1
|
Duff IT, Krolick KN, Mahmoud HM, Chidambaran V. Current Evidence for Biological Biomarkers and Mechanisms Underlying Acute to Chronic Pain Transition across the Pediatric Age Spectrum. J Clin Med 2023; 12:5176. [PMID: 37629218 PMCID: PMC10455285 DOI: 10.3390/jcm12165176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic pain is highly prevalent in the pediatric population. Many factors are involved in the transition from acute to chronic pain. Currently, there are conceptual models proposed, but they lack a mechanistically sound integrated theory considering the stages of child development. Objective biomarkers are critically needed for the diagnosis, risk stratification, and prognosis of the pathological stages of pain chronification. In this article, we summarize the current evidence on mechanisms and biomarkers of acute to chronic pain transitions in infants and children through the developmental lens. The goal is to identify gaps and outline future directions for basic and clinical research toward a developmentally informed theory of pain chronification in the pediatric population. At the outset, the importance of objective biomarkers for chronification of pain in children is outlined, followed by a summary of the current evidence on the mechanisms of acute to chronic pain transition in adults, in order to contrast with the developmental mechanisms of pain chronification in the pediatric population. Evidence is presented to show that chronic pain may have its origin from insults early in life, which prime the child for the development of chronic pain in later life. Furthermore, available genetic, epigenetic, psychophysical, electrophysiological, neuroimaging, neuroimmune, and sex mechanisms are described in infants and older children. In conclusion, future directions are discussed with a focus on research gaps, translational and clinical implications. Utilization of developmental mechanisms framework to inform clinical decision-making and strategies for prevention and management of acute to chronic pain transitions in children, is highlighted.
Collapse
Affiliation(s)
- Irina T. Duff
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Kristen N. Krolick
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Hana Mohamed Mahmoud
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| |
Collapse
|
2
|
Singh SP, Guindon J, Mody PH, Ashworth G, Kopel J, Chilakapati S, Adogwa O, Neugebauer V, Burton MD. Pain and aging: A unique challenge in neuroinflammation and behavior. Mol Pain 2023; 19:17448069231203090. [PMID: 37684099 PMCID: PMC10552461 DOI: 10.1177/17448069231203090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.
Collapse
Affiliation(s)
- Shishu Pal Singh
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Josee Guindon
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Gabriela Ashworth
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sai Chilakapati
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Owoicho Adogwa
- Department of Neurosurgery, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Volker Neugebauer
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Zhang Y, Jeske NA. A-kinase anchoring protein 79/150 coordinates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor sensitization in sensory neurons. Mol Pain 2023; 19:17448069231222406. [PMID: 38073552 PMCID: PMC10722943 DOI: 10.1177/17448069231222406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Changes in sensory afferent activity contribute to the transition from acute to chronic pain. However, it is unlikely that a single sensory receptor is entirely responsible for persistent pain. It is more probable that extended changes to multiple receptor proteins expressed by afferent neurons support persistent pain. A-Kinase Anchoring Protein 79/150 (AKAP) is an intracellular scaffolding protein expressed in sensory neurons that spatially and temporally coordinates signaling events. Since AKAP scaffolds biochemical modifications of multiple TRP receptors linked to pain phenotypes, we probed for other ionotropic receptors that may be mediated by AKAP and contribute to persistent pain. Here, we identify a role for AKAP modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA-R) functionality in sensory neurons. Pharmacological manipulation of distinct AMPA-R subunits significantly reduces persistent mechanical hypersensitivity observed during hyperalgesic priming. Stimulation of both protein kinases C and A (PKC, PKA, respectively) modulate AMPA-R subunit GluR1 and GluR2 phosphorylation and surface expression in an AKAP-dependent manner in primary cultures of DRG neurons. Furthermore, AKAP knock out reduces sensitized AMPA-R responsivity in DRG neurons. Collectively, these data indicate that AKAP scaffolds AMPA-R subunit organization in DRG neurons that may contribute to the transition from acute-to-chronic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Unveil the pain of endometriosis: from the perspective of the nervous system. Expert Rev Mol Med 2022; 24:e36. [PMID: 36059111 DOI: 10.1017/erm.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis is a chronic inflammatory disease with pelvic pain and uncharacteristic accompanying symptoms. Endometriosis-associated pain often persists despite treatment of the disease, thus it brings a deleterious impact on their personal lives as well as imposing a substantial economic burden on them. At present, mechanisms underlie endometriosis-associated pain including inflammatory reaction, injury, aberrant blood vessels and the morphological and functional anomaly of the peripheral and central nervous systems. The nerve endings are influenced by the physical and chemical factors surrounding the lesion, via afferent nerve to the posterior root of the spinal nerve, then to the specific cerebral cortex involved in nociception. However, our understanding of the aetiology and mechanism of this complex pain process caused by endometriosis remains incomplete. Identifying the pathogenesis of endometriosis is crucial to disease management, offering proper treatment, and helping patients to seek novel targets for the maintenance and contributors of chronic pain. The main aim of this review is to focus on every possible mechanism of pain related to endometriosis in both peripheral and central nervous systems, and to present related mechanisms of action from the interaction between peripheral lesions and nerves to the changes in transmission of pain, resulting in hyperalgesia and the corresponding alterations in cerebral cortex and brain metabolism.
Collapse
|
5
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
6
|
Cook DC, Goldstein PA. Non-canonical Molecular Targets for Novel Analgesics: Intracellular Calcium and HCN Channels. Curr Neuropharmacol 2021; 19:1937-1951. [PMID: 33463473 PMCID: PMC9185781 DOI: 10.2174/1570159x19666210119153047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pain is a prevalent biopsychosocial condition that poses a significant challenge to healthcare providers, contributes substantially to a disability, and is a major economic burden worldwide. An overreliance on opioid analgesics, which primarily target the μ-opioid receptor, has caused devastating morbidity and mortality in the form of misuse and overdose-related death. Thus, novel analgesic medications are needed that can effectively treat pain and provide an alternative to opioids. A variety of cellular ion channels contribute to nociception, the response of the sensory nervous system to a noxious stimulus that commonly leads to pain. Ion channels involved in nociception may provide a suitable target for pharmacologic modulation to achieve pain relief. This narrative review summarizes the evidence for two ion channels that merit consideration as targets for non-opioid pain medications: ryanodine receptors (RyRs), which are intracellular calcium channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which belong to the superfamily of voltage-gated K+ channels. The role of these channels in nociception and neuropathic pain is discussed and suitability as targets for novel analgesics and antihyperalgesics is considered.
Collapse
Affiliation(s)
- Daniel C. Cook
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Zhang W, Wu H, Xu Q, Chen S, Sun L, Jiao C, Wang L, Fu F, Feng Y, Qian X, Chen X. Estrogen modulation of pain perception with a novel 17β-estradiol pretreatment regime in ovariectomized rats. Biol Sex Differ 2020; 11:2. [PMID: 31918752 PMCID: PMC6953313 DOI: 10.1186/s13293-019-0271-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Estrogen plays substantial roles in pain modulation; however, studies concerning sex hormones and nociception often yield confusing results. The discrepancy could be a result of lack of consensus to regard estrogen as a variable when working with animal models; thus, the influence of hormones’ fluctuations on nociception has continually been neglected. In the present study, we designed a novel hormone substitution model to aid us to evaluate the effects of estrogen’s long-term alterations on ovariectomy (OVX)-induced mechanical hyperalgesia and the expression of estrogen receptors(ERs). OVX rats were implanted with slow-release estrogen pellets at differently arranged time points and doses, such that a gradual elevation or decrease of serum estrogen levels following a relatively stable period of estrogen replacement was achieved in rats. Our results demonstrated that gradual estrogen depletion rather than elevation following the stable period of estrogen substitution in OVX rats alleviated OVX-induced mechanical hyperalgesia in a dose-independent manner, and the opposite estrogen increase or decrease paradigms differently regulate the expression of spinal ERs. Specifically, in rats rendered to continuously increased serum estrogen, the early phase estrogen-induced anti-nociception effect in OVX rats was eliminated, which was accompanied by an over-activation of ERα and a strong depression of ERβ, while in the OVX rats subject to gradual decrease of estrogen replacement, both ERα and ERβ increased modestly compared with the OVX group. Thus, the present study demonstrated that estrogen increase or decrease modulate nociception differently through change of spinal ERs.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Sheng Chen
- Zhejiang University School of Medicine, 866th Yuhangtang Road, Hangzhou, 310058, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Luyang Wang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Feng Fu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Ying Feng
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Xiaowei Qian
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road 1, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Borsook D, Youssef AM, Barakat N, Sieberg CB, Elman I. Subliminal (latent) processing of pain and its evolution to conscious awareness. Neurosci Biobehav Rev 2018; 88:1-15. [PMID: 29476771 DOI: 10.1016/j.neubiorev.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
By unconscious or covert processing of pain we refer to nascent interactions that affect the eventual deliverance of pain awareness. Thus, internal processes (viz., repeated nociceptive events, inflammatory kindling, reorganization of brain networks, genetic) or external processes (viz., environment, socioeconomic levels, modulation of epigenetic status) contribute to enhancing or inhibiting the presentation of pain awareness. Here we put forward the notion that for many patients, ongoing sub-conscious changes in brain function are significant players in the eventual manifestation of chronic pain. In this review, we provide clinical examples of nascent or what we term pre-pain processes and the neurobiological mechanisms of how these changes may contribute to pain, but also potential opportunities to define the process for early therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States.
| | - Andrew M Youssef
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Nadia Barakat
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Christine B Sieberg
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Igor Elman
- Dayton Veterans Affairs Medical Center 4100 West Third Street Dayton, OH, 45428, United States
| |
Collapse
|
9
|
Ferrari LF, Araldi D, Green P, Levine JD. Age-Dependent Sexual Dimorphism in Susceptibility to Develop Chronic Pain in the Rat. Neuroscience 2017; 387:170-177. [PMID: 28676241 DOI: 10.1016/j.neuroscience.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/18/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
Neonatal pain has been suggested to contribute to the development and/or persistence of adult pain. Observations from animal models have shown that neonatal inflammation produces long-term changes in sensory neuron function, which can affect the susceptibility of adults to develop persistent pain. We used a preclinical model of transition to chronic pain, hyperalgesic priming, in which a previous inflammatory stimulus triggers a long-lasting increase in responsiveness to pro-algesic mediators, prototypically prostaglandin E2 (PGE2), to investigate if post-natal age influences susceptibility of adult rats to develop chronic pain. Priming was induced by tumor necrosis factor alpha (TNFα), in male and female rats, 1, 2, 3, 4, 5 or 7weeks after birth. When adults (8weeks after birth), to evaluate for the presence of priming, PGE2 was injected at the same site as TNFα. In males that had received TNFα at post-natal weeks 1, 2 or 3, priming was attenuated compared to the 4-, 5- and 7-week-old treated groups, in which robust priming developed. In contrast, in females treated with TNFα at post-natal week 1, 2, 3, or 4, but not at 5 or 7, priming was present. This age and sex difference in the susceptibility to priming was estrogen-dependent, since injection of TNFα in 3-week-old males and 5-week-old females, in the presence of the estrogen receptor antagonist ICI 182,780, did produce priming. These results suggest that estrogen levels, which vary differently in males and females over the post-natal period, until they stabilize after puberty, impact pain as an adult.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Dioneia Araldi
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Paul Green
- Departments of Oral & Maxillofacial Surgery, Preventive & Restorative Dental Sciences, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Jon D Levine
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|