1
|
Chowdhury NS, Millard SK, de Martino E, Larsen DB, Seminowicz DA, Schabrun SM, de Andrade DC, Graven-Nielsen T. Posterior-superior insula repetitive transcranial magnetic stimulation reduces experimental tonic pain and pain-related cortical inhibition in humans. Pain 2024:00006396-990000000-00788. [PMID: 39679661 DOI: 10.1097/j.pain.0000000000003488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
ABSTRACT High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterior-superior insula (PSI) may produce analgesic effects. However, the alterations in cortical activity during PSI-rTMS analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by PSI-rTMS. Twenty healthy volunteers (10 females) attended 2 sessions randomized to active or sham rTMS. Experimental pain was induced by capsaicin administered to the forearm for 90 minutes, with pain ratings collected every 5 minutes. Left PSI-rTMS was delivered (10 Hz, 100 pulses per train, 15 trains) ∼50 minutes postcapsaicin administration. Transcranial magnetic stimulation-evoked potentials (TEPs) and thermal sensitivity were assessed at baseline, during capsaicin pain prior to rTMS and after rTMS. Bayesian evidence of reduced pain scores and increased heat pain thresholds were found after active rTMS, with no changes occurring after sham rTMS. Pain (prior to active rTMS) led to an increase in the frontal negative peak ∼45 ms (N45) TEP relative to baseline. After active rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast, after sham rTMS, the N45 peak was increased relative to baseline. We also found that the reduction in pain numerical rating scale scores after active vs sham rTMS was correlated with and partially mediated by decreases in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest that the TEP N45 peak is a potential marker and mediator of both pain and analgesia. This study demonstrates that high-frequency rTMS targeting the posterior-superior insula reduces capsaicin-induced pain and alters cortical activity, with changes in the N45 TMS-evoked potential peak mediating the analgesic effects.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Enrico de Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Chowdhury NS, Taseen KJ, Chiang AK, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of repetitive transcranial magnetic stimulation before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. Pain 2024:00006396-990000000-00779. [PMID: 39620350 DOI: 10.1097/j.pain.0000000000003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine whether (1) 5 consecutive days of rTMS delivered prior to experimentally induced prolonged jaw pain has a prophylactic effect on future pain intensity and (2) whether these effects were accompanied by increases in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from day 0 to 4, 40 healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. Peak alpha frequency and CME were assessed on day 0 (before rTMS) and day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor in the right masseter muscle after the final rTMS session. From days 5 to 25, participants completed twice-daily electronic diaries including pain on chewing and yawning (primary outcomes), as well as pain during other activities (eg, talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Furthermore, active rTMS led to an increase in PAF. This is the first study to show that rTMS delivered prior to prolonged pain onset can protect against future pain. Our findings suggest that rTMS may hold promise as a prophylactic intervention for pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker J Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Ki Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Betti S, Badioli M, Dalbagno D, Garofalo S, di Pellegrino G, Starita F. Topographically selective motor inhibition under threat of pain. Pain 2024; 165:2851-2862. [PMID: 38916518 PMCID: PMC11562763 DOI: 10.1097/j.pain.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
ABSTRACT Pain-related motor adaptations may be enacted predictively at the mere threat of pain, before pain occurrence. Yet, in humans, the neurophysiological mechanisms underlying motor adaptations in anticipation of pain remain poorly understood. We tracked the evolution of changes in corticospinal excitability (CSE) as healthy adults learned to anticipate the occurrence of lateralized, muscle-specific pain to the upper limb. Using a Pavlovian threat conditioning task, different visual stimuli predicted pain to the right or left forearm (experiment 1) or hand (experiment 2). During stimuli presentation before pain occurrence, single-pulse transcranial magnetic stimulation was applied over the left primary motor cortex to probe CSE and elicit motor evoked potentials from target right forearm and hand muscles. The correlation between participants' trait anxiety and CSE was also assessed. Results showed that threat of pain triggered corticospinal inhibition specifically in the limb where pain was expected. In addition, corticospinal inhibition was modulated relative to the threatened muscle, with threat of pain to the forearm inhibiting the forearm and hand muscles, whereas threat of pain to the hand inhibited the hand muscle only. Finally, stronger corticospinal inhibition correlated with greater trait anxiety. These results advance the mechanistic understanding of pain processes showing that pain-related motor adaptations are enacted at the mere threat of pain, as sets of anticipatory, topographically organized motor changes that are associated with the expected pain and are shaped by individual anxiety levels. Including such anticipatory motor changes into models of pain may lead to new treatments for pain-related disorders.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Badioli
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Daniela Dalbagno
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Sara Garofalo
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Giuseppe di Pellegrino
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Francesca Starita
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Chowdhury NS, Chang WJ, Cheng D, Manivasagan N, Seminowicz DA, Schabrun SM. The effect of prolonged elbow pain and rTMS on cortical inhibition: A TMS-EEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625334. [PMID: 39651216 PMCID: PMC11623566 DOI: 10.1101/2024.11.26.625334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction Recent studies using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) have shown that pain leads to an increase in the N45 peak of the TMS-evoked potential (TEP), which is mediated by GABAergic inhibition. Conversely, 10Hz repetitive TMS (10Hz-rTMS), which provides pain relief, reduces the N45 peak. However, these studies used brief pain stimuli (lasting minutes), limiting their clinical relevance. The present study determined the effect of pain and 10Hz-rTMS on the N45 peak in a prolonged pain model (lasting several days) induced by nerve growth factor (NGF) injection to the elbow muscle. Materials and Methods Experiment 1 : TEPs were measured in 22 healthy participants on Day 0 (pre-NGF), Day 2 (peak pain), and Day 7 (pain resolution). Experiment 2 : We examined the effect of 5 days of active (n=16) or sham (n=16) rTMS to the left primary motor cortex (M1) on the N45 peak during prolonged NGF-induced pain, with TEPs measured on Day 0 and Day 4 (post-rTMS). Results Experiment 1: While no overall change in the N45 peak was seen, a correlation emerged between higher pain severity on Day 2 and a larger increase in the N45 peak. Experiment 2 : Active rTMS reduced the N45 peak on Day 4 vs. Day 0, with no effect in the sham group. Conclusion Our findings suggest that (i) higher pain severity correlates with an increase in the N45 peak, and (ii) rTMS decreases cortical inhibition in a model of prolonged experimental pain. This study extends previous research by demonstrating a link between pain perception and cortical inhibition within a prolonged pain context.
Collapse
|
5
|
Chowdhury NS, Bi C, Furman AJ, Chiang AK, Skippen P, Si E, Millard SK, Margerison SM, Spies D, Keaser ML, Da Silva JT, Chen S, Schabrun SM, Seminowicz DA. A novel cortical biomarker signature predicts individual pain sensitivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.16.24309005. [PMID: 39399054 PMCID: PMC11469350 DOI: 10.1101/2024.06.16.24309005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Importance Biomarkers would greatly assist decision making in the diagnosis, prevention and treatment of chronic pain. Objective The present study aimed to undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of two measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME). Design In this cohort study (recruitment period: November 2020-October 2022), participants experienced a model of prolonged temporomandibular pain with outcomes collected over 30 days. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Days 0, 2 and 5. Pain was assessed twice daily from Days 1-30. Setting Data collection occurred at a single centre: Neuroscience Research Australia. Participants We enrolled 159 healthy participants (through notices placed online and at universities across Australia), aged 18-44 with no history of chronic pain, neurological or psychiatric condition. 150 participants completed the protocol. Exposure Participants received an injection of nerve growth factor (NGF) to the right masseter muscle on Days 0 and 2 to induce prolonged temporomandibular pain lasting up to 4 weeks. Main Outcomes and Measures We determined the predictive accuracy of the PAF/CME biomarker signature using a nested control-test scheme: machine learning models were run on a training set (n = 100), where PAF and CME were predictors and pain sensitivity was the outcome. The winning classifier was assessed on a test set (n = 50) comparing the predicted pain labels against the true labels. Results The final sample consisted of 66 females and 84 males with a mean age of 25.1 ± 6.2. The winning classifier was logistic regression, with an outstanding area under the curve (AUC=1.00). The locked model assessed on the test set had excellent performance (AUC=0.88[0.78-0.99]). Results were reproduced across a range of methodological parameters. Moreover, inclusion of sex and pain catastrophizing as covariates did not improve model performance, suggesting the model including biomarkers only was more robust. PAF and CME biomarkers showed good-excellent test-retest reliability. Conclusions and Relevance This study provides evidence for a sensorimotor cortical biomarker signature for pain sensitivity. The combination of accuracy, reproducibility, and reliability, suggests the PAF/CME biomarker signature has substantial potential for clinical translation, including predicting the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Chuan Bi
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine
- Division of Biostatistics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, USA
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Alan Ki Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- Data Sciences, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah M Margerison
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Darrah Spies
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Joyce T Da Silva
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
6
|
Zhang S, Wang Y, Li T, Ma J, He R, Han X, Wu W, Wang C. Relation Between Abnormal Spontaneous Brain Activity and Altered Neuromuscular Activation of Lumbar Paraspinal Muscles in Chronic Low Back Pain. Arch Phys Med Rehabil 2024; 105:2107-2117. [PMID: 38969254 DOI: 10.1016/j.apmr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To investigate the neural mechanism underlying functional reorganization and motor coordination strategies in patients with chronic low back pain (cLBP). DESIGN A case-control study based on data collected during routine clinical practice. SETTING This study was conducted at a university hospital. PARTICIPANTS Fifteen patients with cLBP and 15 healthy controls. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Whole brain blood oxygen level-dependent signals were measured using functional magnetic resonance imaging and amplitude of low-frequency fluctuation (ALFF) method to identify pain-induced changes in regional spontaneous brain activity. A novel approach based on the surface electromyogram (EMG) system and fine-wire electrodes was used to record EMG signals in the deep multifidus, superficial multifidus, and erector spinae. RESULTS In cLBP, compared with healthy groups, ALFF was higher in the medial prefrontal, primary somatosensory, primary motor, and inferior temporal cortices, whereas it was lower in the cerebellum and anterior cingulate and posterior cingulate cortices. Furthermore, the decrease in the average EMG activity of the 3 lumbar muscles in the cLBP group was positively correlated with the ALFF values of the primary somatosensory cortex, motor cortex, precuneus, and middle temporal cortex but significantly negatively correlated with the ALFF values of the medial prefrontal and inferior temporal cortices. Interestingly, the correlation between the functional activity in the cerebellum and the EMG activity varied in the lumbar muscles. CONCLUSIONS These findings suggest a functional association between changes in spontaneous brain activity and altered voluntary neuromuscular activation patterns of the lumbar paraspinal muscles, providing new insights into the mechanisms underlying pain chronicity as well as important implications for developing novel therapeutic targets of cLBP.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Yanjun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Tingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Junqin Ma
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Rongxing He
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiulan Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou.
| |
Collapse
|
7
|
Delahunty ET, Bisset LM, Kavanagh JJ. Short-latency afferent inhibition is reduced with cold-water immersion of a limb and remains reduced after removal from the cold stimulus. Exp Physiol 2024; 109:1817-1825. [PMID: 39190835 PMCID: PMC11522815 DOI: 10.1113/ep091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
The experience of pain that is induced by extremely cold temperatures can exert a modulatory effect on motor cortex circuitry. Although it is known that immersion of a single limb in very cold water can increase corticomotor excitability it is unknown how afferent input to the cortex shapes excitatory and inhibitory processes. Therefore, the purpose of this study was to examine motor-evoked potentials (MEP), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) in response to immersion of a single hand in cold water. Transcranial magnetic stimulation (TMS) was used to assess MEPs, and peripheral nerve stimulation of the median nerve paired with TMS was used to measure SAI and LAI in motor circuits of the ipsilateral hemisphere. Measurements were obtained from electromyography (EMG) of the first dorsal interosseous (FDI) at baseline, during cold-water immersion, and during recovery from cold-water immersion. The intervention caused unconditioned MEPs to increase during exposure to the cold stimulus (P = 0.008) which then returned to baseline levels once the hand was removed from the cold water. MEP responses were decoupled from SAI responses, where SAI was reduced during exposure to the cold stimulus (P = 0.005) and remained reduced compared to baseline when the hand was removed from the cold water (P = 0.002). The intervention had no effect on LAI. The uncoupling of SAI from MEPs during the recovery period suggests that the mechanisms underlying the modulation of corticospinal excitability by sensory input may be distinct from those affecting intracortical inhibitory circuits. HIGHLIGHTS: What is the central question of this study? Does immersion of a limb in very cold water influence corticospinal excitability and the level of afferent inhibition exerted on motor cortical circuits? What is the main finding and its importance? In additional to perception of temperature, immersion in 6°C water also induced perceptions of pain. Motor evoked potential (MEP) amplitude increased during immersion, and short-latency afferent inhibition (SAI) of the motor cortex was reduced during immersion; however, these responses differed after the limb was removed from the cold stimulus, as MEPs returned to normal levels while SAI remained suppressed.
Collapse
Affiliation(s)
- Eden T. Delahunty
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| | - Leanne M. Bisset
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| | - Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| |
Collapse
|
8
|
O'Malley CA, Smith SA, Mauger AR, Norbury R. Exercise-induced pain within endurance exercise settings: Definitions, measurement, mechanisms and potential interventions. Exp Physiol 2024; 109:1446-1460. [PMID: 38985528 PMCID: PMC11363130 DOI: 10.1113/ep091687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Pain can be defined as an unpleasant sensory and emotional experience associated with or resembling that associated with actual or potential tissue damage. Though consistent with this definition, different types of pain result in different behavioural and psychophysiological responses. For example, the transient, non-threatening, acute muscle pain element of exercise-induced pain (EIP) is entirely different from other pain types like delayed onset muscle soreness, muscular injury or chronic pain. However, studies often conflate the definitions or assume parity between distinct pain types. Consequently, the mechanisms through which pain might impact exercise behaviour across different pain subcategories may be incorrectly assumed, which could lead to interventions or recommendations that are inappropriate. Therefore, this review aims to distinguish EIP from other subcategories of pain according to their aetiologies and characteristics, thereby providing an updated conceptual and operational definition of EIP. Secondly, the review will discuss the experimental pain models currently used across several research domains and their relevance to EIP with a focus on the neuro-psychophysiological mechanisms of EIP and its effect on exercise behaviour and performance. Finally, the review will examine potential interventions to cope with the impact of EIP and support wider exercise benefits. HIGHLIGHTS: What is the topic of this review? Considerations for future research focusing on exercise-induced pain within endurance exercise settings. What advances does it highlight? An updated appraisal and guide of research concerning exercise-induced pain and its impact on endurance task behaviour, particularly with reference to the aetiology, measurement, and manipulation of exercise-induced pain.
Collapse
Affiliation(s)
- Callum A. O'Malley
- School of Sport, Exercise, and Nutritional SciencesUniversity of ExeterExeterUK
| | - Samuel A. Smith
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Alexis R. Mauger
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Ryan Norbury
- Faculty of Sport, Technology, and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
9
|
Chowdhury NS, Chang WJ, Cavaleri R, Chiang AKI, Schabrun SM. The reliability and validity of rapid transcranial magnetic stimulation mapping for muscles under active contraction. BMC Neurosci 2024; 25:43. [PMID: 39215217 PMCID: PMC11363547 DOI: 10.1186/s12868-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Rapid mapping is a transcranial magnetic stimulation (TMS) mapping method which can significantly reduce data collection time compared to traditional approaches. However, its validity and reliability has only been established for upper-limb muscles during resting-state activity. Here, we determined the validity and reliability of rapid mapping for non-upper limb muscles that require active contraction during TMS: the masseter and quadriceps muscles. Eleven healthy participants attended two sessions, spaced two hours apart, each involving rapid and 'traditional' mapping of the masseter muscle and three quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis). Map parameters included map volume, map area and centre of gravity (CoG) in the medial-lateral and anterior-posterior directions. Low to moderate measurement errors (%SEMeas = 10-32) were observed across muscles. Relative reliability varied from good-to-excellent (ICC = 0.63-0.99) for map volume, poor-to-excellent (ICC = 0.11-0.86) for map area, and fair-to-excellent for CoG (ICC = 0.25-0.8) across muscles. There was Bayesian evidence of equivalence (BF's > 3) in most map outcomes between rapid and traditional maps across all muscles, supporting the validity of the rapid mapping method. Overall, rapid TMS mapping produced similar estimates of map parameters to the traditional method, however the reliability results were mixed. As mapping of non-upper limb muscles is relatively challenging, rapid mapping is a promising substitute for traditional mapping, however further work is required to refine this method.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.
- University of New South Wales, Sydney, NSW, Australia.
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
10
|
O'Malley CA, Norbury R, Smith SA, Fullerton CL, Mauger AR. Elevated muscle pain induced by a hypertonic saline injection reduces power output independent of physiological changes during fixed perceived effort cycling. J Appl Physiol (1985) 2024; 137:99-110. [PMID: 38813614 PMCID: PMC11389896 DOI: 10.1152/japplphysiol.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Pain is a naturally occurring phenomenon that consistently inhibits exercise performance by imposing unconscious, neurophysiological alterations (e.g., corticospinal changes) as well as conscious, psychophysiological pressures (e.g., shared effort demands). Although several studies indicate that pain would elicit lower task outputs for a set intensity of perceived effort, no study has tested this. Therefore, this study investigated the impact of elevated muscle pain through a hypertonic saline injection on the power output, psychophysiological, cerebral oxygenation, and perceptual changes during fixed perceived effort exercise. Ten participants completed three visits (1 familiarization + 2 fixed perceived effort trials). Fixed perceived effort cycling corresponded to 15% above gas exchange threshold (GET) [mean rating of perceived effort (RPE) = 15 "hard"]. Before the 30-min fixed perceived effort exercise, participants received a randomized bilateral hypertonic or isotonic saline injection in the vastus lateralis. Power output, cardiorespiratory, cerebral oxygenation, and perceptual markers (e.g., affective valence) were recorded during exercise. Linear mixed-model regression assessed the condition and time effects and condition × time interactions. Significant condition effects showed that power output was significantly lower during hypertonic conditions [t107 = 208, P = 0.040, β = 4.77 W, 95% confidence interval (95% CI) [0.27 to 9.26 W]]. Meanwhile, all physiological variables (e.g., heart rate, oxygen uptake, minute ventilation) demonstrated no significant condition effects. Condition effects were observed for deoxyhemoglobin changes from baseline (t107 = -3.29, P = 0.001, β = -1.50 ΔμM, 95% CI [-2.40 to -0.61 ΔμM]) and affective valence (t127 = 6.12, P = 0.001, β = 0.93, 95% CI [0.63 to 1.23]). Results infer that pain impacts the self-regulation of fixed perceived effort exercise, as differences in power output mainly occurred when pain ratings were higher after hypertonic versus isotonic saline administration.NEW & NOTEWORTHY This study identifies that elevated muscle pain through a hypertonic saline injection causes significantly lower power output when pain is experienced but does not seem to affect exercise behavior in a residual manner. Results provide some evidence that pain operates on a psychophysiological level to alter the self-regulation of exercise behavior due to differences between conditions in cerebral deoxyhemoglobin and other perceptual parameters.
Collapse
Affiliation(s)
- Callum A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Ryan Norbury
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Sport, Technology, and Health Sciences, St Mary's University Twickenham, London, United Kingdom
| | - Samuel A Smith
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Christopher L Fullerton
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
11
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Suhood AY, Summers SJ, Opar DA, Astill T, An WW, Rio E, Cavaleri R. Bilateral Corticomotor Reorganization and Symptom Development in Response to Acute Unilateral Hamstring Pain: A Randomized, Controlled Study. THE JOURNAL OF PAIN 2024; 25:1000-1011. [PMID: 37907112 DOI: 10.1016/j.jpain.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Accumulating evidence demonstrates that pain induces adaptations in the corticomotor representations of affected muscles. However, previous work has primarily investigated the upper limb, with few studies examining corticomotor reorganization in response to lower limb pain. This is important to consider, given the significant functional, anatomical, and neurophysiological differences between upper and lower limb musculature. Previous work has also focused on unilateral corticomotor changes in response to muscle pain, despite an abundance of literature demonstrating that unilateral pain conditions are commonly associated with bilateral motor dysfunction. For the first time, this study investigated the effect of unilateral acute hamstring pain on bilateral corticomotor organization using transcranial magnetic stimulation (TMS) mapping. Corticomotor outcomes (TMS maps), pain, mechanical sensitivity (pressure pain thresholds), and function (maximal voluntary contractions) were recorded from 28 healthy participants at baseline. An injection of pain-inducing hypertonic (n = 14) or pain-free isotonic (n = 14) saline was then administered to the right hamstring muscle, and pain ratings were collected every 30 seconds until pain resolution. Follow-up measures were taken immediately following pain resolution and at 25, 50, and 75 minutes post-pain resolution. Unilateral acute hamstring pain induced bilateral symptom development and changes in corticomotor reorganization. Two patterns of reorganization were observed-corticomotor facilitation and corticomotor depression. Corticomotor facilitation was associated with increased mechanical sensitivity and decreased function bilaterally (all P < .05). These effects persisted for at least 75 minutes after pain resolution. PERSPECTIVE: These findings suggest that individual patterns of corticomotor reorganization may contribute to ongoing functional deficits of either limb following acute unilateral lower limb pain. Further research is required to assess these adaptations and the possible long-term implications for rehabilitation and reinjury risk in cohorts with acute hamstring injury.
Collapse
Affiliation(s)
- Ariane Y Suhood
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David A Opar
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia; School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Tom Astill
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Winko W An
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Ebonie Rio
- School of Allied Health, La Trobe University Melbourne, Melbourne, Victoria, Australia; The Victorian Institute of Sport, Albert Park, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
13
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. eLife 2023; 12:RP88567. [PMID: 37966464 PMCID: PMC10651174 DOI: 10.7554/elife.88567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n=29), multiple sustained thermal stimuli were administered to the forearm, with the first, second, and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures, respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45 ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n=10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian Shahmat Chowdhury
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- The Gray Centre for Mobility and Activity, University of Western OntarioLondonCanada
| |
Collapse
|
14
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Alterations in cortical excitability during pain: A combined TMS-EEG Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537735. [PMID: 37131586 PMCID: PMC10153239 DOI: 10.1101/2023.04.20.537735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered to the forearm, with the first, second and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n = 10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- The Gray Centre for Mobility and Activity, University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
16
|
Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods 2023; 385:109766. [PMID: 36495945 PMCID: PMC9848447 DOI: 10.1016/j.jneumeth.2022.109766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many pain biomarkers fail to move from discovery to clinical application, attributed to poor reliability and an inability to accurately classify at-risk individuals. Preliminary evidence has shown that high pain sensitivity is associated with slow peak alpha frequency (PAF), and depression of corticomotor excitability (CME), potentially due to impairments in ascending sensory and descending motor pathway signalling respectively NEW METHOD: The present study evaluated the reliability of PAF and CME responses during sustained pain. Specifically, we determined whether, over several days of pain, a) PAF remains stable and b) individuals show two stable and distinct CME responses: facilitation and depression. Participants were given an injection of nerve growth factor (NGF) into the right masseter muscle on Day 0 and Day 2, inducing sustained pain. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Day 0, Day 2 and Day 5. RESULTS Using a weighted peak estimate, PAF reliability (n = 75) was in the excellent range even without standard pre-processing and ∼2 min recording length. Using a single peak estimate, PAF reliability was in the moderate-good range. For CME (n = 74), 80% of participants showed facilitation or depression of CME beyond an optimal cut-off point, with the stability of these changes in the good range. COMPARISON WITH EXISTING METHODS No study has assessed the reliability of PAF or feasibility of classifying individuals as facilitators/depressors, in response to sustained pain. PAF was reliable even in the presence of pain. The use of a weighted peak estimate for PAF is recommended, as excellent test-retest reliability can be obtained even when using minimal pre-processing and ∼2 min recording. We also showed that 80% of individuals exhibit either facilitation or depression of CME, with these changes being stable across sessions. CONCLUSIONS Our study provides support for the reliability of PAF and CME as prospective cortical biomarkers. As such, our paper adds important methodological advances to the rapidly growing field of pain biomarkers.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia.
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA; Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|