1
|
McLean L, Antonio FI, Rodrigues MP, Pukall C. Pelvic floor muscle activation amplitude at rest, during voluntary contraction, and during Valsalva maneuver-a comparison between those with and without provoked vestibulodynia. J Sex Med 2024:qdae170. [PMID: 39657059 DOI: 10.1093/jsxmed/qdae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The neuromuscular contribution to increased tone of the pelvic floor muscles (PFMs) observed among those with provoked vestibulodynia (PVD) is unclear. AIM To determine if PFM activity differs between those with provoked PVD and pain free controls, and if the extent of PFM activation at rest or during activities is associated with pain sensitivity at the vulvar vestibule, psychological, and/or psychosexual outcomes. METHODS This observational case-control study included forty-two volunteers with PVD and 43 controls with no history of vulvar pain. Participants completed a series of questionnaires to evaluate pain, pain catastrophizing, depression, anxiety and stress, and sexual function, then underwent a single laboratory-based assessment to determine their pressure pain threshold at the vulvar vestibule and electromyographic (EMG) signal amplitudes recorded from three PFMs (pubovisceralis, bulbocavernosus, and external anal sphincter). OUTCOMES EMG signal amplitude recorded at rest, during maximum voluntary contraction (MVC), and during maximal effort Valsalva maneuver, pressure pain threshold at the vulvar vestibule, and patient-reported psychological (stress, anxiety, pain catastrophizing, central sensitization) and psychosexual (sexual function) outcomes. RESULTS Participants with PVD had higher activation compared to controls in all PFMs studied when at rest and during Valsalva maneuver. There were no group differences in EMG amplitude recorded from the pubovisceralis during MVC (Cohen's d = 0.11), but greater activation was recorded from the bulbocavernosus (d = 0.67) and the external anal sphincter(d = 0.54) among those with PVD. When EMG amplitudes at rest and on Valsalva were normalized to activation during MVC, group differences were no longer evident, except at the pubovisceralis, where tonic EMG amplitude was higher among those with PVD (d = 0.42). While those with PVD had lower vulvar pressure pain thresholds than controls, there were no associations between PFM EMG amplitude and vulvar pain sensitivity nor psychological or psychosexual problems. CLINICAL IMPLICATIONS Women with PVD demonstrate evidence of PFM overactivity, yet the extent of EMG activation is not associated with vulvar pressure pain sensitivity nor psychological/psychosexual outcomes. Interventions aimed at reducing excitatory neural drive to these muscles may be important for successful intervention. STRENGTHS AND LIMITATIONS This study includes a robust analysis of PFM EMG. The analysis of multiple outcomes may have increased the risk statistical error, however the results of hypothesis testing were consistent across the three PFMs studied. The findings are generalizable to those with PVD without vaginismus. CONCLUSIONS Those with PVD demonstrate higher PFM activity in the bulbocavernosus, pubovisceralis, and external anal sphincter muscles at rest, during voluntary contraction (bulbocavernosus and external anal sphincter) and during Valsalva maneuver; yet greater activation amplitude during these tasks is not associated with greater vulvar pressure pain sensitivity nor psychological or psychosexual function.
Collapse
Affiliation(s)
- Linda McLean
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Flavia Ignacio Antonio
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Marina Petter Rodrigues
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Caroline Pukall
- School of Psychology, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
2
|
Calafiore D, Marotta N, Curci C, Agostini F, De Socio RI, Inzitari MT, Ferraro F, Bernetti A, Ammendolia A, de Sire A. Efficacy of Rehabilitative Techniques on Pain Relief in Patients With Vulvodynia: A Systematic Review and Meta-Analysis. Phys Ther 2024; 104:pzae054. [PMID: 38564267 DOI: 10.1093/ptj/pzae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Vulvodynia is a chronic clinical condition characterized by provoked or non-provoked vulvar pain for at least 3 months of unknown etiology. The onset of vulvodynia involves a complex interplay of peripheral and central pain mechanisms, such as pelvic floor muscle and autonomic dysfunction, and interpersonal factors. A stepwise approach of pelvic floor physical therapy as medical management is suggested. In this scenario, by this meta-analysis of randomized controlled trials, we aimed to evaluate the efficacy of rehabilitation interventions in patients with vulvodynia. METHODS On October 13, 2022, PubMed, Scopus, and Web of Science were systematically searched for randomized controlled trials that assessed the efficacy of the rehabilitative approach to pain during intercourse in patients with vulvodynia. The quality assessment was performed with the Cochrane risk-of-bias tool for randomized trials. The trial registration number is CRD42021257449. At the end of the search, 9 studies were included for a total of 332 patients. A pairwise meta-analysis was performed to highlight the efficacy of rehabilitative approaches for reducing pain during intercourse, as measured with a visual analog scale or a numerical rating scale. RESULTS Meta-analysis showed that all these rehabilitative approaches had an overall effect size of -1.43 (95% CI = -2.69 to -0.17) in decreasing vulvodynia pain in terms of the visual analog scale. In the subgroup analysis, a significant effect size in acupuncture (effect size = -2.36; 95% CI = -3.83 to -0.89) and extracorporeal shockwave therapy (effect size = -2.94; 95% CI = -4.31 to -1.57; I2 = 58%) was observed. According to the Cochrane risk-of-bias tool, a low risk of bias for outcome selection in 89% of studies. CONCLUSION Findings from this meta-analysis suggested that the physical agent modalities and complementary medicine techniques in people with vulvodynia appear to be more effective than placebo, sham, or waiting list. Further evidence on physical agent modalities and complementary therapies are warranted in the future. IMPACT This was the first systematic review and meta-analysis of randomized controlled trials to provide evidence on the efficacy of rehabilitation interventions in patients with vulvodynia.
Collapse
Affiliation(s)
- Dario Calafiore
- Department of Neurosciences, ASST Carlo Poma, Physical Medicine and Rehabilitation Unit, Mantova, Italy
| | - Nicola Marotta
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Claudio Curci
- Department of Neurosciences, ASST Carlo Poma, Physical Medicine and Rehabilitation Unit, Mantova, Italy
| | - Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
- Department of Neurological and Rehabilitation Science, IRCCS San Raffaele, Rome, Italy
| | - Rita Ilaria De Socio
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Maria Teresa Inzitari
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Francesco Ferraro
- Department of Neurosciences, ASST Carlo Poma, Physical Medicine and Rehabilitation Unit, Mantova, Italy
| | - Andrea Bernetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Antonio Ammendolia
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro "Magna Graecia", Catanzaro, Italy
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Alessandro de Sire
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro "Magna Graecia", Catanzaro, Italy
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| |
Collapse
|
3
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
Mwaura AN, Marshall N, Anglesio MS, Yong PJ. Neuroproliferative dyspareunia in endometriosis and vestibulodynia. Sex Med Rev 2023; 11:323-332. [PMID: 37544766 DOI: 10.1093/sxmrev/qead033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Endometriosis is a common cause of deep dyspareunia, while provoked vestibulodynia is a common cause of superficial dyspareunia. The etiology of dyspareunia in both conditions is multifactorial and may include the role of local nerve growth (neurogenesis or neuroproliferation) that sensitizes pelvic structures and leads to pain with contact. OBJECTIVES To review the evidence for neuroproliferative dyspareunia in endometriosis and provoked vestibulodynia. METHODS Narrative review. RESULTS The pelvic peritoneum and vulvar vestibule receive somatic and autonomic innervation. Various markers have been utilized for nerve subtypes, including pan-neuronal markers and those specific for sensory and autonomic nerve fibers. The nerve growth factor family includes neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, and their receptors. Studies of endometriosis and provoked vestibulodynia have demonstrated the presence of nerve fibers around endometriosis epithelium/stroma in the pelvic peritoneum and within the vulvar vestibule. The number of nerve fibers is higher in these pain conditions as compared with control tissue. Nerve growth factor expression by endometriosis stroma and by immune cells in the vulvar vestibule may be involved in local neuroproliferation. Local inflammation is implicated in this neuroproliferation, with potential roles of interleukin 1β and mast cells in both conditions. Several studies have shown a correlation between nerve fibers around endometriosis and dyspareunia severity, but studies are lacking in provoked vestibulodynia. There are several possible clinical ramifications of neuroproliferative dyspareunia in endometriosis and provoked vestibulodynia, in terms of history, examination, biopsy, and surgical and medical treatment. CONCLUSIONS A neuroproliferative subtype of dyspareunia may be implicated in endometriosis and provoked vestibulodynia. Additional research is needed to validate this concept and to integrate it into clinical studies. Neuroproliferative pathways could serve as novel therapeutic targets for the treatment of dyspareunia in endometriosis and provoked vestibulodynia.
Collapse
Affiliation(s)
- Agnes N Mwaura
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, V6H 3N1, Canada
| | - Nisha Marshall
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, V6H 3N1, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, V6H 3N1, Canada
| | - Paul J Yong
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, V6H 3N1, Canada
| |
Collapse
|
5
|
Abha Mishra KM, Podili R, Pathlavath TS, Sethi KK. A critical review on brain and heart axis response in COVID-19 patients: Molecular mechanisms, mediators, biomarkers, and therapeutics. J Biochem Mol Toxicol 2023; 37:e23409. [PMID: 37341157 DOI: 10.1002/jbt.23409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Since the outbreak of highly virulent coronaviruses, significant interest was assessed to the brain and heart axis (BHA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-affected patients. The majority of clinical reports accounted for unusual symptoms associated with SARS-CoV-2 infections which are of the neurological type, such as headache, nausea, dysgeusia, anosmia, and cerebral infarction. The SARS-CoV-2 enters the cells through the angiotensin-converting enzyme (ACE-2) receptor. Patients with prior cardiovascular disease (CVD) have a higher risk of COVID-19 infection and it has related to various cardiovascular (CV) complications. Infected patients with pre-existing CVDs are also particularly exposed to critical health outcomes. Overall, COVID-19 affected patients admitted to intensive care units (ICU) and exposed to stressful environmental constraints, featured with a cluster of neurological and CV complications. In this review, we summarized the main contributions in the literature on how SARS-CoV-2 could interfere with the BHA and its role in affecting multiorgan disorders. Specifically, the central nervous system involvement, mainly in relation to CV alterations in COVID-19-affected patients, is considered. This review also emphasizes the biomarkers and therapy options for COVID-19 patients presenting with CV problems.
Collapse
Affiliation(s)
- K M Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| | - Runesh Podili
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| | - Teja S Pathlavath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| |
Collapse
|
6
|
Coulibaly WH, Tohoyessou YMG, Konan PAK, Djè KM. Bioactive compounds and antioxidant activities of two industrial beers produced in Ivory Coast. Heliyon 2023; 9:e19168. [PMID: 37664754 PMCID: PMC10468381 DOI: 10.1016/j.heliyon.2023.e19168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Beer is a world-famous beverage that is universally popular. This might be as an effect of its sensory, nutritional, and therapeutic qualities. To date, in Côte d'Ivoire, no study has been carried out focused on the eventual health benefits of industrial beer consumption. In this study, the bioactive compounds (total phenols, total tannins, total flavonoids, total anthocyanins) and corresponding antioxidant activities of two industrial beers from maize and rice from two different breweries were investigated. Results showed that for all phenolic compounds, contents were not statistically different (P > 0.05). However, antioxidant activities (antiradical activity and ferric reducing antioxydant power) were more important in industrial beer from rice (57.57 ± 0.62% and 109.46 ± 0.39 μg/mL ascorbic acid irrespectively) than industrial beer from maize (39.19 ± 1.02% and 103.51 ± 0.62 μg/mL ascorbic acid). Total phenols, total flavonoids, and total anthocyanins were mostly responsible for the antioxidant activities (antiradical activity and ferric reducing antioxydant power) of two beers, with correlation coefficients ranging from r = 0.614 to r = 1. Globally, the two industrial beers were similars but differents from local traditional sorghum beer. Occurrence of phenolic compounds in beers coupled with antioxidant activities shows that beer consumption could have health benefits to condition that beers have a low-alcohol content and light-to-moderate consumption. However, further investigations aims health benefis aspect are necessary.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology Formation and Research Unit, University Nangui Abrogoua, 02, BP 801, Abidjan 02, Cote d’Ivoire
| | - Yabo Majoie Géroxie Tohoyessou
- Biology and Molecular Typage in Microbiology Laboratory, Biochemistry and Cell Biology Department, Faculty of Sciences and Techniques, University of Abomey-Calavi, 05, BP 1604, Cotonou, Benin
| | - Pierre Alain Kouassi Konan
- Bio-organic Chemistry and Natural Substances Laboratory, Applied Fondamental Science Formation and Unit Research, University Nangui Abrogoua, 02, BP 801, Abidjan 02, Cote d’Ivoire
| | - Koffi Marcellin Djè
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology Formation and Research Unit, University Nangui Abrogoua, 02, BP 801, Abidjan 02, Cote d’Ivoire
| |
Collapse
|
7
|
Nemoto W, Yamagata R, Nakagawasai O, Tan-No K. Angiotensin-Related Peptides and Their Role in Pain Regulation. BIOLOGY 2023; 12:biology12050755. [PMID: 37237567 DOI: 10.3390/biology12050755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Angiotensin (Ang)-generating system has been confirmed to play an important role in the regulation of fluid balance and blood pressure and is essential for the maintenance of biological functions. Ang-related peptides and their receptors are found throughout the body and exhibit diverse physiological effects. Accordingly, elucidating novel physiological roles of Ang-generating system has attracted considerable research attention worldwide. Ang-generating system consists of the classical Ang-converting enzyme (ACE)/Ang II/AT1 or AT2 receptor axis and the ACE2/Ang (1-7)/MAS1 receptor axis, which negatively regulates AT1 receptor-mediated responses. These Ang system components are expressed in various tissues and organs, forming a local Ang-generating system. Recent findings indicate that changes in the expression of Ang system components under pathological conditions are involved in the development of neuropathy, inflammation, and their associated pain. Here, we summarized the effects of changes in the Ang system on pain transmission in various organs and tissues involved in pain development process.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
8
|
Velikonja L, Giovannetti O, Adams MA, Tomalty D. Innervation of the human vulvar vestibule: A comprehensive review. Clin Anat 2023; 36:18-27. [PMID: 36216779 DOI: 10.1002/ca.23966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Pain of the vulvar vestibule, including provoked vestibulodynia, is prevalent among women, yet challenging to treat due to its multifactorial etiology. Recent evidence indicates a neuroproliferative subtype in which hypersensitivity of the vulvar vestibule is due, in part, to hyperinnervation. Detailed knowledge regarding the innervation of the vulvar vestibule is crucial to understanding and treating pain conditions impacting this region. The purpose of this review is to consolidate the current evidence regarding the innervation of the human vulvar vestibule and discuss the implications of this innervation for pathological conditions affecting this tissue. A comprehensive review of the literature was conducted using keywords including vulvar vestibule, innervation, and vestibulodynia to identify articles concerning the innervation of the vulvar vestibule. Fifteen studies published between 1998 and 2017 were reviewed. Evidence from immunohistochemical investigations support that the vulvar vestibule has nociceptive, mechanosensory, sympathetic, and parasympathetic innervation. In pathological samples, hyperinnervation supports the neuroproliferative etiology of provoked vestibulodynia. Additionally, there is some evidence supporting the role of the pudendal nerve in vulvar vestibule innervation, although no cadaveric studies have been reported to date. Progress has been made in our understanding of the innervation of the vulvar vestibule, though further research into the origin of sensory and autonomic innervation of this region is needed. Advancing the knowledge of vulvar vestibule innervation is crucial towards improving our understanding of the function of this tissue, in addition to informing the etiology and management of pain syndromes impacting this region.
Collapse
Affiliation(s)
- Leah Velikonja
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| | - Diane Tomalty
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| |
Collapse
|
9
|
Gao W, Shen L, Long DD, Pan TT, Wang D, Chai XQ, Hu SS. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol 2022; 110:108921. [PMID: 35724606 DOI: 10.1016/j.intimp.2022.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022]
Abstract
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liang Shen
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Dan-Dan Long
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Ting-Ting Pan
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Medical University, Hefei 230036, China
| | - Xiao-Qing Chai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
10
|
Goetsch MF, Garg B, Lillemon J, Clark AL. Where does postmenopausal dyspareunia hurt? A cross-sectional report. Menopause 2022; 29:646-653. [PMID: 35231008 DOI: 10.1097/gme.0000000000001956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A common symptom of genitourinary syndrome of menopause (GSM) is dyspareunia, attributed to vulvovaginal atrophy. Our objective was to systematically describe the pain characteristics and anatomic locations of tenderness in a cohort with moderate/severe dyspareunia likely due to GSM. METHODS This cross-sectional study reports the baseline data of postmenopausal women with dyspareunia screened for an intervention trial of topical estrogen. Postmenopausal women not using hormone therapy who had moderate or severe dyspareunia were eligible if estrogen was not contraindicated. Biopsychosocial assessments were performed using the Vulvar Pain Assessment Questionnaire, and participants underwent a systematic vulvovaginal examination that included a visual assessment and cotton swab testing for tenderness rated using the Numerical Rating Scale (0-10). Vaginal pH and mucosal sensitivity were assessed; pelvic floor muscles and pelvic viscera were palpated for tenderness. RESULTS Fifty-five eligible women were examined between July 2017 and August 2019. Mean age was 59.5 ± 6.8 years, and duration of dyspareunia was 6.2 ± 4.3 years. The mean intercourse pain score was 7.3 ± 1.8, most often described as "burning" and "raw." Ninety-eight percent had physical findings of vulvovaginal atrophy. Median pain scores from swab touch at the vulvar vestibule (just outside the hymen) were 4 to 5/10, and topical lidocaine extinguished pain. Median vaginal mucosal pain was zero. CONCLUSIONS Participants described their pain as "burning" and "dry." Tenderness was most severe and most consistently located at the vulvar vestibule. Correlating the symptom of dyspareunia with genital examination findings may further our understanding of treatment outcomes for GSM.
Collapse
Affiliation(s)
- Martha F Goetsch
- Department of ObGyn, Oregon Health and Science University, Portland, OR
| | - Bharti Garg
- Department of ObGyn, Oregon Health and Science University, Portland, OR
| | | | - Amanda L Clark
- Kaiser Permanente Center for Health Research, Portland, OR
| |
Collapse
|
11
|
Vulvodynia: a neuroinflammatory pain syndrome originating in pelvic visceral nerve plexuses due to mechanical factors. Arch Gynecol Obstet 2022; 306:1411-1415. [PMID: 35147761 PMCID: PMC9519726 DOI: 10.1007/s00404-022-06424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/26/2022] [Indexed: 12/05/2022]
Abstract
This short opinion aimed to present the evidence to support our hypothesis that vulvodynia is a neuroinflammatory pain syndrome originating in the pelvic visceral nerve plexuses caused by the failure of weakened uterosacral ligaments (USLs) to support the pelvic visceral nerve plexuses, i.e., T11–L2 sympathetic and S2–4 parasympathetic plexuses. These are supported by the USLs, 2 cm from their insertion to the cervix. They innervate the pelvic organs, glands, and muscles. If the USLs are weak or lax, gravitational force or even the muscles may distort and stimulate the unsupported plexuses. Inappropriate afferent signals could then be interpreted as originating from an end-organ site. Activation of sensory visceral nerves causes a neuro-inflammatory response in the affected tissues, leading to neuroproliferation of small peripheral sensory nerve fibers, which may cause hyperalgesia and allodynia in the territory of the damaged innervation. Repair of the primary abnormality of USL laxity, responsible for mechanical stimulation of the pelvic sensory plexus, may lead to resolution of the pain syndrome.
Collapse
|
12
|
Castro J, Harrington AM, Chegini F, Matusica D, Spencer NJ, Brierley SM, Haberberger RV, Barry CM. Clodronate Treatment Prevents Vaginal Hypersensitivity in a Mouse Model of Vestibulodynia. Front Cell Infect Microbiol 2022; 11:784972. [PMID: 35118009 PMCID: PMC8803747 DOI: 10.3389/fcimb.2021.784972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
IntroductionImproved understanding of vestibulodynia pathophysiology is required to develop appropriately targeted treatments. Established features include vulvovaginal hyperinnervation, increased nociceptive signalling and hypersensitivity. Emerging evidence indicates macrophage-neuron signalling contributes to chronic pain pathophysiology. Macrophages are broadly classified as M1 or M2, demonstrating pro-nociceptive or anti-nociceptive effects respectively. This study investigates the impact of clodronate liposomes, a macrophage depleting agent, on nociceptive signalling in a mouse model of vestibulodynia.MethodsMicroinjection of complete Freund’s adjuvant (CFA) at the vaginal introitus induced mild chronic inflammation in C57Bl/6J mice. A subgroup was treated with the macrophage depleting agent clodronate. Control mice received saline. After 7 days, immunolabelling for PGP9.5, F4/80+CD11c+ and F4/80+CD206+ was used to compare innervation density and presence of M1 and M2 macrophages respectively in experimental groups. Nociceptive signalling evoked by vaginal distension was assessed using immunolabelling for phosphorylated MAP extracellular signal-related kinase (pERK) in spinal cord sections. Hyperalgesia was assessed by visceromotor response to graded vaginal distension.ResultsCFA led to increased vaginal innervation (p < 0.05), increased pERK-immunoreactive spinal cord dorsal horn neurons evoked by vaginal-distension (p < 0.01) and enhanced visceromotor responses compared control mice (p < 0.01). Clodronate did not reduce vaginal hyperinnervation but significantly reduced the abundance of M1 and M2 vaginal macrophages and restored vaginal nociceptive signalling and vaginal sensitivity to that of healthy control animals.ConclusionsWe have developed a robust mouse model of vestibulodynia that demonstrates vaginal hyperinnervation, enhanced nociceptive signalling, hyperalgesia and allodynia. Macrophages contribute to hypersensitivity in this model. Macrophage-sensory neuron signalling pathways may present useful pathophysiological targets.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Fariba Chegini
- Musculoskeletal Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Sensory Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
| | - Rainer V. Haberberger
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christine M. Barry
- Musculoskeletal Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
- *Correspondence: Christine M. Barry,
| |
Collapse
|
13
|
Paavonen J, Eschenbach DA. Localized Provoked Vulvodynia-An Ignored Vulvar Pain Syndrome. Front Cell Infect Microbiol 2021; 11:678961. [PMID: 34222047 PMCID: PMC8248677 DOI: 10.3389/fcimb.2021.678961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Localized provoked vulvodynia (LPV) causes dyspareunia among reproductive aged women. We review the pathogenesis of LPV and suggest that LPV is an inflammatory pain syndrome of the vestibular mucosa triggered by microbial antigens in a susceptible host. Tissue inflammation and hyperinnervation are characteristic findings which explain symptoms and clinical signs. Education of health care providers of LPV is important since this condition is common, often unrecognized, and patients often become frustrated users of health care. Research is needed on the antigen triggers of the syndrome. Randomized clinical trials are needed to evaluate treatment modalities.
Collapse
Affiliation(s)
- Jorma Paavonen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David A Eschenbach
- Department of Obstetrics and Gynecology, University of Washington, Women's Health Care Center- Roosevelt, Seattle, WA, United States
| |
Collapse
|
14
|
Chen F, Gao W, Hu J, Yang X, Chai X, Wang D. Preoperative angiotensin II type 2 receptor is a predictor for developing chronic post-surgical pain after total knee arthroplasty surgery. Life Sci 2021; 278:119654. [PMID: 34043993 DOI: 10.1016/j.lfs.2021.119654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study aimed to explore whether preoperative angiotensin II type 2 receptor (AT2R) level in knee osteoarthritis (OA) patients was an independent risk factor for chronic post-surgical pain (CPSP) after total knee arthroplasty (TKA). METHODS A total of 220 patients who had undergone unilateral TKA were enrolled from October 2019 to January 2020. Quantitative sensory testing (QST), PainDETECT questionnaires (PD-Q), the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), the hospital anxiety and depression (HAD) and serum AT2R were collected preoperatively. The primary outcome was the incidence of CPSP, which was defined as the visual analogue scale (VAS) score ≥ 4 in the ipsilateral knee joint six months after operation. RESULTS The prevalence of CPSP was 13.6% (n = 30). Multiple logistic regression analysis showed that patients with higher AT2R level (OR: 1.007, 95% CI: 1.003-1.011) and PD-Q score (OR: 1.146, 95% CI: 1.008-1.298) before surgery had an increased risk of CPSP after surgery, and a combination of preoperative AT2R and PD-Q (Akaike information criterion: 147.2; area under receiver operating characteristic (ROC) curve: 0.890) was able to correctly classify 90.16% of patients into CPSP positive or negative groups. CONCLUSION Our findings suggest that patients with higher preoperative AT2R level are at increased risk of developing CPSP following TKA. AT2R may serve as a candidate predictor for phenotyping CPSP in OA patients.
Collapse
Affiliation(s)
- Fan Chen
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wei Gao
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jicheng Hu
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xinlu Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Anesthesiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| |
Collapse
|
15
|
Comparing Vestibule Examination Techniques: Light Touch, Serial Forces, and the Lidocaine Test. J Low Genit Tract Dis 2021; 25:236-242. [PMID: 34016868 DOI: 10.1097/lgt.0000000000000605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to compare techniques and pain scales that assess tenderness in the vulvar vestibule in provoked vestibulodynia, using the cotton swab test and a vulvalgesiometer, and assess topical lidocaine solution with each. MATERIALS AND METHODS This randomized study at a specialty vulvar clinic evaluated tender vestibules of reproductive-aged women with vestibulodynia using light rolling cotton swab touch at 6 sites and evaluated the vulvalgesiometer at 2 sites, randomizing the order of the initial tool. Participants reported pain using the Numerical Rating Scale 0-10 and the Verbal Pain Scale 0-3. With the vulvalgesiometer, the pain tolerance threshold was measured using forces of 10, 25, 50, 100, 200, and 300 g. After both initial tests, lidocaine 4% topical solution was applied for 3 minutes, and the swab test and vulvalgesiometer were repeated in the order initially performed, constituting the lidocaine test. Data analysis used t tests, Fisher exact tests, Wilcoxon signed rank tests, and Spearman rank correlation. RESULTS Sixteen patients completed the study, 8 starting with each instrument. Light swab touch evoked significant pain, and lidocaine reduced pain to zero or mild levels. The pain threshold was 25 g, and only 38% could tolerate testing past 100 g without lidocaine. The Verbal Pain Scale correlated well with the Numerical Rating Scale. CONCLUSIONS Light rolling cotton swab touch using the 4-item verbal scale can map vestibulodynia tenderness that can be extinguished by lidocaine, consistent with distinguishing a mucosal condition. Forces by vulvalgesiometer of greater than 100-200 g may evoke pain other than mucosal allodynia.
Collapse
|
16
|
The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021; 10:cells10030650. [PMID: 33804069 PMCID: PMC7999456 DOI: 10.3390/cells10030650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023] Open
Abstract
Evidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1–7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain. Cell senescence and aging are known to be related to RAS pathways. Further, this system directly interacts with SARS-CoV 2 and seems to be an important target of interest in the COVID-19 pandemic. This review focuses on the involvement of tRAS in the progression of the mentioned diseases from an interdisciplinary clinical perspective and highlights therapeutic strategies that might be of major clinical importance in the future.
Collapse
|
17
|
The Angiotensin II Type 2 Receptor, a Target for Protection and Regeneration of the Peripheral Nervous System? Pharmaceuticals (Basel) 2021; 14:ph14030175. [PMID: 33668331 PMCID: PMC7996246 DOI: 10.3390/ph14030175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Preclinical evidence, accumulated over the past decade, indicates that the angiotensin II type 2 receptor (AT2R) stimulation exerts significant neuroprotective effects in various animal models of neuronal injury, notably in the central nervous system. While the atypical G protein-coupled receptor superfamily nature of AT2R and its related signaling are still under investigation, pharmacological studies have shown that stimulation of AT2R leads to neuritogenesis in vitro and in vivo. In this review, we focus on the potential neuroprotective and neuroregenerative roles of AT2R specifically in the peripheral nervous system (PNS). The first section describes the evidence for AT2R expression in the PNS and highlights current controversies concerning the cellular distribution of the receptor. The second section focuses on AT2R signaling implicated in neuronal survival and in neurite outgrowth. The following sections review the relatively few preclinical studies highlighting the putative neuroprotective and neuroregenerative effects of AT2R stimulation in the context of peripheral neuropathy.
Collapse
|
18
|
Campos J, Pacheco R. Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation. Semin Immunopathol 2020; 42:681-696. [PMID: 32997225 PMCID: PMC7526080 DOI: 10.1007/s00281-020-00819-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is a fundamental regulator of blood pressure and has emerged as an important player in the control of inflammatory processes. Accordingly, imbalance on RAS components either systemically or locally might trigger the development of inflammatory disorders by affecting immune cells. At the same time, alterations in the dopaminergic system have been consistently involved in the physiopathology of inflammatory disorders. Accordingly, the interaction between the RAS and the dopaminergic system has been studied in the context of inflammation of the central nervous system (CNS), kidney, and intestine, where they exert antagonistic actions in the regulation of the immune system. In this review, we summarized, integrated, and discussed the cross talk of the dopaminergic system and the RAS in the regulation of inflammatory pathologies, including neurodegenerative disorders, such as Parkinson’s disease. We analyzed the molecular mechanisms underlying the interaction between both systems in the CNS and in systemic pathologies. Moreover, we also analyzed the impact of the commensal microbiota in the regulation of RAS and dopaminergic system and how it is involved in inflammatory disorders. Furthermore, we summarized the therapeutic approaches that have yielded positive results in preclinical or clinical studies regarding the use of drugs targeting the RAS and dopaminergic system for the treatment of inflammatory conditions. Further understanding of the molecular and cellular regulation of the RAS-dopaminergic cross talk should allow the formulation of new therapies consisting of novel drugs and/or repurposing already existing drugs, alone or in combination, for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Javier Campos
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile. .,Universidad San Sebastián, 7510156 Providencia, Santiago, Chile.
| |
Collapse
|
19
|
Botulinum Toxin A as a Treatment for Provoked Vestibulodynia: A Randomized Controlled Trial. Obstet Gynecol 2020; 136:524-532. [PMID: 32769643 DOI: 10.1097/aog.0000000000004008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate pain reduction after two injections of 50 units botulinum toxin A compared with placebo for provoked vestibulodynia. METHODS We conducted a double-blinded, placebo-controlled randomized trial of 50 units botulinum toxin A or placebo injected in the bulbocavernosus muscles twice, 3 months apart, in women with provoked vestibulodynia. Primary outcome was self-reported dyspareunia or pain at tampon use on a visual analog scale (VAS, 0-100). Secondary outcomes were pain at weekly tampon insertion (VAS score), reduction of pelvic floor hypertonicity (measured with a vaginal manometer), adverse events, and sexual function and distress. A sample size of 38 participants for each group was calculated to achieve a statistical power of 80% based on an effect size of 20 VAS units (0-100) (mean score range 56-76±31 SD). RESULTS Between May 2016 and June 2018, 124 women with provoked vestibulodynia were assessed, and 88 were randomized to botulinum toxin A (BTA group, n=44) or placebo (placebo group, n=44). Primary outcome showed a lower but statistically nonsignificant pain rating by 7 VAS units (95% CI -15.0 to 0.4) in the BTA group compared with the placebo group. Secondary results showed a significant decrease in pain at weekly tampon insertion by 11 VAS units (95% CI -16.6 to 6.0) with botulinum toxin A injection. The vaginal manometer measured lower maximum contraction strength by 7 mm Hg (95% CI -12.7 to -2.4) and lower 10-second endurance strength by 4 mm Hg (95% CI -7.72 to -1.16) in the BTA group compared with the placebo group. No changes were observed for sexual function and distress, but there was a significant increase in women attempting vaginal intercourse in the BTA group (0.27, 95% CI 0.06-0.48). No severe adverse events were reported. CONCLUSION Twice-repeated injections of 50 units of botulinum toxin A in women with provoked vestibulodynia did not reduce dyspareunia or pain at tampon use, but secondary outcomes suggested positive effects of the treatment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02773641.
Collapse
|
20
|
Severe Postmenopausal Genital Pain Treated Successfully With Prolonged Estrogen Therapy: A Case Series and Narrative Review. J Low Genit Tract Dis 2020; 24:405-410. [DOI: 10.1097/lgt.0000000000000553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zolfaghari Emameh R, Falak R, Bahreini E. Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2. Biol Proced Online 2020; 22:11. [PMID: 32572334 PMCID: PMC7302923 DOI: 10.1186/s12575-020-00124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus. RESULTS In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures. CONCLUSIONS Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Abstract
Vulvodynia is a condition that occurs in 8-10% of women of all ages and is characterized by pain at the vulva that is present during sexual and/or non-sexual situations. Diagnosis is established through careful medical history and pelvic examination, including the cotton-swab test. The onset and maintenance of vulvodynia involves a complex interplay of peripheral and central pain mechanisms, pelvic floor muscle and autonomic dysfunction, anxiety, depression and childhood maltreatment as well as cognitive-affective, behavioural and interpersonal factors. Given the absence of empirically supported treatment guidelines, a stepwise approach of pelvic floor physical therapy and cognitive behavioural therapy as well as medical management is suggested, with surgery as the last option. Vulvodynia has a negative effect on the quality of life of women and their partners, and imposes a profound personal and societal economic burden. In addition, women with vulvodynia are more likely to report other chronic pain conditions, which further alters their quality of life. Future efforts should aim to increase girls', women's and healthcare professionals' education and awareness of vulvodynia, phenotype different subgroups of women based on biopsychosocial characteristics among more diverse samples, conduct longitudinal studies and improve clinical trial designs.
Collapse
|
23
|
Persistent Genitopelvic Pain: Classification, Comorbidities, Chronicity, and Interpersonal Factors. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Barry CM, Matusica D, Haberberger RV. Emerging Evidence of Macrophage Contribution to Hyperinnervation and Nociceptor Sensitization in Vulvodynia. Front Mol Neurosci 2019; 12:186. [PMID: 31447644 PMCID: PMC6691023 DOI: 10.3389/fnmol.2019.00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Vulvodynia is an idiopathic chronic pain disorder and a leading cause of dyspareunia, or pain associated with sexual intercourse, for women. The key pathophysiological features of vulvodynia are vaginal hyperinnervation and nociceptor sensitization. These features have been described consistently by research groups over the past 30 years, but currently there is no first-line recommended treatment that targets this pathophysiology. Instead, psychological interventions, pelvic floor physiotherapy and surgery to remove painful tissue are recommended, as these are the few interventions that have shown some benefit in clinical trials. Recurrence of vulvodynia is frequent, even after vestibulectomy and questions regarding etiology remain. Vestibular biopsies from women with vulvodynia contain increased abundance of immune cells including macrophages as well as increased numbers of nerve fibers. Macrophages have multiple roles in the induction and resolution of inflammation and their function can be broadly described as pro-inflammatory or anti-inflammatory depending on their polarization state. This state is not fixed and can alter rapidly in response to the microenvironment. Essentially, M1, or classically activated macrophages, produce pro-inflammatory cytokines and promote nociceptor sensitization and mechanical allodynia, whereas M2, or alternatively activated macrophages produce anti-inflammatory cytokines and promote functions such as wound healing. Signaling between macrophages and neurons has been shown to promote axonal sprouting and nociceptor sensitization. This mini review considers emerging evidence that macrophages may play a role in nociceptor sensitization and hyperinnervation relevant to vulvodynia and considers the implications for development of new therapeutic strategies.
Collapse
Affiliation(s)
- Christine Mary Barry
- Musculoskeletal Neurobiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Órama Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Órama Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, Yuan M, Guo G, Xiong H, Zhan P, Wang Y, Machens HG, Chen Z. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol 2019; 234:23097-23110. [PMID: 31124125 DOI: 10.1002/jcp.28873] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J Neurosci 2018; 38:7032-7057. [PMID: 29976627 DOI: 10.1523/jneurosci.3542-17.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets.SIGNIFICANCE STATEMENT Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.
Collapse
|
27
|
Sharma H, Ji E, Yap P, Vilimas P, Kyloh M, Spencer NJ, Haberberger RV, Barry CM. Innervation Changes Induced by Inflammation in the Murine Vagina. Neuroscience 2018; 372:16-26. [DOI: 10.1016/j.neuroscience.2017.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
|
28
|
Barry CM, Huilgol KK, Haberberger RV. New models to study vulvodynia: Hyperinnervation and nociceptor sensitization in the female genital tract. Neural Regen Res 2018; 13:2096-2097. [PMID: 30323133 PMCID: PMC6199936 DOI: 10.4103/1673-5374.241455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Christine M Barry
- Anatomy and Histology, College of Medicine and Public Health; Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Kalyani K Huilgol
- Anatomy and Histology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Rainer V Haberberger
- Anatomy and Histology, College of Medicine and Public Health; Centre for Neuroscience, Flinders University, Adelaide, Australia
| |
Collapse
|
29
|
Chakrabarty A, Liao Z, Mu Y, Smith PG. Inflammatory Renin-Angiotensin System Disruption Attenuates Sensory Hyperinnervation and Mechanical Hypersensitivity in a Rat Model of Provoked Vestibulodynia. THE JOURNAL OF PAIN 2017; 19:264-277. [PMID: 29155208 DOI: 10.1016/j.jpain.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Vestibulodynia is characterized by perivaginal mechanical hypersensitivity, hyperinnervation, and abundant inflammatory cells expressing renin-angiotensin system proteins. We developed a tractable rat model of vestibulodynia to further assess the contributions of the renin-angiotensin system. Complete Freund's adjuvant injected into the posterior vestibule induced marked vestibular hypersensitivity throughout a 7-day test period. Numbers of axons immunoreactive for PGP9.5, calcitonin gene-related peptide, and GFRα2 were increased. Numbers of macrophages and T cells were also increased whereas B cells were not. Renin-angiotensin-associated proteins were abundant, with T cells as well as macrophages contributing to increased renin and angiotensinogen. Media conditioned with inflamed vestibular tissue promoted neurite sprouting by rat dorsal root ganglion neurons in vitro, and this was blocked by the angiotensin II receptor type 2 receptor antagonist PD123319 or by an angiotensin II function blocking antibody. Sensory axon sprouting induced by inflamed tissue was dependent on activity of angiotensin-converting enzyme or chymase, but not cathepsin G. Thus, vestibular Complete Freund's adjuvant injection substantially recapitulates changes seen in patients with provoked vestibulodynia, and shows that manipulation of the local inflammatory renin-angiotensin system may be a useful therapeutic strategy. PERSPECTIVE This study provides evidence that inflammation of the rat vestibule induces a phenotype recapitulating behavioral and cytological features of human vestibulodynia. The model confirms a crucial role of the local inflammatory renin-angiotensin system in hypersensitivity and hyperinnervation. Targeting this system holds promise for developing new nonopioid analgesic treatment strategies.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|