with various levels of consciousness (EMCS (n = 6), MCS+ (n = 29), MCS- (n = 17) and UWS (n = 9)), and 21 healthy subjects (i.e., controls). Functional brain networks in five different EEG frequency bands and the broadband signal were estimated using an EEG connectivity approach at the source level. Graph theory-based analyses were used to evaluate their relationship with decreasing levels of consciousness as well as group differences between healthy volunteers and DOC patient groups. Results showed that networks in DOC patients are characterized by impaired global information processing (network integration) and increased local information processing (network segregation) as compared to controls. The large-scale functional brain networks had integration decreasing with lower level of consciousness. Long-distance communication between brain regions is altered in patients suffering from disorders of consciousness. Impaired consciousness is associated with disruptions in brain network integration. The left orbitofrontal and left precuneus were identified in all patients groups.
Collapse
Affiliation(s)
- Jennifer Rizkallah
- Univ Rennes, LTSI, F-35000 Rennes, France; Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Lebanon
| | - Jitka Annen
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| | | | - Olivia Gosseries
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| | | | | | - Hassan Amoud
- Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Lebanon
| | - Helena Cassol
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| | | | - Aurore Thibaut
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| | - Camille Chatelle
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| | | | | | | | - Steven Laureys
- GIGA Consciousness, University of Liège, Liège, Belgium; Coma Science Group, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
14
|
Kreuzer PM, Downar J, Ridder D, Schwarzbach J, Schecklmann M, Langguth B. A Comprehensive Review of Dorsomedial Prefrontal Cortex rTMS Utilizing a Double Cone Coil. Neuromodulation 2018; 22:851-866. [DOI: 10.1111/ner.12874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 08/19/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kreuzer
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Jonathan Downar
- Department of PsychiatryUniversity of Toronto Toronto ON Canada
- Institute of Medical Science, University of Toronto Toronto ON Canada
- Krembil Research InstituteUniversity Health Network Toronto ON Canada
- MRI‐Guided rTMS ClinicUniversity Health Network Toronto ON Canada
| | - Dirk Ridder
- Department of Surgical Sciences, Unit of Neurosurgery, Dunedin School of MedicineUniversity of Otago Dunedin New Zealand
- Brain Research Center Antwerp for Innovative & Interdisciplinary NeuromodulationSint‐Augustinus Hospital Belgium
| | - Jens Schwarzbach
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Martin Schecklmann
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| | - Berthold Langguth
- Department of Psychiatry and PsychotherapyUniversity of Regensburg Germany
| |
Collapse
|
15
|
To WT, Eroh J, Hart J, Vanneste S. Exploring the effects of anodal and cathodal high definition transcranial direct current stimulation targeting the dorsal anterior cingulate cortex. Sci Rep 2018. [PMID: 29535340 PMCID: PMC5849683 DOI: 10.1038/s41598-018-22730-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) has been identified as a core region affected by many disorders, representing a promising target for neuromodulation. High Definition-transcranial Direct Current Stimulation (HD-tDCS) is a non-invasive neuromodulation technique that has already shown promising outcomes and has been tested to engage deeper structures. This study investigates whether it is possible to modulate dACC activity using anodal and cathodal HD-tDCS. Furthermore, it examines what effects anodal and cathodal HD-tDCS targeting dACC have on cognitive and emotional processing. Forty-five healthy subjects were randomly assigned to 1 of 3 groups: anodal, cathodal, and sham. Resting-state electroencephalography (rsEEG) and a cognitive and emotional Counting Stroop task were administered before and after HD-tDCS. RsEEG showed changes: anodal HD-tDCS showed significant increase in beta frequency band activity in dACC, while cathodal HD-tDCS led to significant increase in activity at dorsal and rostral ACC in the theta frequency band. Behavioral changes were also found after anodal HD-tDCS in the cognitive Counting Stroop for incongruent trials and after cathodal HD-tDCS in the emotional Counting Stroop for emotional trials. This study demonstrated that HD-tDCS is able to modulate dACC activity, suggesting that it has the potential to be used as a treatment tool.
Collapse
Affiliation(s)
- Wing Ting To
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA.
| | - Justin Eroh
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - John Hart
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - Sven Vanneste
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| |
Collapse
|
16
|
Kotchoubey B. Evoked and event-related potentials in disorders of consciousness: A quantitative review. Conscious Cogn 2017; 54:155-167. [DOI: 10.1016/j.concog.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/18/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
|
17
|
Naro A, Bramanti P, Bramanti A, Calabrò RS. Assessing pain in patients with chronic disorders of consciousness: Are we heading in the right direction? Conscious Cogn 2017; 55:148-155. [PMID: 28865377 DOI: 10.1016/j.concog.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/03/2023]
Abstract
The deterioration of sensory-motor integration within the pain matrix in patients with chronic Disorders of Consciousness (DoC) is one of the principal mechanisms responsible for non-conscious pain perception. The present study aimed to assess whether the variability in the inter-peak interval (IPI) between the N2 and P2 components of laser evoked potentials (LEP) could represent an objective marker of the behavioral responsiveness to nociceptive stimulation, as measured by the Nociception Coma Scale-Revised (NCS-R), and regardless of the sensory part of pain processing. We found that only IPI variability showed a significant correlation with NCS-R score, independently of the stimulation intensity (that influences the sensory part of pain processing). It was thus concluded that IPI variability might represent an objective measure of pain processing, which may help clinicians in the development of effective pain management strategies.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | | |
Collapse
|
18
|
Pain perception in patients with chronic disorders of consciousness: What can limbic system tell us? Clin Neurophysiol 2016; 128:454-462. [PMID: 28160751 DOI: 10.1016/j.clinph.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Although it is believed that patients with Unresponsive Wakefulness Syndrome (UWS) do not feel pain, recent neuroimaging and neurophysiologic studies have demonstrated some residual traces of nociceptive processing. METHODS To confirm this growing evidence, we evaluated 21 patients suffering from chronic disorders of consciousness (DOC) (both UWS, n=11, and Minimally Conscious State - MCS -, n=10), using an Event-Related Potential (ERP) Low-Resolution Brain Electromagnetic Tomography (LORETA) approach, based on nociceptive repeated laser stimulation (RLS). We delivered laser stimuli to the dorsum of both hands and analysed the γ-band LORETA activations and the ERP γ-power magnitude induced by laser stimulation, as well as the heart rate variability (HRV). RESULTS We found partially preserved cortical activations and ERP γ-power magnitude in all MCS and two UWS individuals. These effects were paralleled by a purposeful behaviour, and a reduced HRV concerning nociceptive stimulation, whereas the two UWS individuals showed no more than reflex behaviours, besides a strong limbic activation. CONCLUSIONS Some UWS patients may somehow perceive the affective components of nociceptive stimulation. SIGNIFICANCE The diagnosis of functional locked-in syndrome should be taken into account when dealing with DOC differential diagnosis.
Collapse
|
19
|
Riganello F, Macrì S, Alleva E, Petrini C, Soddu A, Leòn-Carriòn J, Dolce G. Pain Perception in Unresponsive Wakefulness Syndrome May Challenge the Interruption of Artificial Nutrition and Hydration: Neuroethics in Action. Front Neurol 2016; 7:202. [PMID: 27899911 PMCID: PMC5110539 DOI: 10.3389/fneur.2016.00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Simone Macrì
- Section of Behavioral Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Alleva
- Section of Behavioral Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Petrini
- Office of the President, Bioethics Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - Josè Leòn-Carriòn
- Human Neuropsychology Laboratory, Department of Experimental Psychology, School of Psychology, University of Seville, Seville, Spain
| | - Giuliano Dolce
- Research in Advanced Neurorehabilitation, Istituto S. Anna, Crotone, Italy
| |
Collapse
|
20
|
Leo A, Naro A, Cannavò A, Pisani LR, Bruno R, Salviera C, Bramanti P, Calabrò RS. Could autonomic system assessment be helpful in disorders of consciousness diagnosis? A neurophysiological study. Exp Brain Res 2016; 234:2189-99. [PMID: 27016088 DOI: 10.1007/s00221-016-4622-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/10/2016] [Indexed: 01/18/2023]
Abstract
Although patients with chronic disorders of consciousness (DOC), including unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), show a limited repertoire of awareness signs, owing to a large-scale cortico-thalamo-cortical functional disconnectivity, an activation of some cortical areas in response to relevant stimuli has been described by means of electrophysiological and functional neuroimaging approaches. In addition, cognitive processes associated with autonomic nervous system (ANS) responses elicited by nociceptive stimuli have been identified in some DOC patients. In an attempt to identify ANS functionality markers that could be useful in differentiating UWS and MCS individuals, we measured the amplitude, latency and γ-band power (γPOW) of ultra-late laser-evoked potentials (CLEPs) and skin reflex (SR), which both express some aspects of cognitive processes related to ANS functionality, besides other ANS parameters either during a 24(hh)-polygraphy or following a solid-state laser repetitive nociceptive stimulation. MCS showed physiological modification of vital signs (O2 saturation, hearth rate, hearth rate variability) throughout the night and a preservation of SR-γPOW, whereas UWS did not show significant variations. Following repetitive nociceptive stimulation, MCS patients had a significant increase in CLEP-γPOW, O2 saturation, hearth rate, and hearth rate variability, whereas UWS individuals did not show any significant change (but two patients, who reached high Coma Recovery Scale-Revised scores). Hence, our work suggests that a wide-spectrum electrophysiological evaluation of ANS functionality may support DOC differential diagnosis. Interestingly, the two above-mentioned UWS patients showed MCS-like vital sign modifications and electrophysiological pain responsiveness. It is therefore hypothesizable that our approach could be helpful in identifying residual aware autonomic system-related cognitive processes even in some UWS patients. Such issue draws the attention to either DOC clinical diagnosis or adequate pain treatment in DOC patients.
Collapse
Affiliation(s)
- Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Antonio Cannavò
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Laura Rosa Pisani
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | - Rocco Bruno
- Otorhinolaryngoiatry Unit, University of Messina, Messina, Italy
| | - Carlo Salviera
- Otorhinolaryngoiatry Unit, University of Messina, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124, Messina, Italy
| | | |
Collapse
|
21
|
Naro A, Leo A, Cannavò A, Buda A, Bramanti P, Calabrò RS. Do unresponsive wakefulness syndrome patients feel pain? Role of laser-evoked potential-induced gamma-band oscillations in detecting cortical pain processing. Neuroscience 2016; 317:141-8. [PMID: 26791527 DOI: 10.1016/j.neuroscience.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 01/18/2023]
Affiliation(s)
- A Naro
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - A Leo
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - A Cannavò
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - A Buda
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - P Bramanti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - R S Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy.
| |
Collapse
|
22
|
de Tommaso M. Response: Commentary: Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state. Front Hum Neurosci 2016; 10:12. [PMID: 26858624 PMCID: PMC4732032 DOI: 10.3389/fnhum.2016.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marina de Tommaso
- Neurophysiopathology of Pain, Basic Medical Sciences, Neuroscience and Sensory System (SMBNOS) Department, Bari Aldo Moro University Bari, Italy
| |
Collapse
|
23
|
Naro A, Calabrò RS. Commentary: Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state. Front Hum Neurosci 2015; 9:657. [PMID: 26696867 PMCID: PMC4672151 DOI: 10.3389/fnhum.2015.00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Antonino Naro
- Behavioral and Robotic Neurorehabilitation Laboratory, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina, Italy
| | - Rocco S Calabrò
- Behavioral and Robotic Neurorehabilitation Laboratory, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina, Italy
| |
Collapse
|