1
|
He M, Chen YX, Feng PP, Chen J, Xu C, Zhou ST, Liu BY, He XF, Shao XM, Fang JQ, Shen Z, Liu JG. Berberine alleviates chronic pain-induced anxiety-like behaviors by inhibiting the activation of VLT-projecting cACC (Cg2) neurons. Commun Biol 2024; 7:1651. [PMID: 39702401 DOI: 10.1038/s42003-024-07372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic pain is often accompanied by anxiety, and gradually increasing anxiety makes the pain itself more protracted. Berberine has been found to be able to cross the blood-brain barrier to treat psychiatric disorders, but its neurocirculatory mechanisms remain unclear. Here, we found that neurons in cingulate area 2 (Cg2) of the caudal anterior cingulate cortex (cACC), but not in Cg1 of the cACC, projected to the ventral lateral thalamus (VLT). Next, we induced chronic inflammatory pain by plantar injection of complete Freund's adjuvant (CFA) and observed stable anxiety-like behaviors until two weeks postinjection. We specifically activated VLT-projecting cACC (Cg2) neurons in one-week-old CFA-induced mice without anxiety-like behaviors and in normal control mice to induce anxiety-like behaviors. We inhibited the activation of VLT-projecting cACC (Cg2) neurons in two-week-old CFA-treated mice with anxiety-like behaviors and observed that their anxiety-like behaviors were alleviated. On this basis, we further screened the effective dose of berberine for anxiolysis in two-week-old CFA-treated mice. We observed that the effective dose of berberine obtained above decreased the activity of VLT-projecting cACC (Cg2) neurons. The activation of VLT-projecting cACC (Cg2) neurons abrogated the anxiolytic effect of berberine in two-week-old CFA-treated mice.
Collapse
Affiliation(s)
- Min He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye-Xiang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pei-Pei Feng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Ting Zhou
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Yu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jian-Qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing-Gen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobilolgy and Acupuncture Reseach, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Yu F, Li M, Wang Q, Wang J, Wu S, Zhou R, Jiang H, Li X, Zhou Y, Yang X, He X, Cheng Y, Ren X, Zhang H, Tian M. Spatiotemporal dynamics of brain function during the natural course in a dental pulp injury model. Eur J Nucl Med Mol Imaging 2022; 49:2716-2722. [PMID: 35304628 PMCID: PMC9206688 DOI: 10.1007/s00259-022-05764-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/11/2022] [Indexed: 12/01/2022]
Abstract
Purpose Toothache, a common disorder afflicting most people, shows distinct features at different clinical stages. This study aimed to depict metabolic changes in brain and investigate the potential mechanism involved in the aberrant affective behaviors during the natural process of toothache. Methods We investigated the spatiotemporal patterns of brain function during the natural course of toothache in a rat model of dental pulp injury (DPI) by using positron emission tomography (PET). Results Glucose metabolism peaked on the 3rd day and gradually decreased in several brain regions after DPI, which was in line with the behavioral and histological results. PET imaging showed that visual pathway was involved in the regulation of toothache. Meanwhile, the process of emotional regulation underlying toothache was mediated by N-methyl-D-aspartic receptor subunit 2B (NR2B) in the caudal anterior cingulate cortex (cACC). Conclusion Our results revealed the spatiotemporal neurofunctional patterns during toothache process and preliminarily elucidated the role of NR2B in cACC in the regulation of toothache-related affective behaviors. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05764-2.
Collapse
Affiliation(s)
- Feiyan Yu
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Miao Li
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Qianqian Wang
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yu Zhou
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xi Yang
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xiao He
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
| | - Yan Cheng
- First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuyun Ren
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G. Brain circuits for pain and its treatment. Sci Transl Med 2021; 13:eabj7360. [PMID: 34757810 DOI: 10.1126/scitranslmed.abj7360] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biology, CNC Program, Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,New York Stem Cell Foundation-Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
The Role of Mesostriatal Dopamine System and Corticostriatal Glutamatergic Transmission in Chronic Pain. Brain Sci 2021; 11:brainsci11101311. [PMID: 34679376 PMCID: PMC8533867 DOI: 10.3390/brainsci11101311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing recognition of the involvement of the nigrostriatal and mesolimbic dopamine systems in the modulation of chronic pain. The first part of the present article reviews the evidence indicating that dopamine exerts analgesic effects during persistent pain by stimulating the D2 receptors in the dorsal striatum and nucleus accumbens (NAc). Thereby, dopamine inhibits striatal output via the D2 receptor-expressing medium spiny neurons (D2-MSN). Dopaminergic neurotransmission in the mesostriatal pathways is hampered in chronic pain states and this alteration maintains and exacerbates pain. The second part of this article focuses on the glutamatergic inputs from the medial prefrontal cortex to the NAc, their activity changes in chronic pain, and their role in pain modulation. Finally, interactions between dopaminergic and glutamatergic inputs to the D2-MSN are considered in the context of persistent pain. Studies using novel techniques indicate that pain is regulated oppositely by two independent dopaminergic circuits linking separate parts of the ventral tegmental area and of the NAc, which also interact with distinct regions of the medial prefrontal cortex.
Collapse
|
5
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Xiao Y, Xie L, Xu QY, Chen L, Chen H, Xu GY, Zhang PA. Transcranial direct current stimulation relieves visceral hypersensitivity via normalizing GluN2B expression and neural activity in anterior cingulate cortex. J Neurophysiol 2021; 125:1787-1797. [PMID: 33760644 PMCID: PMC8356761 DOI: 10.1152/jn.00025.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common challenging diseases for clinical treatment. The aim of this study is to investigate whether transcranial direct current stimulation (tDCS) has analgesic effect on visceral hypersensitivity (VH) in an animal model of IBS as well as the underlying mechanism. As the activation of GluN2B in anterior cingulate cortex (ACC) takes part in VH, we examined whether and how GluN2B in ACC takes part in the effect of tDCS. Neonatal maternal deprivation (NMD), a valuable experimental model to study the IBS pathophysiology, was used to induce visceral hypersensitivity of rats. We quantified VH as colorectal distention threshold and performed patch-clamp recordings of ACC neurons. The expression of GluN2B were determined by RT-qPCR and Western blotting. The GluN2B antagonist Ro 25-6981 was microinjected into the rostral and caudal ACC. tDCS was performed for 7 consecutive days. It was found that NMD decreased expression of GluN2B, which could be obviously reversed by tDCS. Injection of Ro 25-6981 into rostral and caudal ACC of normal rats induced VH and also reversed the analgesic effect of tDCS. Our data sheds light on the nonpharmacological therapy for chronic VH in pathological states such as IBS.NEW & NOTEWORTHY Irritable bowel syndrome (IBS) is a gastrointestinal disease characterized by visceral hypersensitivity. This study showed a decrease of GluN2B expression and neural activity in ACC of IBS-model rats, which could be obviously reversed by tDCS. In addition, blockade of GluN2B in rostral and caudal ACC induced VH of normal rats. Furthermore, analgesic effect of tDCS on NMD rats was reversed by GluN2B antagonist.
Collapse
Affiliation(s)
- Ying Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qi-Ya Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Li Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
7
|
Chen S, Kadakia F, Davidson S. Group II metabotropic glutamate receptor expressing neurons in anterior cingulate cortex become sensitized after inflammatory and neuropathic pain. Mol Pain 2021; 16:1744806920915339. [PMID: 32326814 PMCID: PMC7227149 DOI: 10.1177/1744806920915339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex is a limbic region associated with the emotional processing of pain. How neuropathic and inflammatory pain models alter the neurophysiology of specific subsets of neurons in the anterior cingulate cortex remains incompletely understood. Here, we used a GRM2Cre:tdtomato reporter mouse line to identify a population of pyramidal neurons selectively localized to layer II/III of the murine anterior cingulate cortex. GRM2encodes the group II metabotropic glutamate receptor subtype 2 which possesses analgesic properties in mouse and human models, although its function in the anterior cingulate cortex is not known. The majority of GRM2-tdtomato anterior cingulate cortex neurons expressed GRM2gene product in situ but did not overlap with cortical markers of local inhibitory interneurons, parvalbumin or somatostatin. Physiological properties of GRM2-tdtomato anterior cingulate cortex neurons were investigated using whole-cell patch clamp techniques in slice from animals with neuropathic or inflammatory pain, and controls. After hind-paw injection of Complete Freund’s Adjuvant or chronic constriction injury, GRM2-tdtomato anterior cingulate cortex neurons exhibited enhanced excitability as measured by an increase in the number of evoked action potentials and a decreased rheobase. This hyperexcitability was reversed pharmacologically by bath application of the metabotropic glutamate receptor subtype 2 agonist (2R, 4R)-4-Aminopyrrolidine-2,4-dicarboxylate APDC (1 µM) in both inflammatory and neuropathic models. We conclude that layer II/III pyramidal GRM2-tdtomato anterior cingulate cortex neurons express functional group II metabotropic glutamate receptors and undergo changes to membrane biophysical properties under conditions of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Feni Kadakia
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
SUN RR, MA PH, HE ZX, YIN T, QU YZ, YIN S, LIU XY, LU J, ZHANG TT, HUANG LY, SUO XL, LEI D, GONG QY, LIANG FR, ZENG F. Changed ACC-DMN functional connectivity after acupuncture with deqi for functional dyspepsia treatment. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|