1
|
Hou TW, Yang CC, Lai TH, Wu YH, Yang CP. Light Therapy in Chronic Migraine. Curr Pain Headache Rep 2024; 28:621-626. [PMID: 38865075 DOI: 10.1007/s11916-024-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW This review assesses the effectiveness and safety of light therapy, particularly green light therapy, as an emerging non-pharmacological treatment for chronic migraine (CM). It aims to highlight alternative or complementary approaches to traditional pharmacological remedies, focusing the need for diverse treatment options. RECENT FINDINGS Despite sensitivity to light being a defining feature of migraine, light therapy has shown promising signs in providing substantial symptom relief. Studies have provided insights into green light therapy's role in managing CM. These studies consistently demonstrate its efficacy in reducing the frequency, severity, and symptoms of migraines. Additional benefits observed include improvements in sleep quality and reductions in anxiety. Importantly, green light therapy has been associated with minimal side effects, indicating its potential as a suitable option for migraine sufferers. In addition to green light, other forms of light therapy, such as infrared polarized light, low-level laser therapy (LLLT), and intravascular irradiation of blood (ILIB), are also being explored with potential therapeutic effects. Light therapies, especially green light therapy, are recognized as promising, safe, and non-pharmacological interventions for treating CM. They have been shown to be effective in decreasing headache frequency and enhancing the overall quality of life. However, current studies, often limited by small sample sizes, prompt more extensive clinical trials to better understand the full impact of light therapies. The exploration of other light-based treatments, such as LLLT and ILIB, warrants further research to broaden the scope of effective migraine management strategies.
Collapse
Affiliation(s)
- Tsung-Wei Hou
- Department of Neurology, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Tzu-Hsien Lai
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Hui Wu
- Department of Family Medicine, Kuang-Tien General Hospital, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Martin L, Stratton HJ, Gomez K, Le Duy D, Loya-Lopez S, Tang C, Calderon-Rivera A, Ran D, Nunna V, Bellampalli SS, François-Moutal L, Dumaire N, Salih L, Luo S, Porreca F, Ibrahim M, Rogemond V, Honnorat J, Khanna R, Moutal A. Mechanism, and treatment of anti-CV2/CRMP5 autoimmune pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592533. [PMID: 38766071 PMCID: PMC11100598 DOI: 10.1101/2024.05.04.592533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.
Collapse
Affiliation(s)
- Laurent Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Do Le Duy
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Santiago Loya-Lopez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Cheng Tang
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Aida Calderon-Rivera
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Venkatrao Nunna
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shreya S. Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Nicolas Dumaire
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Mohab Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Véronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology & Therapeutics and Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, FL 32610-0267
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| |
Collapse
|
3
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Qaiser H, Uzair M, Arshad M, Zafar A, Bashir S. Evaluating the Potential of Green Light Exposure on Nociception-A Mini Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:675-679. [PMID: 37221686 DOI: 10.2174/1871527322666230522105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
The capacity of animals to react to unpleasant stimuli that might endanger their integrity is known as nociception. Pharmacological treatments do not show satisfactory results in response to nociception. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including seasonal affective disorders, migraine, pain, and others. Evaluating the potential of green light exposure on nociception involves studying its effects on different types of pain and pain-related conditions and determining the optimal exposure methods. This review provides the beneficial effects of green light on the reduction in the frequency of pain. The green light exposure on nociception changes the activity of pain-related genes and proteins in cells. This review could provide insights into the underlying mechanisms by which green light modulates pain. Overall, evaluating the potential of green light exposure on nociception requires a multidisciplinary approach and should consider the safety, efficacy, optimal dose, and duration of green light exposure and the type of pain. However, few studies have been reported so far; therefore, light therapy for treating migraines require more studies on animal models to provide precise results of light effects on nociception.
Collapse
Affiliation(s)
- Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Anessa Zafar
- CMH Kharian Medical College, Kharian Cantonment, Kharian Cantt Kharian, Gujrat, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Wu XQ, Tan B, Du Y, Yang L, Hu TT, Ding YL, Qiu XY, Moutal A, Khanna R, Yu J, Chen Z. Glutamatergic and GABAergic neurons in the vLGN mediate the nociceptive effects of green and red light on neuropathic pain. Neurobiol Dis 2023; 183:106164. [PMID: 37217103 DOI: 10.1016/j.nbd.2023.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, NY 10010, USA.
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Martin LF, Cheng K, Washington SM, Denton M, Goel V, Khandekar M, Largent-Milnes TM, Patwardhan A, Ibrahim MM. Green Light Exposure Elicits Anti-inflammation, Endogenous Opioid Release and Dampens Synaptic Potentiation to Relieve Post-surgical Pain. THE JOURNAL OF PAIN 2023; 24:509-529. [PMID: 36283655 PMCID: PMC9991952 DOI: 10.1016/j.jpain.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.
Collapse
Affiliation(s)
- Laurent F Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Kevin Cheng
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Stephanie M Washington
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Millie Denton
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Vasudha Goel
- Department of Anesthesiology, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maithili Khandekar
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona.
| |
Collapse
|
7
|
Hryciw G, Wong J, Heinricher MM. Brainstem pain-modulating neurons are sensitized to visual light in persistent inflammation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 13:100111. [PMID: 36605934 PMCID: PMC9808023 DOI: 10.1016/j.ynpai.2022.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Many individuals with chronic pain report abnormal sensitivity to visual light, referred to as "photosensitivity" or "photophobia," yet how processing of light and nociceptive information come together remains a puzzle. Pain-modulating neurons in the rostral ventromedial medulla (RVM) have been shown to respond to bright visual light in male rats: activity of pain-enhancing ON-cells is increased, while that of pain-inhibiting OFF-cells is decreased. Since the RVM is the output node of a well-known pain modulation pathway, light-related input to these neurons could contribute to photosensitivity. The purpose of the present study was to fully characterize RVM ON- and OFF-cell responses to visual light by defining stimulus-response curves in male and female rats across a range of intensities (30 to 16,000 lx). We also determined if light-evoked responses are altered in animals subjected to persistent inflammation. We found that ON- and OFF-cells responded to relatively dim light (<1000 lx in naïve animals), with no difference between the sexes in threshold for light-evoked changes in firing or the percentage of responsive cells. Second, light-evoked suppression of OFF-cell firing was enhanced in persistent inflammation, with no change in light-evoked activation of ON-cells. These data indicate that pain-modulating neurons can be engaged by dim light, even under normal conditions. Further, they suggest that decreased descending inhibition during light exposure could contribute to reduced nociceptive thresholds in chronic pain states, resulting in light-induced somatic discomfort and aversion to light. Lastly, our findings argue for differences in how light and somatic stimuli engage RVM, and suggest that light-related input acts as a "top-down" regulatory input to RVM.
Collapse
Affiliation(s)
- Gwen Hryciw
- School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Dept. Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Wong
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Mary M. Heinricher
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
- Dept. Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Corresponding author at: Department of Neurological Surgery, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Cheng K, Martin LF, Calligaro H, Patwardhan A, Ibrahim MM. Case Report: Green Light Exposure Relieves Chronic Headache Pain in a Colorblind Patient. Clin Med Insights Case Rep 2022; 15:11795476221125164. [PMID: 36159182 PMCID: PMC9493681 DOI: 10.1177/11795476221125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic headaches sometimes prefer non-pharmacological methods for
pain management. We have shown previously that green light exposure (GLED, Green
Light Emitting Diode) reversed thermal hyperalgesia and mechanical allodynia in
a rat model of neuropathic pain. This effect is mediated through the visual
system. Moreover, we recently showed that GLED was effective in decreasing the
severity of headache pain and the number of headache-days per month in migraine
patients. The visual system is comprised of image-forming and non-image-forming
pathways; however, the contribution of different photosensitive cells to the
effect of GLED is not yet known. Here, we report a 66-year-old man with
headaches attributed to other disorders of homeostasis and color blindness who
was recruited in the GLED study. The subject, diagnosed with protanomaly, cannot
differentiate green, yellow, orange, and red colors. After completing the GLED
exposure protocol, the subject noted significant decreases in headache pain
intensity without reduction in the number of headache-days per month. The
subject also reported improvement in the quality of his sleep. These findings
suggest that green light therapy mediates the decrease of the headache pain
intensity through non-image-forming intrinsically photosensitive retinal
ganglion cells. However, the subject did not report a change in the frequency of
his headaches, suggesting the involvement of cones in reduction of headache
frequency by GLED. This is the first case reported of a colorblind man with
chronic headache using GLED to manage his headache pain and may increase our
understanding of the contribution of different photosensitive cells in mediating
the pain-relieving effects of GLED.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Laurent F Martin
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hugo Calligaro
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amol Patwardhan
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| | - Mohab M Ibrahim
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Martin L, Ibrahim M, Gomez K, Yu J, Cai S, Chew LA, Bellampalli SS, Moutal A, Largent-Milnes T, Porreca F, Khanna R, Olivera BM, Patwardhan A. Conotoxin contulakin-G engages a neurotensin receptor 2/R-type calcium channel (Cav2.3) pathway to mediate spinal antinociception. Pain 2022; 163:1751-1762. [PMID: 35050960 PMCID: PMC9198109 DOI: 10.1097/j.pain.0000000000002561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Intrathecal application of contulakin-G (CGX), a conotoxin peptide and a neurotensin analogue, has been demonstrated to be safe and potentially analgesic in humans. However, the mechanism of action for CGX analgesia is unknown. We hypothesized that spinal application of CGX produces antinociception through activation of the presynaptic neurotensin receptor (NTSR)2. In this study, we assessed the mechanisms of CGX antinociception in rodent models of inflammatory and neuropathic pain. Intrathecal administration of CGX, dose dependently, inhibited thermal and mechanical hypersensitivities in rodents of both sexes. Pharmacological and clustered regularly interspaced short palindromic repeats/Cas9 editing of NTSR2 reversed CGX-induced antinociception without affecting morphine analgesia. Electrophysiological and gene editing approaches demonstrated that CGX inhibition was dependent on the R-type voltage-gated calcium channel (Cav2.3) in sensory neurons. Anatomical studies demonstrated coexpression of NTSR2 and Cav2.3 in dorsal root ganglion neurons. Finally, synaptic fractionation and slice electrophysiology recordings confirmed a predominantly presynaptic effect. Together, these data reveal a nonopioid pathway engaged by a human-tested drug to produce antinociception.
Collapse
Affiliation(s)
- Laurent Martin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Mohab Ibrahim
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Tally Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | | | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
10
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
11
|
Cheng K, Martin LF, Slepian MJ, Patwardhan AM, Ibrahim MM. Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review. THE JOURNAL OF PAIN 2021; 22:763-777. [PMID: 33636371 PMCID: PMC8277709 DOI: 10.1016/j.jpain.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
A growing body of evidence supports the modulation of pain by light exposure. As such, phototherapy is being increasingly utilized for the management of a variety of pain conditions. The modes of delivery, and hence applications of phototherapy, vary by wavelength, intensity, and route of exposure. As such, differing mechanisms of action exist depending upon those parameters. Cutaneous application of red light (660 nm) has been shown to reduce pain in neuropathies and complex regional pain syndrome-I, whereas visual application of the same wavelength of red light has been reported to exacerbate migraine headache in patients and lead to the development of functional pain in animal models. Interestingly visual exposure to green light can result in reduction in pain in variety of pain conditions such as migraine and fibromyalgia. Cutaneous application typically requires exposure on the order of minutes, whereas visual application requires exposure on the order of hours. Both routes of exposure elicit changes centrally in the brainstem and spinal cord, and peripherally in the dorsal root ganglia and nociceptors. The mechanisms of photobiomodulation of pain presented in this review provide a foundation in furtherance of exploration of the utility of phototherapy as a tool in the management of pain. PERSPECTIVE: This review synopsizes the pathways and mechanisms through which light modulates pain and the therapeutic utility of different colors and exposure modalities of light on pain. Recent advances in photobiomodulation provide a foundation for understanding this novel treatment for pain on which future translational and clinical studies can build upon.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Laurent F Martin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Marvin J Slepian
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; Sarver Heart Center, University of Arizona, Tucson, Arizona; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, Arizona
| | - Amol M Patwardhan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
12
|
Martin L, Porreca F, Mata EI, Salloum M, Goel V, Gunnala P, Killgore WDS, Jain S, Jones-MacFarland FN, Khanna R, Patwardhan A, Ibrahim MM. Green Light Exposure Improves Pain and Quality of Life in Fibromyalgia Patients: A Preliminary One-Way Crossover Clinical Trial. PAIN MEDICINE 2021; 22:118-130. [PMID: 33155057 DOI: 10.1093/pm/pnaa329] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Fibromyalgia is a functional pain disorder in which patients suffer from widespread pain and poor quality of life. Fibromyalgia pain and its impact on quality of life are not effectively managed with current therapeutics. Previously, in a preclinical rat study, we demonstrated that exposure to green light-emitting diodes (GLED) for 8 hours/day for 5 days resulted in antinociception and reversal of thermal and mechanical hypersensitivity associated with models of injury-related pain. Given the safety of GLED and the ease of its use, our objective is to administer GLED as a potential therapy to patients with fibromyalgia. DESIGN One-way crossover clinical trial. SETTING United States. METHOD We enrolled 21 adult patients with fibromyalgia recruited from the University of Arizona chronic pain clinic who were initially exposed to white light-emitting diodes and then were crossed over to GLED for 1 to 2 hours daily for 10 weeks. Data were collected by using paper surveys. RESULTS When patients were exposed to GLED, but not white light-emitting diodes, they reported a significant reduction in average pain intensity on the 10-point numeric pain scale. Secondary outcomes were assessed by using the EQ-5D-5L survey, Short-Form McGill Pain Questionnaire, and Fibromyalgia Impact Questionnaire and were also significantly improved in patients exposed to GLED. GLED therapy was not associated with any measured side effects in these patients. CONCLUSION Although the mechanism by which GLED elicits pain reduction is currently being studied, these results supporting its efficacy and safety merit a larger clinical trial.
Collapse
Affiliation(s)
- Laurent Martin
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Frank Porreca
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA.,Anesthesiology, University of Arizona, Tucson, Arizona, USA
| | - Elizabeth I Mata
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Michelle Salloum
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pooja Gunnala
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | | - Sejal Jain
- Neurology, University of Arizona, Tucson, Arizona, USA
| | | | - Rajesh Khanna
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA.,Anesthesiology, University of Arizona, Tucson, Arizona, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Amol Patwardhan
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA.,Anesthesiology, University of Arizona, Tucson, Arizona, USA
| | - Mohab M Ibrahim
- Departments of Pharmacology, University of Arizona, Tucson, Arizona, USA.,Anesthesiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Martin LF, Patwardhan AM, Jain SV, Salloum MM, Freeman J, Khanna R, Gannala P, Goel V, Jones-MacFarland FN, Killgore WD, Porreca F, Ibrahim MM. Evaluation of green light exposure on headache frequency and quality of life in migraine patients: A preliminary one-way cross-over clinical trial. Cephalalgia 2020; 41:135-147. [PMID: 32903062 DOI: 10.1177/0333102420956711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pharmacological management of migraine can be ineffective for some patients. We previously demonstrated that exposure to green light resulted in antinociception and reversal of thermal and mechanical hypersensitivity in rodent pain models. Given the safety of green light emitting diodes, we evaluated green light as a potential therapy in patients with episodic or chronic migraine. MATERIAL AND METHODS We recruited (29 total) patients, of whom seven had episodic migraine and 22 had chronic migraine. We used a one-way cross-over design consisting of exposure for 1-2 hours daily to white light emitting diodes for 10 weeks, followed by a 2-week washout period followed by exposure for 1-2 hours daily to green light emitting diodes for 10 weeks. Patients were allowed to continue current therapies and to initiate new treatments as directed by their physicians. Outcomes consisted of patient-reported surveys. The primary outcome measure was the number of headache days per month. Secondary outcome measures included patient-reported changes in the intensity and frequency of the headaches over a two-week period and other quality of life measures including ability to fall and stay asleep, and ability to perform work. Changes in pain medications were obtained to assess potential reduction. RESULTS When seven episodic migraine and 22 chronic migraine patients were analyzed as separate cohorts, white light emitting diodes produced no significant change in headache days in either episodic migraine or chronic migraine patients. Combining data from the episodic migraine and chronic migraine groups showed that white light emitting diodes produced a small, but statistically significant reduction in headache days from (days ± SEM) 18.2 ± 1.8 to 16.5 ± 2.01 days. Green light emitting diodes resulted in a significant decrease in headache days from 7.9 ± 1.6 to 2.4 ± 1.1 and from 22.3 ± 1.2 to 9.4 ± 1.6 in episodic migraine and chronic migraine patients, respectively. While some improvement in secondary outcomes was observed with white light emitting diodes, more secondary outcomes with significantly greater magnitude including assessments of quality of life, Short-Form McGill Pain Questionnaire, Headache Impact Test-6, and Five-level version of the EuroQol five-dimensional survey without reported side effects were observed with green light emitting diodes. Conclusions regarding pain medications reduction with green light emitting diode exposure were not possible. No side effects of light therapy were reported. None of the patients in the study reported initiation of new therapies. DISCUSSION Green light emitting diodes significantly reduced the number of headache days in people with episodic migraine or chronic migraine. Additionally, green light emitting diodes significantly improved multiple secondary outcome measures including quality of life and intensity and duration of the headache attacks. As no adverse events were reported, green light emitting diodes may provide a treatment option for those patients who prefer non-pharmacological therapies or may be considered in complementing other treatment strategies. Limitations of this study are the small number of patients evaluated. The positive data obtained support implementation of larger clinical trials to determine possible effects of green light emitting diode therapy.This study is registered with clinicaltrials.gov under NCT03677206.
Collapse
Affiliation(s)
- Laurent F Martin
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Amol M Patwardhan
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, USA
| | - Sejal V Jain
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Michelle M Salloum
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Julia Freeman
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, USA
| | - Pooja Gannala
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | | | - William Ds Killgore
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohab M Ibrahim
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Jing JN, Wu ZT, Li ML, Wang YK, Tan X, Wang WZ. Constant Light Exerted Detrimental Cardiovascular Effects Through Sympathetic Hyperactivity in Normal and Heart Failure Rats. Front Neurosci 2020; 14:248. [PMID: 32292327 PMCID: PMC7124186 DOI: 10.3389/fnins.2020.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
It has been documented that constant light exposure exerts complicated cardiovascular effects. However, a mounting collection of conflicting results did not make it any easier for researchers and physicians to consider the role of light on cardiovascular function. This study was designed to investigate how constant light exposure (24 h light/day) influences the cardiac function in normal and heart-failure (HF) rats. In normal rats, two groups of SD rats were accustomed in 12 h light/12 h dark (LD) or 24 h light (constant light, CL) for 4 weeks. In HF rats which was induced by myocardial infarction (MI) was let recover in LD for 4 weeks. Interestingly, compared with rats in LD environment (ejection fraction, EF%: 93.64 ± 2.02 in LD, 14.62 ± 1.53 in HF-LD), constant light (2 weeks) weakened the cardiac function in normal and HF rats (EF%: 79.42 ± 2.91 in CL, 11.50 ± 1.08 in HF-CL). The levels of renal sympathetic nerve activity and c-fos expression in the rostral ventrolateral medulla (RVLM), a key region controlling sympathetic outflow, were significantly increased in normal and HF rats after constant light (RSNA, Max%: 8.64 ± 0.48 in LD, 20.02 ± 1.24 in CL, 20.10 ± 1.16 in HF-LD, 26.82 ± 1.69 in HF-CL). In conclusion, it is suggested that constant light exposure exerts detrimental cardiovascular effects, which may be associated with the RVLM-related sympathetic hyperactivity.
Collapse
Affiliation(s)
- Jia-Ni Jing
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Zhao-Tang Wu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Miao-Ling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Medical Research, Southwest Medical University, Luzhou, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
- Department of Physiology, Naval Medical University, Shanghai, China
| |
Collapse
|